-
Notifications
You must be signed in to change notification settings - Fork 51
/
utils.py
240 lines (186 loc) · 7.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import traceback
from datetime import datetime
from math import ceil
import numpy as np
import pandas as pd
import seaborn as sns
import telegram
from httpx import Client
from matplotlib.axes import Axes
from sty import bg
HTTP = Client(
headers={'User-Agent': 'Mozilla/5.0 (Linux x86_64; rv:128.0) Gecko/20100101 Firefox/128.0'},
timeout=30,
follow_redirects=True,
)
def mark_highs_lows(
df: pd.DataFrame,
col: str,
begin_with_high: bool,
window_size: float,
ignore_last_rows: int,
) -> pd.DataFrame:
"""
Marks highs and lows (peaks) of the column values inside the given DataFrame.
Marked points are indicated by the value '1' inside their corresponding, newly added, '``col``High' and '``col``Low' columns.
Args:
df: DataFrame from which the column values are selected and to which marked points columns are added.
col: Column name of which values are selected inside the given DataFrame.
begin_with_high: Indicates whether the first peak is high or low.
window_size: Window size for the algorithm to consider.
Too low value will mark too many peaks, whereas, too high value will mark too little peaks.
ignore_last_rows: Amount of trailing DataFrame rows for which highs and lows should not be marked.
Returns:
Modified input DataFrame with columns, indicating the marked points, added.
"""
col_high = col + 'High'
col_low = col + 'Low'
assert col in df.columns, f'The column name "{col}" (col) could not be found inside the given DataFrame (df)'
assert col_high not in df.columns, 'The DataFrame (df) already contains the "High" column - bug prone'
assert col_low not in df.columns, 'The DataFrame (df) already contains the "Low" column - bug prone'
assert window_size > 0, 'Value of the window_size argument must be at least 1'
df[col_high] = 0
df[col_low] = 0
searching_high = begin_with_high
current_index = df.index[0]
while True:
window = df.loc[current_index : current_index + window_size, col]
if sum(~np.isnan(window)) == 0 and window.shape[0] > 1:
current_index += window.shape[0]
continue
if window.shape[0] <= 1:
break
window_index = window.idxmax() if searching_high else window.idxmin()
if window_index == current_index:
df.loc[window_index, col_high if searching_high else col_low] = 1
searching_high = not searching_high
window_index = window_index + 1
current_index = window_index
df.loc[df.shape[0] - ignore_last_rows :, (col_high, col_low)] = 0
# stabilize the algorithm until a next major update
df.loc[df['Date'] >= '2023-07-01', (col_high, col_low)] = 0
return df
def mark_days_since(df: pd.DataFrame, cols: list[str]) -> pd.DataFrame:
"""
This function takes a DataFrame and a list of column names
and calculates the number of days since the last value of 1 for each column in the list.
The resulting DataFrame will have new columns for each input column, with the column name prefixed by 'DaysSince'.
The value in these new columns will be the number of days since the last value of 1 in the corresponding input column.
Args:
df: The input DataFrame.
cols: The list of columns in the DataFrame to calculate the days since the last value of 1.
Returns:
The modified DataFrame with the new columns added.
"""
for col in cols:
indexes = df.loc[df[col] == 1].index
df[f'DaysSince{col}'] = df.index.to_series().apply(
lambda v: min([v - index if index <= v else np.nan for index in indexes]) # noqa: B023
)
return df
def add_common_markers(df: pd.DataFrame, ax: Axes, price_line: bool = True) -> None:
"""
This function adds common markers to a plot.
Args:
df: The DataFrame containing the data to be plotted.
ax: The Axes object to be plotted on.
price_line: If True, a line plot of the 'PriceLogInterp' column will be added to the Axes. Default is True.
Returns:
None
"""
if price_line:
sns.lineplot(data=df, x='Date', y='PriceLogInterp', alpha=0.4, color='orange', ax=ax)
for _, row in df[df['Halving'] == 1].iterrows():
days_since_epoch = (row['Date'] - datetime(1970, 1, 1)).days
ax.axvline(x=days_since_epoch, color='navy', linestyle=':')
for _, row in df[df['PriceHigh'] == 1].iterrows():
days_since_epoch = (row['Date'] - datetime(1970, 1, 1)).days
ax.axvline(x=days_since_epoch, color='green', linestyle=':')
for _, row in df[df['PriceLow'] == 1].iterrows():
days_since_epoch = (row['Date'] - datetime(1970, 1, 1)).days
ax.axvline(x=days_since_epoch, color='red', linestyle=':')
def split_df_on_index_gap(df: pd.DataFrame, min_gap: int = 1):
"""
Split a Pandas DataFrame on gaps in the index values.
Args:
df: The DataFrame to split.
min_gap: The minimum gap size in the index values to split on.
Returns:
A list of DataFrames split on the specified gaps in the index values.
"""
begin_idx = None
end_idx = None
for i, _ in df.iterrows():
if begin_idx is None:
begin_idx = i
end_idx = i
elif (i - end_idx) <= min_gap:
end_idx = i
else:
yield df.loc[begin_idx:end_idx]
begin_idx = i
end_idx = i
if begin_idx is not None:
yield df.loc[begin_idx:end_idx]
def format_percentage(val: float, suffix: str = ' %') -> str:
"""
Formats a percentage value (0.0 - 1.0) in the standardized way.
Returned value has a constant width and a trailing '%' sign.
Args:
val: Percentage value to be formatted.
suffix: String to be appended to the result.
Returns:
Formatted percentage value with a constant width and trailing '%' sign.
Examples:
>>> print(format_percentage(0.359))
str(' 36 %')
>>> print(format_percentage(1.1))
str('110 %')
"""
return f'{ceil(val * 100): >3d}{suffix}'
def get_color(val: float) -> str:
"""
Maps a percentage value (0.0 - 1.0) to its corresponding color.
The color is used to indicate whether the value is low (0.0) or high (1.0).
Returned value is a valid sty-package color string.
Args:
val: Percentage value to be mapped into a color.
Returns:
Valid sty-package color string.
"""
config = [
bg.da_red,
0.3,
bg.da_yellow,
0.65,
bg.da_green,
0.85,
bg.da_cyan,
0.97,
bg.da_magenta,
]
bin_index = np.digitize([round(val, 2)], config[1::2])[0]
return config[::2][bin_index]
async def send_error_notification(exception: Exception) -> bool:
"""
This function sends a notification to a Telegram chat with details of the provided exception.
Args:
exception: The exception to be reported.
Returns:
A boolean indicating whether the notification was sent successfully.
"""
telegram_token = os.getenv('TELEGRAM_TOKEN')
telegram_chat_id = os.getenv('TELEGRAM_CHAT_ID')
if not telegram_token or not telegram_chat_id:
return False
async with telegram.Bot(telegram_token) as bot:
await bot.send_message(
telegram_chat_id,
f'🚨 An error has occurred: <b>{exception!s}</b>\n'
f'\n'
f'🔍️ <b>Stack trace</b>\n'
f'<pre>{"".join(traceback.format_exception(exception))}</pre>',
parse_mode='HTML',
)
return True