-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPreProcessing.py
215 lines (171 loc) · 6.14 KB
/
PreProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import PIL
from PIL import Image
import numpy as np
from time import clock
import glob
from multiprocessing import Process
from multiprocessing import Queue
import os, re, cv2, random
from scipy.misc import imread
import matplotlib.pyplot as plt
from pathlib import Path
SIZE = 32
CHANNELS = 3
TRI_DIR = Path('../CatDogDataSet/annotations/trimaps')
IMG_DIR = Path('../CatDogDataSet/images')
BASE_DIR = Path('.')
# get all the names of the trimaps images.
# tri = imread(p.resolve())
# tri = imread('Abyssinian_3.png')
# plt.imshow(tri)
# plt.show()
# Inspiration: https://www.kaggle.com/gauss256/ ...
# dogs-vs-cats-redux-kernels-edition/preprocess-images
def norm_image(img):
"""
Normalize PIL image
Normalizes luminance to (mean,std)=(0,1),
and applies a [1%, 99%] contrast stretch
"""
# YCbCr allows for adjustment of luma component (Y)
img_y, img_b, img_r = img.convert('YCbCr').split()
img_y_np = np.asarray(img_y).astype(float)
img_y_np /= 255
img_y_np -= img_y_np.mean()
img_y_np /= img_y_np.std()
scale = np.max([np.abs(np.percentile(img_y_np, 1.0)),
np.abs(np.percentile(img_y_np, 99.0))])
img_y_np = img_y_np / scale
img_y_np = np.clip(img_y_np, -1.0, 1.0)
# Now between 0 and 1.
img_y_np = (img_y_np + 1.0) / 2.0
img_y_np = (img_y_np * 255 + .05).astype(np.uint8)
img_y = Image.fromarray(img_y_np)
img_ybr = Image.merge('YCbCr', (img_y, img_b, img_r))
img_nrm = img_ybr.convert('RGB')
return img_nrm
def resize_image(img, size, imtype='RGB'):
"""
Resize PIL Image
Resizes the image to be square with sidelength size. Pads with black.
"""
n_x, n_y = img.size
if n_y > n_x:
n_y_new = size
n_x_new = round(size * n_x / n_y)
else:
n_x_new = size
n_y_new = round(size * n_y / n_x)
img_res = img.resize((n_x_new, n_y_new), resample=PIL.Image.ANTIALIAS)
# Pad the borders to create a square image
if imtype == 'RGB':
img_pad = Image.new(imtype, (size, size), (0, 0, 0))
else:
img_np = np.asarray(img).astype(float)
img_np = np.abs(img_np - 2)
img_res = Image.fromarray(img_np)
img_pad = Image.new(imtype, (size, size), 0)
ulc = ((size - n_x_new) // 2, (size - n_y_new) // 2)
img_pad.paste(img_res, ulc)
return img_pad
def prep_train_images(paths, out_dir):
"""
:param paths: paths to images
:param out_dir: directory to write outputs to
:return: nothing
"""
count = len(paths)
data = np.ndarray((count, CHANNELS, SIZE, SIZE), dtype=np.uint8)
for i, path in enumerate(paths):
# print("Train:", i)
if i % 100 == 0:
print("Processed: {} of {}".format(i, count))
ext = os.path.splitext(str(path))[-1].lower()
if ext == ".jpg" or ext == ".png":
img = Image.open(path)
img_nrm = norm_image(img)
img_res = resize_image(img_nrm, SIZE)
img_mat = np.asarray(img_res, dtype=np.uint8)
img_mat = np.transpose(img_mat)
data[i] = img_mat
basename = os.path.basename(str(path))
path_out = os.path.join(str(out_dir), str(basename))
img_res.save(path_out)
else:
print("Weird extension: {}".format(path))
return data
def prep_label_images(paths, out_dir):
"""
:param paths: paths to images
:param out_dir: directory to write outputs to
:return: nothing
"""
count = len(paths)
data = np.ndarray((count, 1, SIZE, SIZE), dtype=np.uint8)
for i, path in enumerate(paths):
# print("Train:", i)
if i % 100 == 0:
print("Processed: {} of {}".format(i, count))
ext = os.path.splitext(str(path))[-1].lower()
if ext == ".jpg" or ext == ".png":
img = Image.open(path)
img_res = resize_image(img, SIZE, 'L')
img_mat = np.asarray(img_res, dtype=np.uint8)
img_mat = np.transpose(img_mat)
data[i] = img_mat
basename = os.path.basename(str(path))
path_out = os.path.join(str(out_dir), str(basename))
img_res.save(path_out)
else:
print("Weird extension: {}".format(path))
return data
# def readlist():
# """
# This method should be used to read the list.txt file in the annotations
# directory.
# :return: nothing.
# """
# pathToList = Path('../CatDogDataSet/annotations/list.txt')
# f = open(str(pathToList),'r')
# for i in f.readlines():
# print(i)
#
def main():
"""Main program for running from command line"""
# Get the paths to all the image files
# tri_img = [x for x in TRI_DIR.iterdir() if TRI_DIR.is_dir()]
# print(type(tri_img[0]))
# train_img = [x for x in IMG_DIR.iterdir() if IMG_DIR.is_dir()]
# test_img = [x for x in tri_img if '._' not in str(x)]
pathToList = Path('../CatDogDataSet/annotations/list.txt')
f = open(str(pathToList), 'r')
fList = f.readlines()
catList = []
dogList = []
pictureList = []
for i in fList:
iList = i.split()
if '#' not in iList[0]:
pictureList.append(iList[0])
firstLetter = iList[0][0]
if firstLetter.islower():
dogList.append(iList)
else:
catList.append(iList)
randIndexes = np.random.choice(len(pictureList), len(pictureList) // 100)
pictureList = [pictureList[i] for i in randIndexes]
train_img = [Path(IMG_DIR, "{}.jpg".format(x)) for x in pictureList]
label_img = [Path(TRI_DIR, "{}.png".format(x)) for x in pictureList]
# Make the output directories
base_out = Path(BASE_DIR, 'data{}'.format(SIZE))
train_dir_out = Path(base_out, 'train')
label_dir_out = Path(base_out, 'label')
os.makedirs(str(train_dir_out), exist_ok=True)
os.makedirs(str(label_dir_out), exist_ok=True)
train_data = prep_train_images(train_img, train_dir_out)
label_data = prep_label_images(label_img, label_dir_out)
print("Training Data:", train_data.shape)
print("Label Data:", label_data.shape)
return (train_data, label_data)
if __name__ == '__main__':
main()