forked from isl-org/MiDaS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
151 lines (120 loc) · 4.39 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""Compute depth maps for images in the input folder.
"""
import os
import glob
import torch
import utils
import cv2
import argparse
from torchvision.transforms import Compose
from midas.midas_net import MidasNet
from midas.midas_net_custom import MidasNet_small
from midas.transforms import Resize, NormalizeImage, PrepareForNet
def run(input_path, output_path, model_path, model_type="large", optimize=True):
"""Run MonoDepthNN to compute depth maps.
Args:
input_path (str): path to input folder
output_path (str): path to output folder
model_path (str): path to saved model
"""
print("initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
# load network
if model_type == "large":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
elif model_type == "small":
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
else:
print(f"model_type '{model_type}' not implemented, use: --model_type large")
assert False
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
model.eval()
if optimize==True:
rand_example = torch.rand(1, 3, net_h, net_w)
model(rand_example)
traced_script_module = torch.jit.trace(model, rand_example)
model = traced_script_module
if device == torch.device("cuda"):
model = model.to(memory_format=torch.channels_last)
model = model.half()
model.to(device)
# get input
img_names = glob.glob(os.path.join(input_path, "*"))
num_images = len(img_names)
# create output folder
os.makedirs(output_path, exist_ok=True)
print("start processing")
for ind, img_name in enumerate(img_names):
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images))
# input
img = utils.read_image(img_name)
img_input = transform({"image": img})["image"]
# compute
with torch.no_grad():
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
if optimize==True and device == torch.device("cuda"):
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
prediction = model.forward(sample)
prediction = (
torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=img.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
# output
filename = os.path.join(
output_path, os.path.splitext(os.path.basename(img_name))[0]
)
utils.write_depth(filename, prediction, bits=2)
print("finished")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path',
default='input',
help='folder with input images'
)
parser.add_argument('-o', '--output_path',
default='output',
help='folder for output images'
)
parser.add_argument('-m', '--model_weights',
default='model-f6b98070.pt',
help='path to the trained weights of model'
)
parser.add_argument('-t', '--model_type',
default='large',
help='model type: large or small'
)
parser.add_argument('--optimize', dest='optimize', action='store_true')
parser.add_argument('--no-optimize', dest='optimize', action='store_false')
parser.set_defaults(optimize=True)
args = parser.parse_args()
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# compute depth maps
run(args.input_path, args.output_path, args.model_weights, args.model_type, args.optimize)