From 48600a8b2633c004b5062d8c5c240e05d48306f3 Mon Sep 17 00:00:00 2001 From: YeonwooSung Date: Sun, 29 Sep 2024 16:57:51 +0900 Subject: [PATCH] fix: Fix up constants --- .../Quantization_of_Llama_2_with_GPTQ.ipynb | 7357 ++++++++--------- ...Llama_2_Chat_Models_on_Your_Computer.ipynb | 1806 ++-- 2 files changed, 4581 insertions(+), 4582 deletions(-) diff --git a/LLMs/models/llama2/Quantization_of_Llama_2_with_GPTQ.ipynb b/LLMs/models/llama2/Quantization_of_Llama_2_with_GPTQ.ipynb index da50803..b4d4969 100644 --- a/LLMs/models/llama2/Quantization_of_Llama_2_with_GPTQ.ipynb +++ b/LLMs/models/llama2/Quantization_of_Llama_2_with_GPTQ.ipynb @@ -1,1327 +1,886 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [], - "machine_shape": "hm", - "gpuType": "T4" - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "pX0IffauAEmI" + }, + "source": [ + "This notebook shows how to quantize Llama 2 with GPTQ.\n", + "It runs on Google Colab Pro. It can also run on a machine with at least 24 GB of CPU RAM and a GPU with 12 GB VRAM\n", + "\n", + "For more details check out this article:\n", + "[Quantization of Llama 2 with GTPQ for Fast Inference on Your Computer](https://kaitchup.substack.com/p/quantization-of-llama-2-with-gtpq)" + ] }, - "language_info": { - "name": "python" + { + "cell_type": "markdown", + "metadata": { + "id": "LlokkEwtAWEs" + }, + "source": [ + "We need the last version of AutoGPTQ, so we will install it from GitHub." + ] }, - "accelerator": "GPU", - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "3537c2a9d15f4ff7a0d170459f959ef7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eea87a848431477587a79db561f3013f", - "IPY_MODEL_c52bdd43a472471486bbbbcb96ee1a39", - "IPY_MODEL_420d32b41b0144b3924bd1dccda169dc" - ], - "layout": "IPY_MODEL_cbcc440ae3c040ab822c2b2c5fa5f55d" - } - }, - "eea87a848431477587a79db561f3013f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fdeb2f5d6f9e44c098b8e11ca678b5f3", - "placeholder": "​", - "style": "IPY_MODEL_28d81134a5934780941c632e7d5df3e7", - "value": "Downloading (…)okenizer_config.json: 100%" - } + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - "c52bdd43a472471486bbbbcb96ee1a39": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7b3329934cde4998bb0b0e585010c761", - "max": 770, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ecc66ec306e243bfa88619ffac0a364a", - "value": 770 - } + "id": "bF1zZBemKrb4", + "outputId": "d20629e4-bf0c-4e20-abbb-46ba3539c65d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cloning into 'AutoGPTQ'...\n", + "remote: Enumerating objects: 2487, done.\u001b[K\n", + "remote: Counting objects: 100% (825/825), done.\u001b[K\n", + "remote: Compressing objects: 100% (427/427), done.\u001b[K\n", + "remote: Total 2487 (delta 503), reused 574 (delta 382), pack-reused 1662\u001b[K\n", + "Receiving objects: 100% (2487/2487), 7.48 MiB | 19.33 MiB/s, done.\n", + "Resolving deltas: 100% (1627/1627), done.\n" + ] + } + ], + "source": [ + "!git clone https://github.com/PanQiWei/AutoGPTQ.git" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e6YsmwJo99Bf" + }, + "source": [ + "First we patch the repository to enable use_auth_token support. Don't do this if you want to use a model that doesn't require an access token. Also, this patch may become obsolete very soon so you may try without it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - "420d32b41b0144b3924bd1dccda169dc": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_647102c6bb264a02acd51baec051f5c1", - "placeholder": "​", - "style": "IPY_MODEL_f6da1b054f784db88437b0858e2b2da4", - "value": " 770/770 [00:00<00:00, 57.6kB/s]" - } + "id": "PqehoDrz98vC", + "outputId": "6173578c-3a47-4b1f-a640-21a816c035cb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2023-07-26 20:59:49-- https://about.benjaminmarie.com/data/py/auto-gptq-patch/_utils.py\n", + "Resolving about.benjaminmarie.com (about.benjaminmarie.com)... 192.95.30.6\n", + "Connecting to about.benjaminmarie.com (about.benjaminmarie.com)|192.95.30.6|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 7224 (7.1K) [text/x-python]\n", + "Saving to: ‘_utils.py’\n", + "\n", + "_utils.py 100%[===================>] 7.05K --.-KB/s in 0s \n", + "\n", + "2023-07-26 20:59:50 (182 MB/s) - ‘_utils.py’ saved [7224/7224]\n", + "\n", + "--2023-07-26 20:59:50-- https://about.benjaminmarie.com/data/py/auto-gptq-patch/auto.py\n", + "Resolving about.benjaminmarie.com (about.benjaminmarie.com)... 192.95.30.6\n", + "Connecting to about.benjaminmarie.com (about.benjaminmarie.com)|192.95.30.6|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 4697 (4.6K) [text/x-python]\n", + "Saving to: ‘auto.py’\n", + "\n", + "auto.py 100%[===================>] 4.59K --.-KB/s in 0s \n", + "\n", + "2023-07-26 20:59:50 (134 MB/s) - ‘auto.py’ saved [4697/4697]\n", + "\n" + ] + } + ], + "source": [ + "!wget https://about.benjaminmarie.com/data/py/auto-gptq-patch/_utils.py\n", + "!wget https://about.benjaminmarie.com/data/py/auto-gptq-patch/auto.py\n", + "\n", + "!mv _utils.py AutoGPTQ/auto_gptq/modeling/\n", + "!mv auto.py AutoGPTQ/auto_gptq/modeling/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - "cbcc440ae3c040ab822c2b2c5fa5f55d": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + "id": "JZTifEWAX6cf", + "outputId": "fc1cd929-cacc-42ac-d4eb-5034e89712a3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content/AutoGPTQ\n", + "Processing /content/AutoGPTQ\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting accelerate>=0.19.0 (from auto-gptq==0.3.2+cu118)\n", + " Downloading accelerate-0.21.0-py3-none-any.whl (244 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m244.2/244.2 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting datasets (from auto-gptq==0.3.2+cu118)\n", + " Downloading datasets-2.14.0-py3-none-any.whl (492 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m492.2/492.2 kB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from auto-gptq==0.3.2+cu118) (1.22.4)\n", + "Collecting rouge (from auto-gptq==0.3.2+cu118)\n", + " Downloading rouge-1.0.1-py3-none-any.whl (13 kB)\n", + "Requirement already satisfied: torch>=1.13.0 in /usr/local/lib/python3.10/dist-packages (from auto-gptq==0.3.2+cu118) (2.0.1+cu118)\n", + "Collecting safetensors (from auto-gptq==0.3.2+cu118)\n", + " Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m54.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting transformers>=4.31.0 (from auto-gptq==0.3.2+cu118)\n", + " Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m49.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting peft (from auto-gptq==0.3.2+cu118)\n", + " Downloading peft-0.4.0-py3-none-any.whl (72 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.9/72.9 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.19.0->auto-gptq==0.3.2+cu118) (23.1)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.19.0->auto-gptq==0.3.2+cu118) (5.9.5)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.19.0->auto-gptq==0.3.2+cu118) (6.0.1)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.12.2)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (4.7.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (1.11.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.25.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.13.0->auto-gptq==0.3.2+cu118) (16.0.6)\n", + "Collecting huggingface-hub<1.0,>=0.14.1 (from transformers>=4.31.0->auto-gptq==0.3.2+cu118)\n", + " Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m27.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.31.0->auto-gptq==0.3.2+cu118) (2022.10.31)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers>=4.31.0->auto-gptq==0.3.2+cu118) (2.27.1)\n", + "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers>=4.31.0->auto-gptq==0.3.2+cu118)\n", + " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m116.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.31.0->auto-gptq==0.3.2+cu118) (4.65.0)\n", + "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (9.0.0)\n", + "Collecting dill<0.3.8,>=0.3.0 (from datasets->auto-gptq==0.3.2+cu118)\n", + " Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m14.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (1.5.3)\n", + "Collecting xxhash (from datasets->auto-gptq==0.3.2+cu118)\n", + " Downloading xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m25.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting multiprocess (from datasets->auto-gptq==0.3.2+cu118)\n", + " Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m18.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (2023.6.0)\n", + "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (3.8.5)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from rouge->auto-gptq==0.3.2+cu118) (1.16.0)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (23.1.0)\n", + "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (2.0.12)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (4.0.2)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (1.3.1)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.31.0->auto-gptq==0.3.2+cu118) (1.26.16)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.31.0->auto-gptq==0.3.2+cu118) (2023.7.22)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.31.0->auto-gptq==0.3.2+cu118) (3.4)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.13.0->auto-gptq==0.3.2+cu118) (2.1.3)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->auto-gptq==0.3.2+cu118) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->auto-gptq==0.3.2+cu118) (2022.7.1)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.13.0->auto-gptq==0.3.2+cu118) (1.3.0)\n", + "Building wheels for collected packages: auto-gptq\n", + " Building wheel for auto-gptq (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for auto-gptq: filename=auto_gptq-0.3.2+cu118-cp310-cp310-linux_x86_64.whl size=5667878 sha256=1e2e7e301393c5b4299ed46ca9f3f673e0565446b1899a102d3eacd1dc8898f4\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-52c3z5ek/wheels/8c/41/f4/48ea4848ab4977e74d11a4abbc2c42745c5b1d33f931e8cadf\n", + "Successfully built auto-gptq\n", + "Installing collected packages: tokenizers, safetensors, xxhash, rouge, dill, multiprocess, huggingface-hub, transformers, datasets, accelerate, peft, auto-gptq\n", + "Successfully installed accelerate-0.21.0 auto-gptq-0.3.2+cu118 datasets-2.14.0 dill-0.3.7 huggingface-hub-0.16.4 multiprocess-0.70.15 peft-0.4.0 rouge-1.0.1 safetensors-0.3.1 tokenizers-0.13.3 transformers-4.31.0 xxhash-3.2.0\n" + ] + } + ], + "source": [ + "%cd AutoGPTQ\n", + "!pip install .\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WldO7DIZ_HDw" + }, + "source": [ + "We import all the necessary libraries:\n", + "\n", + "*Note all of them were installed as dependencies of auto-gptq*" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "X_TV093r2IAB" + }, + "outputs": [], + "source": [ + "import random\n", + "import numpy as np\n", + "import torch\n", + "from datasets import load_dataset\n", + "from transformers import AutoTokenizer\n", + "from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "T0MYHD2b_XYn" + }, + "source": [ + "Set up some variables, load the tokenizer, and define a function to deal with the data used for calibration." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 312, + "referenced_widgets": [ + "3537c2a9d15f4ff7a0d170459f959ef7", + "eea87a848431477587a79db561f3013f", + "c52bdd43a472471486bbbbcb96ee1a39", + "420d32b41b0144b3924bd1dccda169dc", + "cbcc440ae3c040ab822c2b2c5fa5f55d", + "fdeb2f5d6f9e44c098b8e11ca678b5f3", + "28d81134a5934780941c632e7d5df3e7", + "7b3329934cde4998bb0b0e585010c761", + "ecc66ec306e243bfa88619ffac0a364a", + "647102c6bb264a02acd51baec051f5c1", + "f6da1b054f784db88437b0858e2b2da4", + "9cff3946b97441e3a31f4e069bd636e7", + "e8119d4c0c494edda88a568160cd5d16", + "f8afe190bc72445ebd64592fbfb6af77", + "383e17c7abad4febbe3b053fa849a029", + "712735ae7df54ba6bb2307c186893446", + "8f2be0b1f16b45b0a71889369e83f6cf", + "15c2ab71679a4806bca6c92254d9d1d4", + "94aa997c559141fda3188fa31296a835", + "96789b46561b4d0d9831a2ef78a71aa5", + "6227f44359c3499aa7550b1f682557c6", + "b888b0df503d4c0ba396a7134f18ffe7", + "18c6916531ef40738a89cb692fb56488", + "aafa72ef19504229895e329714cc43a3", + "d3aecac0211b4696b64265560dd03b7f", + "8f88ad638f0a449ab77bd40f6d7a0a70", + "ef4a7aa02bdf481bb386d428668da6f8", + "e7223ff4f0f8450cbb56a54536987961", + "eb6e7d1222574213bc8ea7eae3c3e667", + "b1751d1bb4834f38a7ff48f4dafbbbb8", + "ab95d77429734d59b935d7c71189db4d", + "2ee1f06f16ea44b694e2e7f4cb7ea2df", + "e3c2a5881f27469580b923974b4baf98", + "40081a093e8b435da1a12b583bf6331b", + "2a6bd38dcf8c4281b097580cf6879a95", + "e6c3c82a96c044beb121bbd952e7caf5", + "aa3cceab43ce420fbc4daf319eb119e8", + "e37ceb1a70644cc09d6263bc213d6b29", + "2ac4786cd1494740a01d9465e3f1305f", + "27073ef8ef89411582cb5132754b42cf", + "1f9eab6219254fc5aba5b1b12f3f7a91", + "fe494d54133c445f9b26618f0147c424", + "d86a7262444f4825aee3eec687a9685f", + "4ea9a13ed2e54e5db8a898578bb6d93c" + ] }, - "fdeb2f5d6f9e44c098b8e11ca678b5f3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + "id": "5cvBQlszaMeb", + "outputId": "82c359cd-2163-4293-b89a-512debdcaa08" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3537c2a9d15f4ff7a0d170459f959ef7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading (…)okenizer_config.json: 0%| | 0.00/770 [00:00 Tell me about gravity. everybody knows what it is, but can you explain it in a way that makes it easy to understand?\n", + "Gravity is a fundamental force of nature that causes objects with mass to attract each other. It is the weakest of the four fundamental forces of nature, but it is the one that dominates at large scales, shaping the structure of the universe as we know it today.\n", + "Gravity is a two-way force, meaning that any two objects with mass will attract each other. The strength of the gravitational force between two objects depends on their mass and the distance between them. The greater the mass of the objects and the closer they are to each other, the stronger the gravitational force will be.\n", + "Gravity is a universal force that affects everything with mass, from the smallest subatomic particles to the largest galaxies. It is the force that keeps planets in orbit around their stars, causes objects to fall towards the ground, and holds galaxies together.\n", + "One of the most famous examples of gravity is the way that planets orbit around their stars. The gravitational force of the star pulls the planet towards it, keeping it in a stable orbit. The strength of the gravitational force depends on the mass of the star and the distance between the planet and the star.\n", + "Gravity is also responsible for the way that objects fall towards the ground. Any object with mass will experience a force towards the ground due\n" + ] + } + ], + "source": [ + "#We load the quantized model\n", + "model = AutoGPTQForCausalLM.from_quantized(\"Llama-2-7b-4bit-chat-hf\", use_safetensors=True, device=\"cuda:0\", use_auth_token=False)\n", + "\n", + "#Your test prompt\n", + "prompt = \"Tell me about gravity\"\n", + "print(tokenizer.decode(model.generate(**tokenizer(prompt, return_tensors=\"pt\").to(model.device), max_length=300)[0]))\n", + "\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "machine_shape": "hm", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "0133753436114595b9c0a91d9a27a63e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1370,47 +929,10 @@ "width": null } }, - "4ea9a13ed2e54e5db8a898578bb6d93c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e38985de47d94cf99844f61dcdf9a489": { + "01582fa5f3b640f7a71f85efcf470cef": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72a329c97a56482b801c773c79f352bc", - "IPY_MODEL_ca519b97bb744af0b5ea476c1ef004c9", - "IPY_MODEL_a5df5d102209452492064315ec6f9661" - ], - "layout": "IPY_MODEL_7934b59e718f4511a0dc19e83bba1948" - } - }, - "72a329c97a56482b801c773c79f352bc": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1422,16 +944,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1dc3d9a88eb746afb97d15fbd7cf06fd", + "layout": "IPY_MODEL_c7bc54cd3c5649fb85c4e5a8656923d6", "placeholder": "​", - "style": "IPY_MODEL_5b8aa2b020694f579d764f58b4db038d", - "value": "Downloading builder script: 100%" + "style": "IPY_MODEL_c341d2fe80ef435bad553a50a6b32f8f", + "value": " 2/2 [00:47<00:00, 22.41s/it]" } }, - "ca519b97bb744af0b5ea476c1ef004c9": { + "018935710fe7477c95b984649af1a808": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1444,210 +966,48 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a89f0df9f09348e7a4af06a9a5ed6871", - "max": 8482, + "layout": "IPY_MODEL_e8b02c601bb44e339a5024e9605a168b", + "max": 26788, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_02065982cc024fec8f03fa92c77e8aee", - "value": 8482 + "style": "IPY_MODEL_e789489f9bc849b9bd059aef14486aef", + "value": 26788 } }, - "a5df5d102209452492064315ec6f9661": { + "01a7285e88ac4f96af40cc3e1a0a92ad": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_977a1fe6cde34e1596b0276ee4f2a43e", - "placeholder": "​", - "style": "IPY_MODEL_7af8c58ec54b40278b02195e1c679a94", - "value": " 8.48k/8.48k [00:00<00:00, 395kB/s]" - } - }, - "7934b59e718f4511a0dc19e83bba1948": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1dc3d9a88eb746afb97d15fbd7cf06fd": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5b8aa2b020694f579d764f58b4db038d": { - "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a89f0df9f09348e7a4af06a9a5ed6871": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "01bb64b7b2e04179860d3c1242940ee2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, "02065982cc024fec8f03fa92c77e8aee": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1660,10 +1020,10 @@ "description_width": "" } }, - "977a1fe6cde34e1596b0276ee4f2a43e": { + "02d259fb27ec42d1a4f626c8c0d6c804": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1712,47 +1072,31 @@ "width": null } }, - "7af8c58ec54b40278b02195e1c679a94": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0c8ba06634684fafa7bd07d244e008c6": { + "043d6abd32a246df9349f7c841c8b316": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4138ccfbb4e4bdeb6b46895b39e1080", - "IPY_MODEL_d57ac99c8f474bc3b5a1705e9c358822", - "IPY_MODEL_b4d5f0f59f534645b4be131074c4ba81" - ], - "layout": "IPY_MODEL_0133753436114595b9c0a91d9a27a63e" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_46ee4d688b1d40ddbb3ac092752f5f9f", + "placeholder": "​", + "style": "IPY_MODEL_9e30519bd3554d2bb85bb5a534f45daa", + "value": "Downloading (…)fetensors.index.json: 100%" } }, - "a4138ccfbb4e4bdeb6b46895b39e1080": { + "0639c5d838a2403b91fc1a94021c9768": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1764,61 +1108,61 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c617e9c960f24436a5ef28717ddd737f", + "layout": "IPY_MODEL_5c31fc8ababf4625b7f990d43a0605f7", "placeholder": "​", - "style": "IPY_MODEL_0fcf350e56d3489797de494609fd9219", - "value": "Downloading metadata: 100%" + "style": "IPY_MODEL_0e6fa62170d443fe861d54c54238e2fe", + "value": "Downloading shards: 100%" } }, - "d57ac99c8f474bc3b5a1705e9c358822": { + "07fca03e35c44b698aa6bc8fe9a57425": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fe885f64e7004c2fb6929e7d6d965762", - "max": 6838, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_cfa0cb0a0b2a4c92b28521afa2c352df", - "value": 6838 + "layout": "IPY_MODEL_3ad05ebb0d3e4b7286a8bedea8970390", + "placeholder": "​", + "style": "IPY_MODEL_b3192d6e1d5746c0b955c787fc08b3f8", + "value": " 2/2 [01:37<00:00, 44.40s/it]" } }, - "b4d5f0f59f534645b4be131074c4ba81": { + "08ac930a4367453f88ae5bf7130b5f89": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_60047c7e664e434498198f1a1467fff9", - "placeholder": "​", - "style": "IPY_MODEL_b2126f2c2bc44971a87af28b3a2f3e16", - "value": " 6.84k/6.84k [00:00<00:00, 346kB/s]" + "layout": "IPY_MODEL_39fa91a3c0214c6fb7c0cef13ebbd742", + "max": 9615, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_27b938fe65e04fef9d3de3acd4db6695", + "value": 9615 } }, - "0133753436114595b9c0a91d9a27a63e": { + "0a0c337731a94e699103c45e89418f15": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1867,10 +1211,10 @@ "width": null } }, - "c617e9c960f24436a5ef28717ddd737f": { + "0aeaf10d031f4c0c9f8d0846b6bfe682": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1919,10 +1263,32 @@ "width": null } }, - "0fcf350e56d3489797de494609fd9219": { + "0c8ba06634684fafa7bd07d244e008c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4138ccfbb4e4bdeb6b46895b39e1080", + "IPY_MODEL_d57ac99c8f474bc3b5a1705e9c358822", + "IPY_MODEL_b4d5f0f59f534645b4be131074c4ba81" + ], + "layout": "IPY_MODEL_0133753436114595b9c0a91d9a27a63e" + } + }, + "0e6fa62170d443fe861d54c54238e2fe": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1934,130 +1300,85 @@ "description_width": "" } }, - "fe885f64e7004c2fb6929e7d6d965762": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "0fcf350e56d3489797de494609fd9219": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "cfa0cb0a0b2a4c92b28521afa2c352df": { + "11af4ac1d21b4b6c8389b04567266bb8": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e199bb085bc4d58b9c36ffc3bcaeff8", + "max": 635, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_93a390f9335342fa9211d490219d8c95", + "value": 635 } }, - "60047c7e664e434498198f1a1467fff9": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "129c10c0855a4ee6961065f1efc044ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bdef1b351f0041bc88e229f19354cfe5", + "placeholder": "​", + "style": "IPY_MODEL_adffb735698a410fbc99ca0770d328da", + "value": " 4.72M/4.72M [00:00<00:00, 9.81MB/s]" + } + }, + "1446f57d65bc4a5faf891361b291331f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "b2126f2c2bc44971a87af28b3a2f3e16": { + "15c2ab71679a4806bca6c92254d9d1d4": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2069,10 +1390,10 @@ "description_width": "" } }, - "d51b8fe524aa497b96264cf6d701ac1b": { + "18c6916531ef40738a89cb692fb56488": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2084,17 +1405,17 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_45251b3a06b442afa847907036192e0b", - "IPY_MODEL_08ac930a4367453f88ae5bf7130b5f89", - "IPY_MODEL_f2f3beaaa5e245c1bcb856afcd230b0d" + "IPY_MODEL_aafa72ef19504229895e329714cc43a3", + "IPY_MODEL_d3aecac0211b4696b64265560dd03b7f", + "IPY_MODEL_8f88ad638f0a449ab77bd40f6d7a0a70" ], - "layout": "IPY_MODEL_38f60c36e7fb4cd7a7a946650de01f9d" + "layout": "IPY_MODEL_ef4a7aa02bdf481bb386d428668da6f8" } }, - "45251b3a06b442afa847907036192e0b": { + "1a00a85528cd4a3ca7dc903e3ddca50e": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2106,40 +1427,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c7c4b9e1b2fb4aaf8cd3a0b9bb30ad6f", + "layout": "IPY_MODEL_38989c31cc0b474db18df71b45ca9a95", "placeholder": "​", - "style": "IPY_MODEL_84310fb4b16641afad8319037b69119a", - "value": "Downloading readme: 100%" + "style": "IPY_MODEL_3e87cc38476f4a648ef970d764ba8d48", + "value": "Loading checkpoint shards: 100%" } }, - "08ac930a4367453f88ae5bf7130b5f89": { + "1a2f41d8a0cd4187ac9b972b1f839327": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_39fa91a3c0214c6fb7c0cef13ebbd742", - "max": 9615, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_27b938fe65e04fef9d3de3acd4db6695", - "value": 9615 + "layout": "IPY_MODEL_33da2ac52d8447b386efdd59636b6d12", + "placeholder": "​", + "style": "IPY_MODEL_ea75bbc9f9f84294af12b70fd526ae1d", + "value": " 9.98G/9.98G [01:12<00:00, 143MB/s]" } }, - "f2f3beaaa5e245c1bcb856afcd230b0d": { + "1aeb0eff821041f892df1d3e163124a8": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2151,16 +1469,38 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_853e695b987041ae95e6ca8e8dd134e5", + "layout": "IPY_MODEL_2e599de1279640aea14c351f36eff3ad", "placeholder": "​", - "style": "IPY_MODEL_f31390dd8e164d809e6e7afe66bc20ed", - "value": " 9.62k/9.62k [00:00<00:00, 461kB/s]" + "style": "IPY_MODEL_c8a8bdbc3db1452c9283ce8f054f595e", + "value": " 635/635 [00:00<00:00, 54.1kB/s]" } }, - "38f60c36e7fb4cd7a7a946650de01f9d": { + "1b292ddb86f94287b2aa0f59d51b658a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a39c0fd95253419f9340948e8e65700f", + "IPY_MODEL_c2472c52c4c746a88780984ee160ed06", + "IPY_MODEL_129c10c0855a4ee6961065f1efc044ec" + ], + "layout": "IPY_MODEL_8230ef9f93bb4714a4730b39414b5719" + } + }, + "1bcf3bceb861400d8dfe6d9e584ca799": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2209,10 +1549,10 @@ "width": null } }, - "c7c4b9e1b2fb4aaf8cd3a0b9bb30ad6f": { + "1dc3d9a88eb746afb97d15fbd7cf06fd": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2261,25 +1601,55 @@ "width": null } }, - "84310fb4b16641afad8319037b69119a": { + "1dfe5e990f1d45a9885bfcb1a846cc9d": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a0c337731a94e699103c45e89418f15", + "placeholder": "​", + "style": "IPY_MODEL_01bb64b7b2e04179860d3c1242940ee2", + "value": " 36718/36718 [00:01<00:00, 26883.87 examples/s]" } }, - "39fa91a3c0214c6fb7c0cef13ebbd742": { + "1e3a99f84c3343cc96b3aa41a5599c97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3273b4cdb0c44e73848c62e8a7b05322", + "max": 167, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6e31f257c4854bb7a750f4c3277670a7", + "value": 167 + } + }, + "1f4306cd699c41adbcb1e25afdd93278": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2328,26 +1698,10 @@ "width": null } }, - "27b938fe65e04fef9d3de3acd4db6695": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "853e695b987041ae95e6ca8e8dd134e5": { + "1f9eab6219254fc5aba5b1b12f3f7a91": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2396,10 +1750,10 @@ "width": null } }, - "f31390dd8e164d809e6e7afe66bc20ed": { + "27073ef8ef89411582cb5132754b42cf": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2411,53 +1765,41 @@ "description_width": "" } }, - "1b292ddb86f94287b2aa0f59d51b658a": { + "27b938fe65e04fef9d3de3acd4db6695": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a39c0fd95253419f9340948e8e65700f", - "IPY_MODEL_c2472c52c4c746a88780984ee160ed06", - "IPY_MODEL_129c10c0855a4ee6961065f1efc044ec" - ], - "layout": "IPY_MODEL_8230ef9f93bb4714a4730b39414b5719" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a39c0fd95253419f9340948e8e65700f": { + "28d81134a5934780941c632e7d5df3e7": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_64346d79fe9445e9b8290126e73d886f", - "placeholder": "​", - "style": "IPY_MODEL_01a7285e88ac4f96af40cc3e1a0a92ad", - "value": "Downloading data: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "c2472c52c4c746a88780984ee160ed06": { + "2a547ef55a4b44118a2d245c69e15bc3": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2470,18 +1812,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1f4306cd699c41adbcb1e25afdd93278", - "max": 4721645, + "layout": "IPY_MODEL_9a801bb2804b407cb7249d6c24ede122", + "max": 2, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_ae8f8acb5c344a1783801fb3806f0124", - "value": 4721645 + "style": "IPY_MODEL_34b5ae8e5c2d41389b7aac76b1ec24da", + "value": 2 } }, - "129c10c0855a4ee6961065f1efc044ec": { + "2a6bd38dcf8c4281b097580cf6879a95": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2493,16 +1835,31 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bdef1b351f0041bc88e229f19354cfe5", + "layout": "IPY_MODEL_2ac4786cd1494740a01d9465e3f1305f", "placeholder": "​", - "style": "IPY_MODEL_adffb735698a410fbc99ca0770d328da", - "value": " 4.72M/4.72M [00:00<00:00, 9.81MB/s]" + "style": "IPY_MODEL_27073ef8ef89411582cb5132754b42cf", + "value": "Downloading (…)cial_tokens_map.json: 100%" } }, - "8230ef9f93bb4714a4730b39414b5719": { + "2a6c5ca7d5b246afa96a17b050df0c2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2ac4786cd1494740a01d9465e3f1305f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2551,10 +1908,10 @@ "width": null } }, - "64346d79fe9445e9b8290126e73d886f": { + "2e199bb085bc4d58b9c36ffc3bcaeff8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2603,25 +1960,10 @@ "width": null } }, - "01a7285e88ac4f96af40cc3e1a0a92ad": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1f4306cd699c41adbcb1e25afdd93278": { + "2e599de1279640aea14c351f36eff3ad": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2670,26 +2012,62 @@ "width": null } }, - "ae8f8acb5c344a1783801fb3806f0124": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", + "2ee1f06f16ea44b694e2e7f4cb7ea2df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bdef1b351f0041bc88e229f19354cfe5": { + "310c1c98299c42e9b2399d93fc49b7bf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2738,25 +2116,10 @@ "width": null } }, - "adffb735698a410fbc99ca0770d328da": { + "311836955e434edfb75f7c5d7489d061": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a1e7472d81664391866885d6b6027a5f": { - "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2768,83 +2131,17 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_db9b8080998441a0bab18ddc28a18315", - "IPY_MODEL_953e54ec1cc54520997cd484b4a07660", - "IPY_MODEL_73bb676bfda44a0690513f6930e065f0" + "IPY_MODEL_0639c5d838a2403b91fc1a94021c9768", + "IPY_MODEL_767219335ce542fe9aacd0011900344f", + "IPY_MODEL_07fca03e35c44b698aa6bc8fe9a57425" ], - "layout": "IPY_MODEL_9f34d8d7ae8b45628b2c9b391e5a9fc6" - } - }, - "db9b8080998441a0bab18ddc28a18315": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dd2a1d22759041c290e86d091fd3da00", - "placeholder": "​", - "style": "IPY_MODEL_78c55b2e5aba4473912497d6dda5f7ff", - "value": "Generating test split: 100%" - } - }, - "953e54ec1cc54520997cd484b4a07660": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d93c9b7c1d1b406395247061e91d3c78", - "max": 4358, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a2a7786514a44d9ba981f8526da3d489", - "value": 4358 - } - }, - "73bb676bfda44a0690513f6930e065f0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5b759c9b2719452bb700766c38b1d14e", - "placeholder": "​", - "style": "IPY_MODEL_b3e99bc67e284fc6a425f4893adc6a8e", - "value": " 4358/4358 [00:00<00:00, 30183.88 examples/s]" + "layout": "IPY_MODEL_7dd7ee22bd8f4087a5610b77ca7f04ae" } }, - "9f34d8d7ae8b45628b2c9b391e5a9fc6": { + "3273b4cdb0c44e73848c62e8a7b05322": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2893,10 +2190,10 @@ "width": null } }, - "dd2a1d22759041c290e86d091fd3da00": { + "33da2ac52d8447b386efdd59636b6d12": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2945,25 +2242,84 @@ "width": null } }, - "78c55b2e5aba4473912497d6dda5f7ff": { + "34b5ae8e5c2d41389b7aac76b1ec24da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "34fee92f9fb84fc9b2d5fba485fa00c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3537c2a9d15f4ff7a0d170459f959ef7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eea87a848431477587a79db561f3013f", + "IPY_MODEL_c52bdd43a472471486bbbbcb96ee1a39", + "IPY_MODEL_420d32b41b0144b3924bd1dccda169dc" + ], + "layout": "IPY_MODEL_cbcc440ae3c040ab822c2b2c5fa5f55d" + } + }, + "383e17c7abad4febbe3b053fa849a029": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6227f44359c3499aa7550b1f682557c6", + "placeholder": "​", + "style": "IPY_MODEL_b888b0df503d4c0ba396a7134f18ffe7", + "value": " 500k/500k [00:00<00:00, 4.70MB/s]" } }, - "d93c9b7c1d1b406395247061e91d3c78": { + "38989c31cc0b474db18df71b45ca9a95": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3012,26 +2368,10 @@ "width": null } }, - "a2a7786514a44d9ba981f8526da3d489": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5b759c9b2719452bb700766c38b1d14e": { + "38e60c0e92354524aefaf7c73fa6e0f1": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3080,113 +2420,10 @@ "width": null } }, - "b3e99bc67e284fc6a425f4893adc6a8e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9c1ca6d9eb924e5b926f3b9cfdc5065b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b22add75ad2451891071987ee7bbc16", - "IPY_MODEL_c08d2ebf41174399b2bacec7388a2b83", - "IPY_MODEL_1dfe5e990f1d45a9885bfcb1a846cc9d" - ], - "layout": "IPY_MODEL_be74ee9ab4c54aa0ad8a18a78eb2bf71" - } - }, - "3b22add75ad2451891071987ee7bbc16": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e35b9b2ac6f440389e838b6aa9f6b45c", - "placeholder": "​", - "style": "IPY_MODEL_2a6c5ca7d5b246afa96a17b050df0c2e", - "value": "Generating train split: 100%" - } - }, - "c08d2ebf41174399b2bacec7388a2b83": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1bcf3bceb861400d8dfe6d9e584ca799", - "max": 36718, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_fee49f5820d0469e88f5dfe48dc93258", - "value": 36718 - } - }, - "1dfe5e990f1d45a9885bfcb1a846cc9d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0a0c337731a94e699103c45e89418f15", - "placeholder": "​", - "style": "IPY_MODEL_01bb64b7b2e04179860d3c1242940ee2", - "value": " 36718/36718 [00:01<00:00, 26883.87 examples/s]" - } - }, - "be74ee9ab4c54aa0ad8a18a78eb2bf71": { + "38f60c36e7fb4cd7a7a946650de01f9d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3235,10 +2472,10 @@ "width": null } }, - "e35b9b2ac6f440389e838b6aa9f6b45c": { + "39fa91a3c0214c6fb7c0cef13ebbd742": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3287,25 +2524,10 @@ "width": null } }, - "2a6c5ca7d5b246afa96a17b050df0c2e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1bcf3bceb861400d8dfe6d9e584ca799": { + "3ad05ebb0d3e4b7286a8bedea8970390": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3354,26 +2576,68 @@ "width": null } }, - "fee49f5820d0469e88f5dfe48dc93258": { + "3b22add75ad2451891071987ee7bbc16": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e35b9b2ac6f440389e838b6aa9f6b45c", + "placeholder": "​", + "style": "IPY_MODEL_2a6c5ca7d5b246afa96a17b050df0c2e", + "value": "Generating train split: 100%" + } + }, + "3e87cc38476f4a648ef970d764ba8d48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "0a0c337731a94e699103c45e89418f15": { + "40081a093e8b435da1a12b583bf6331b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a6bd38dcf8c4281b097580cf6879a95", + "IPY_MODEL_e6c3c82a96c044beb121bbd952e7caf5", + "IPY_MODEL_aa3cceab43ce420fbc4daf319eb119e8" + ], + "layout": "IPY_MODEL_e37ceb1a70644cc09d6263bc213d6b29" + } + }, + "411611b076e34915b371c89f61961544": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3413,56 +2677,19 @@ "object_position": null, "order": null, "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "01bb64b7b2e04179860d3c1242940ee2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e2cf68e2daee449a969261a3cef5f89a": { + "420d32b41b0144b3924bd1dccda169dc": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b32bdc2c80b74a34ba2a7db41d1c036b", - "IPY_MODEL_fa7c2549f7c84d67ac746970c7fb5157", - "IPY_MODEL_51185a9dd0244652a7c15fe04311b581" - ], - "layout": "IPY_MODEL_02d259fb27ec42d1a4f626c8c0d6c804" - } - }, - "b32bdc2c80b74a34ba2a7db41d1c036b": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3474,40 +2701,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c14f8a7cd18c4b1eaf03bbe9a6bab856", + "layout": "IPY_MODEL_647102c6bb264a02acd51baec051f5c1", "placeholder": "​", - "style": "IPY_MODEL_ee2a53fb832f4f1ab74ff7c56ab51f9f", - "value": "Generating validation split: 100%" + "style": "IPY_MODEL_f6da1b054f784db88437b0858e2b2da4", + "value": " 770/770 [00:00<00:00, 57.6kB/s]" } }, - "fa7c2549f7c84d67ac746970c7fb5157": { + "45251b3a06b442afa847907036192e0b": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_86ada04b80aa423cb17cb61ac1c9b587", - "max": 3760, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_e64c7887acde41e4a63d373ad4d05b11", - "value": 3760 - } - }, - "51185a9dd0244652a7c15fe04311b581": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3519,16 +2722,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e2ba23f7c2524ac1b7a361cf1f61b87f", + "layout": "IPY_MODEL_c7c4b9e1b2fb4aaf8cd3a0b9bb30ad6f", "placeholder": "​", - "style": "IPY_MODEL_b47605a31e244a31a2b705996afe8755", - "value": " 3760/3760 [00:00<00:00, 33473.17 examples/s]" + "style": "IPY_MODEL_84310fb4b16641afad8319037b69119a", + "value": "Downloading readme: 100%" } }, - "02d259fb27ec42d1a4f626c8c0d6c804": { + "46ee4d688b1d40ddbb3ac092752f5f9f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3577,10 +2780,10 @@ "width": null } }, - "c14f8a7cd18c4b1eaf03bbe9a6bab856": { + "4b8c06a81d704cd298dcb3191202a6ac": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3629,10 +2832,10 @@ "width": null } }, - "ee2a53fb832f4f1ab74ff7c56ab51f9f": { + "4ea9a13ed2e54e5db8a898578bb6d93c": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -3644,10 +2847,31 @@ "description_width": "" } }, - "86ada04b80aa423cb17cb61ac1c9b587": { + "51185a9dd0244652a7c15fe04311b581": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2ba23f7c2524ac1b7a361cf1f61b87f", + "placeholder": "​", + "style": "IPY_MODEL_b47605a31e244a31a2b705996afe8755", + "value": " 3760/3760 [00:00<00:00, 33473.17 examples/s]" + } + }, + "5b759c9b2719452bb700766c38b1d14e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3696,26 +2920,47 @@ "width": null } }, - "e64c7887acde41e4a63d373ad4d05b11": { + "5b79c855233841278537b08a840d4e3b": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e5361a9931e2457d974938446e5ae3d5", + "IPY_MODEL_d2d29b37b87a4fe9a6f894425ddfa19f", + "IPY_MODEL_e4984b52ce284aa39e098b948869b64b" + ], + "layout": "IPY_MODEL_f836e6bb52af4524a0b1600ee0e4d720" + } + }, + "5b8aa2b020694f579d764f58b4db038d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e2ba23f7c2524ac1b7a361cf1f61b87f": { + "5c31fc8ababf4625b7f990d43a0605f7": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3764,113 +3009,62 @@ "width": null } }, - "b47605a31e244a31a2b705996afe8755": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", + "60047c7e664e434498198f1a1467fff9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a1b60f53551241b0b1e9931ab83ee374": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cec9fc3a8a9e45a28d27210bba656e40", - "IPY_MODEL_11af4ac1d21b4b6c8389b04567266bb8", - "IPY_MODEL_1aeb0eff821041f892df1d3e163124a8" - ], - "layout": "IPY_MODEL_411611b076e34915b371c89f61961544" - } - }, - "cec9fc3a8a9e45a28d27210bba656e40": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38e60c0e92354524aefaf7c73fa6e0f1", - "placeholder": "​", - "style": "IPY_MODEL_7fdcc59ba9004e308617cf119e963d4b", - "value": "Downloading (…)lve/main/config.json: 100%" - } - }, - "11af4ac1d21b4b6c8389b04567266bb8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2e199bb085bc4d58b9c36ffc3bcaeff8", - "max": 635, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_93a390f9335342fa9211d490219d8c95", - "value": 635 - } - }, - "1aeb0eff821041f892df1d3e163124a8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2e599de1279640aea14c351f36eff3ad", - "placeholder": "​", - "style": "IPY_MODEL_c8a8bdbc3db1452c9283ce8f054f595e", - "value": " 635/635 [00:00<00:00, 54.1kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "411611b076e34915b371c89f61961544": { + "6227f44359c3499aa7550b1f682557c6": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3919,10 +3113,10 @@ "width": null } }, - "38e60c0e92354524aefaf7c73fa6e0f1": { + "64346d79fe9445e9b8290126e73d886f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3971,25 +3165,10 @@ "width": null } }, - "7fdcc59ba9004e308617cf119e963d4b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2e199bb085bc4d58b9c36ffc3bcaeff8": { + "647102c6bb264a02acd51baec051f5c1": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4038,10 +3217,46 @@ "width": null } }, - "93a390f9335342fa9211d490219d8c95": { + "66f745487eee4d32a7bc2be2ff1f100d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6d32a531efba4400a65ae675dd9b7162": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9fbb36f08fba449a8f06f76269111f36", + "placeholder": "​", + "style": "IPY_MODEL_34fee92f9fb84fc9b2d5fba485fa00c7", + "value": " 167/167 [00:00<00:00, 8.65kB/s]" + } + }, + "6e31f257c4854bb7a750f4c3277670a7": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4054,10 +3269,10 @@ "description_width": "" } }, - "2e599de1279640aea14c351f36eff3ad": { + "712735ae7df54ba6bb2307c186893446": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4106,47 +3321,31 @@ "width": null } }, - "c8a8bdbc3db1452c9283ce8f054f595e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "eb6c53d70bbf4617946c210e5358d21c": { + "72a329c97a56482b801c773c79f352bc": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_043d6abd32a246df9349f7c841c8b316", - "IPY_MODEL_018935710fe7477c95b984649af1a808", - "IPY_MODEL_7fa41da8dc814d2c90ea85b37917830b" - ], - "layout": "IPY_MODEL_f46317117b46457296b4052217c031b2" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1dc3d9a88eb746afb97d15fbd7cf06fd", + "placeholder": "​", + "style": "IPY_MODEL_5b8aa2b020694f579d764f58b4db038d", + "value": "Downloading builder script: 100%" } }, - "043d6abd32a246df9349f7c841c8b316": { + "73bb676bfda44a0690513f6930e065f0": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4158,16 +3357,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_46ee4d688b1d40ddbb3ac092752f5f9f", + "layout": "IPY_MODEL_5b759c9b2719452bb700766c38b1d14e", "placeholder": "​", - "style": "IPY_MODEL_9e30519bd3554d2bb85bb5a534f45daa", - "value": "Downloading (…)fetensors.index.json: 100%" + "style": "IPY_MODEL_b3e99bc67e284fc6a425f4893adc6a8e", + "value": " 4358/4358 [00:00<00:00, 30183.88 examples/s]" } }, - "018935710fe7477c95b984649af1a808": { + "767219335ce542fe9aacd0011900344f": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4180,39 +3379,152 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e8b02c601bb44e339a5024e9605a168b", - "max": 26788, + "layout": "IPY_MODEL_0aeaf10d031f4c0c9f8d0846b6bfe682", + "max": 2, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e789489f9bc849b9bd059aef14486aef", - "value": 26788 + "style": "IPY_MODEL_cf4a9ce7ab1b4fe5a99c722f573a19b0", + "value": 2 + } + }, + "784c346e239e450fa3b8328cd7b5fcf2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "78c55b2e5aba4473912497d6dda5f7ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7934b59e718f4511a0dc19e83bba1948": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7fa41da8dc814d2c90ea85b37917830b": { + "7af8c58ec54b40278b02195e1c679a94": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7eb62128b4294e9c9d0e0fb8793e972d", - "placeholder": "​", - "style": "IPY_MODEL_fcee151bd8614100aa17904517bb57cc", - "value": " 26.8k/26.8k [00:00<00:00, 2.04MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f46317117b46457296b4052217c031b2": { + "7b3329934cde4998bb0b0e585010c761": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4261,10 +3573,10 @@ "width": null } }, - "46ee4d688b1d40ddbb3ac092752f5f9f": { + "7dad9acd14274114921710fe9e8d35a8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4313,25 +3625,62 @@ "width": null } }, - "9e30519bd3554d2bb85bb5a534f45daa": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", + "7dd7ee22bd8f4087a5610b77ca7f04ae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e8b02c601bb44e339a5024e9605a168b": { + "7eb62128b4294e9c9d0e0fb8793e972d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4380,26 +3729,46 @@ "width": null } }, - "e789489f9bc849b9bd059aef14486aef": { + "7fa41da8dc814d2c90ea85b37917830b": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7eb62128b4294e9c9d0e0fb8793e972d", + "placeholder": "​", + "style": "IPY_MODEL_fcee151bd8614100aa17904517bb57cc", + "value": " 26.8k/26.8k [00:00<00:00, 2.04MB/s]" + } + }, + "7fdcc59ba9004e308617cf119e963d4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "7eb62128b4294e9c9d0e0fb8793e972d": { + "8230ef9f93bb4714a4730b39414b5719": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4448,10 +3817,10 @@ "width": null } }, - "fcee151bd8614100aa17904517bb57cc": { + "84310fb4b16641afad8319037b69119a": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4463,98 +3832,62 @@ "description_width": "" } }, - "311836955e434edfb75f7c5d7489d061": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0639c5d838a2403b91fc1a94021c9768", - "IPY_MODEL_767219335ce542fe9aacd0011900344f", - "IPY_MODEL_07fca03e35c44b698aa6bc8fe9a57425" - ], - "layout": "IPY_MODEL_7dd7ee22bd8f4087a5610b77ca7f04ae" - } - }, - "0639c5d838a2403b91fc1a94021c9768": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5c31fc8ababf4625b7f990d43a0605f7", - "placeholder": "​", - "style": "IPY_MODEL_0e6fa62170d443fe861d54c54238e2fe", - "value": "Downloading shards: 100%" - } - }, - "767219335ce542fe9aacd0011900344f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0aeaf10d031f4c0c9f8d0846b6bfe682", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf4a9ce7ab1b4fe5a99c722f573a19b0", - "value": 2 - } - }, - "07fca03e35c44b698aa6bc8fe9a57425": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", + "853e695b987041ae95e6ca8e8dd134e5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3ad05ebb0d3e4b7286a8bedea8970390", - "placeholder": "​", - "style": "IPY_MODEL_b3192d6e1d5746c0b955c787fc08b3f8", - "value": " 2/2 [01:37<00:00, 44.40s/it]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7dd7ee22bd8f4087a5610b77ca7f04ae": { + "86ada04b80aa423cb17cb61ac1c9b587": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4603,10 +3936,32 @@ "width": null } }, - "5c31fc8ababf4625b7f990d43a0605f7": { + "8c6e6c95188d4317a877c1f2f25aa8c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d854bf698c7140e68c7d257479464266", + "IPY_MODEL_99fc8f763e46499586970b7da2b21a21", + "IPY_MODEL_1a2f41d8a0cd4187ac9b972b1f839327" + ], + "layout": "IPY_MODEL_310c1c98299c42e9b2399d93fc49b7bf" + } + }, + "8f2be0b1f16b45b0a71889369e83f6cf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4655,25 +4010,47 @@ "width": null } }, - "0e6fa62170d443fe861d54c54238e2fe": { + "8f88ad638f0a449ab77bd40f6d7a0a70": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ee1f06f16ea44b694e2e7f4cb7ea2df", + "placeholder": "​", + "style": "IPY_MODEL_e3c2a5881f27469580b923974b4baf98", + "value": " 1.84M/1.84M [00:00<00:00, 12.2MB/s]" + } + }, + "93a390f9335342fa9211d490219d8c95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "0aeaf10d031f4c0c9f8d0846b6bfe682": { + "94aa997c559141fda3188fa31296a835": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4722,10 +4099,34 @@ "width": null } }, - "cf4a9ce7ab1b4fe5a99c722f573a19b0": { + "953e54ec1cc54520997cd484b4a07660": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d93c9b7c1d1b406395247061e91d3c78", + "max": 4358, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a2a7786514a44d9ba981f8526da3d489", + "value": 4358 + } + }, + "96789b46561b4d0d9831a2ef78a71aa5": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -4738,10 +4139,10 @@ "description_width": "" } }, - "3ad05ebb0d3e4b7286a8bedea8970390": { + "977a1fe6cde34e1596b0276ee4f2a43e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4790,25 +4191,86 @@ "width": null } }, - "b3192d6e1d5746c0b955c787fc08b3f8": { + "99fc8f763e46499586970b7da2b21a21": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bec869af761e4bf3bbea9397049424f7", + "max": 9976576152, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0d0ad2dd9024b0aa956a25d675a888b", + "value": 9976576152 + } + }, + "9a801bb2804b407cb7249d6c24ede122": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8c6e6c95188d4317a877c1f2f25aa8c4": { + "9c1ca6d9eb924e5b926f3b9cfdc5065b": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -4820,83 +4282,54 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d854bf698c7140e68c7d257479464266", - "IPY_MODEL_99fc8f763e46499586970b7da2b21a21", - "IPY_MODEL_1a2f41d8a0cd4187ac9b972b1f839327" + "IPY_MODEL_3b22add75ad2451891071987ee7bbc16", + "IPY_MODEL_c08d2ebf41174399b2bacec7388a2b83", + "IPY_MODEL_1dfe5e990f1d45a9885bfcb1a846cc9d" ], - "layout": "IPY_MODEL_310c1c98299c42e9b2399d93fc49b7bf" - } - }, - "d854bf698c7140e68c7d257479464266": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_784c346e239e450fa3b8328cd7b5fcf2", - "placeholder": "​", - "style": "IPY_MODEL_a997f9c7bfa24237b1022583b8a1af2d", - "value": "Downloading (…)of-00002.safetensors: 100%" + "layout": "IPY_MODEL_be74ee9ab4c54aa0ad8a18a78eb2bf71" } }, - "99fc8f763e46499586970b7da2b21a21": { + "9cff3946b97441e3a31f4e069bd636e7": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bec869af761e4bf3bbea9397049424f7", - "max": 9976576152, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0d0ad2dd9024b0aa956a25d675a888b", - "value": 9976576152 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8119d4c0c494edda88a568160cd5d16", + "IPY_MODEL_f8afe190bc72445ebd64592fbfb6af77", + "IPY_MODEL_383e17c7abad4febbe3b053fa849a029" + ], + "layout": "IPY_MODEL_712735ae7df54ba6bb2307c186893446" } }, - "1a2f41d8a0cd4187ac9b972b1f839327": { + "9e30519bd3554d2bb85bb5a534f45daa": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_33da2ac52d8447b386efdd59636b6d12", - "placeholder": "​", - "style": "IPY_MODEL_ea75bbc9f9f84294af12b70fd526ae1d", - "value": " 9.98G/9.98G [01:12<00:00, 143MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "310c1c98299c42e9b2399d93fc49b7bf": { + "9f34d8d7ae8b45628b2c9b391e5a9fc6": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4945,10 +4378,10 @@ "width": null } }, - "784c346e239e450fa3b8328cd7b5fcf2": { + "9fbb36f08fba449a8f06f76269111f36": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4997,25 +4430,133 @@ "width": null } }, - "a997f9c7bfa24237b1022583b8a1af2d": { + "a1b60f53551241b0b1e9931ab83ee374": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cec9fc3a8a9e45a28d27210bba656e40", + "IPY_MODEL_11af4ac1d21b4b6c8389b04567266bb8", + "IPY_MODEL_1aeb0eff821041f892df1d3e163124a8" + ], + "layout": "IPY_MODEL_411611b076e34915b371c89f61961544" + } + }, + "a1e7472d81664391866885d6b6027a5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_db9b8080998441a0bab18ddc28a18315", + "IPY_MODEL_953e54ec1cc54520997cd484b4a07660", + "IPY_MODEL_73bb676bfda44a0690513f6930e065f0" + ], + "layout": "IPY_MODEL_9f34d8d7ae8b45628b2c9b391e5a9fc6" + } + }, + "a2a7786514a44d9ba981f8526da3d489": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bec869af761e4bf3bbea9397049424f7": { + "a39c0fd95253419f9340948e8e65700f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_64346d79fe9445e9b8290126e73d886f", + "placeholder": "​", + "style": "IPY_MODEL_01a7285e88ac4f96af40cc3e1a0a92ad", + "value": "Downloading data: 100%" + } + }, + "a4138ccfbb4e4bdeb6b46895b39e1080": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c617e9c960f24436a5ef28717ddd737f", + "placeholder": "​", + "style": "IPY_MODEL_0fcf350e56d3489797de494609fd9219", + "value": "Downloading metadata: 100%" + } + }, + "a5df5d102209452492064315ec6f9661": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_977a1fe6cde34e1596b0276ee4f2a43e", + "placeholder": "​", + "style": "IPY_MODEL_7af8c58ec54b40278b02195e1c679a94", + "value": " 8.48k/8.48k [00:00<00:00, 395kB/s]" + } + }, + "a89f0df9f09348e7a4af06a9a5ed6871": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5064,26 +4605,157 @@ "width": null } }, - "c0d0ad2dd9024b0aa956a25d675a888b": { + "a8dc802a796742b7a6a04d5101524b39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d3544635b460458394ed7da4c07d5149", + "placeholder": "​", + "style": "IPY_MODEL_ba9ec8b106a644ceb2986c8dfe9541d7", + "value": "Downloading (…)neration_config.json: 100%" + } + }, + "a997f9c7bfa24237b1022583b8a1af2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aa3cceab43ce420fbc4daf319eb119e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d86a7262444f4825aee3eec687a9685f", + "placeholder": "​", + "style": "IPY_MODEL_4ea9a13ed2e54e5db8a898578bb6d93c", + "value": " 414/414 [00:00<00:00, 35.2kB/s]" + } + }, + "aafa72ef19504229895e329714cc43a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7223ff4f0f8450cbb56a54536987961", + "placeholder": "​", + "style": "IPY_MODEL_eb6e7d1222574213bc8ea7eae3c3e667", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "ab95d77429734d59b935d7c71189db4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "adffb735698a410fbc99ca0770d328da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ae8f8acb5c344a1783801fb3806f0124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "af01407ec5b349a8ae24e6155888f95f": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8dc802a796742b7a6a04d5101524b39", + "IPY_MODEL_1e3a99f84c3343cc96b3aa41a5599c97", + "IPY_MODEL_6d32a531efba4400a65ae675dd9b7162" + ], + "layout": "IPY_MODEL_4b8c06a81d704cd298dcb3191202a6ac" } }, - "33da2ac52d8447b386efdd59636b6d12": { + "b1751d1bb4834f38a7ff48f4dafbbbb8": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5132,10 +4804,10 @@ "width": null } }, - "ea75bbc9f9f84294af12b70fd526ae1d": { + "b2126f2c2bc44971a87af28b3a2f3e16": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -5147,32 +4819,25 @@ "description_width": "" } }, - "5b79c855233841278537b08a840d4e3b": { + "b3192d6e1d5746c0b955c787fc08b3f8": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e5361a9931e2457d974938446e5ae3d5", - "IPY_MODEL_d2d29b37b87a4fe9a6f894425ddfa19f", - "IPY_MODEL_e4984b52ce284aa39e098b948869b64b" - ], - "layout": "IPY_MODEL_f836e6bb52af4524a0b1600ee0e4d720" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e5361a9931e2457d974938446e5ae3d5": { + "b32bdc2c80b74a34ba2a7db41d1c036b": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -5184,40 +4849,46 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d59807d201ad429c8ea23b66bacd38ab", + "layout": "IPY_MODEL_c14f8a7cd18c4b1eaf03bbe9a6bab856", "placeholder": "​", - "style": "IPY_MODEL_66f745487eee4d32a7bc2be2ff1f100d", - "value": "Downloading (…)of-00002.safetensors: 100%" + "style": "IPY_MODEL_ee2a53fb832f4f1ab74ff7c56ab51f9f", + "value": "Generating validation split: 100%" } }, - "d2d29b37b87a4fe9a6f894425ddfa19f": { + "b3e99bc67e284fc6a425f4893adc6a8e": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fad706f34e5f4cd89a40f16a2bb13367", - "max": 3500296424, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ea3be9d7d10a497d89c76b54fb547d14", - "value": 3500296424 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e4984b52ce284aa39e098b948869b64b": { + "b47605a31e244a31a2b705996afe8755": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b4d5f0f59f534645b4be131074c4ba81": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -5229,16 +4900,46 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7dad9acd14274114921710fe9e8d35a8", + "layout": "IPY_MODEL_60047c7e664e434498198f1a1467fff9", "placeholder": "​", - "style": "IPY_MODEL_1446f57d65bc4a5faf891361b291331f", - "value": " 3.50G/3.50G [00:24<00:00, 147MB/s]" + "style": "IPY_MODEL_b2126f2c2bc44971a87af28b3a2f3e16", + "value": " 6.84k/6.84k [00:00<00:00, 346kB/s]" } }, - "f836e6bb52af4524a0b1600ee0e4d720": { + "b888b0df503d4c0ba396a7134f18ffe7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ba9ec8b106a644ceb2986c8dfe9541d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bdef1b351f0041bc88e229f19354cfe5": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5287,10 +4988,10 @@ "width": null } }, - "d59807d201ad429c8ea23b66bacd38ab": { + "be74ee9ab4c54aa0ad8a18a78eb2bf71": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5339,25 +5040,10 @@ "width": null } }, - "66f745487eee4d32a7bc2be2ff1f100d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fad706f34e5f4cd89a40f16a2bb13367": { + "bec869af761e4bf3bbea9397049424f7": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5406,10 +5092,34 @@ "width": null } }, - "ea3be9d7d10a497d89c76b54fb547d14": { + "c08d2ebf41174399b2bacec7388a2b83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1bcf3bceb861400d8dfe6d9e584ca799", + "max": 36718, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fee49f5820d0469e88f5dfe48dc93258", + "value": 36718 + } + }, + "c0d0ad2dd9024b0aa956a25d675a888b": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -5422,10 +5132,10 @@ "description_width": "" } }, - "7dad9acd14274114921710fe9e8d35a8": { + "c14f8a7cd18c4b1eaf03bbe9a6bab856": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5470,72 +5180,14 @@ "padding": null, "right": null, "top": null, - "visibility": null, - "width": null - } - }, - "1446f57d65bc4a5faf891361b291331f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dce56c02388f4e229f93004db83f27aa": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a00a85528cd4a3ca7dc903e3ddca50e", - "IPY_MODEL_2a547ef55a4b44118a2d245c69e15bc3", - "IPY_MODEL_01582fa5f3b640f7a71f85efcf470cef" - ], - "layout": "IPY_MODEL_f34c51e8d4fd4a9185342b22b790f13d" - } - }, - "1a00a85528cd4a3ca7dc903e3ddca50e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38989c31cc0b474db18df71b45ca9a95", - "placeholder": "​", - "style": "IPY_MODEL_3e87cc38476f4a648ef970d764ba8d48", - "value": "Loading checkpoint shards: 100%" + "visibility": null, + "width": null } }, - "2a547ef55a4b44118a2d245c69e15bc3": { + "c2472c52c4c746a88780984ee160ed06": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -5548,39 +5200,57 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9a801bb2804b407cb7249d6c24ede122", - "max": 2, + "layout": "IPY_MODEL_1f4306cd699c41adbcb1e25afdd93278", + "max": 4721645, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_34b5ae8e5c2d41389b7aac76b1ec24da", - "value": 2 + "style": "IPY_MODEL_ae8f8acb5c344a1783801fb3806f0124", + "value": 4721645 } }, - "01582fa5f3b640f7a71f85efcf470cef": { + "c341d2fe80ef435bad553a50a6b32f8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c52bdd43a472471486bbbbcb96ee1a39": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c7bc54cd3c5649fb85c4e5a8656923d6", - "placeholder": "​", - "style": "IPY_MODEL_c341d2fe80ef435bad553a50a6b32f8f", - "value": " 2/2 [00:47<00:00, 22.41s/it]" + "layout": "IPY_MODEL_7b3329934cde4998bb0b0e585010c761", + "max": 770, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ecc66ec306e243bfa88619ffac0a364a", + "value": 770 } }, - "f34c51e8d4fd4a9185342b22b790f13d": { + "c617e9c960f24436a5ef28717ddd737f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5629,10 +5299,10 @@ "width": null } }, - "38989c31cc0b474db18df71b45ca9a95": { + "c7bc54cd3c5649fb85c4e5a8656923d6": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5681,25 +5351,10 @@ "width": null } }, - "3e87cc38476f4a648ef970d764ba8d48": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9a801bb2804b407cb7249d6c24ede122": { + "c7c4b9e1b2fb4aaf8cd3a0b9bb30ad6f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5748,26 +5403,49 @@ "width": null } }, - "34b5ae8e5c2d41389b7aac76b1ec24da": { + "c8a8bdbc3db1452c9283ce8f054f595e": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "c7bc54cd3c5649fb85c4e5a8656923d6": { + "ca519b97bb744af0b5ea476c1ef004c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a89f0df9f09348e7a4af06a9a5ed6871", + "max": 8482, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_02065982cc024fec8f03fa92c77e8aee", + "value": 8482 + } + }, + "cbcc440ae3c040ab822c2b2c5fa5f55d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -5816,68 +5494,63 @@ "width": null } }, - "c341d2fe80ef435bad553a50a6b32f8f": { + "cec9fc3a8a9e45a28d27210bba656e40": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_38e60c0e92354524aefaf7c73fa6e0f1", + "placeholder": "​", + "style": "IPY_MODEL_7fdcc59ba9004e308617cf119e963d4b", + "value": "Downloading (…)lve/main/config.json: 100%" } }, - "af01407ec5b349a8ae24e6155888f95f": { + "cf4a9ce7ab1b4fe5a99c722f573a19b0": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8dc802a796742b7a6a04d5101524b39", - "IPY_MODEL_1e3a99f84c3343cc96b3aa41a5599c97", - "IPY_MODEL_6d32a531efba4400a65ae675dd9b7162" - ], - "layout": "IPY_MODEL_4b8c06a81d704cd298dcb3191202a6ac" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a8dc802a796742b7a6a04d5101524b39": { + "cfa0cb0a0b2a4c92b28521afa2c352df": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d3544635b460458394ed7da4c07d5149", - "placeholder": "​", - "style": "IPY_MODEL_ba9ec8b106a644ceb2986c8dfe9541d7", - "value": "Downloading (…)neration_config.json: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1e3a99f84c3343cc96b3aa41a5599c97": { + "d2d29b37b87a4fe9a6f894425ddfa19f": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -5890,91 +5563,18 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3273b4cdb0c44e73848c62e8a7b05322", - "max": 167, + "layout": "IPY_MODEL_fad706f34e5f4cd89a40f16a2bb13367", + "max": 3500296424, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6e31f257c4854bb7a750f4c3277670a7", - "value": 167 - } - }, - "6d32a531efba4400a65ae675dd9b7162": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9fbb36f08fba449a8f06f76269111f36", - "placeholder": "​", - "style": "IPY_MODEL_34fee92f9fb84fc9b2d5fba485fa00c7", - "value": " 167/167 [00:00<00:00, 8.65kB/s]" - } - }, - "4b8c06a81d704cd298dcb3191202a6ac": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "style": "IPY_MODEL_ea3be9d7d10a497d89c76b54fb547d14", + "value": 3500296424 } }, "d3544635b460458394ed7da4c07d5149": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6023,25 +5623,80 @@ "width": null } }, - "ba9ec8b106a644ceb2986c8dfe9541d7": { + "d3aecac0211b4696b64265560dd03b7f": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b1751d1bb4834f38a7ff48f4dafbbbb8", + "max": 1842767, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab95d77429734d59b935d7c71189db4d", + "value": 1842767 } }, - "3273b4cdb0c44e73848c62e8a7b05322": { + "d51b8fe524aa497b96264cf6d701ac1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_45251b3a06b442afa847907036192e0b", + "IPY_MODEL_08ac930a4367453f88ae5bf7130b5f89", + "IPY_MODEL_f2f3beaaa5e245c1bcb856afcd230b0d" + ], + "layout": "IPY_MODEL_38f60c36e7fb4cd7a7a946650de01f9d" + } + }, + "d57ac99c8f474bc3b5a1705e9c358822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe885f64e7004c2fb6929e7d6d965762", + "max": 6838, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cfa0cb0a0b2a4c92b28521afa2c352df", + "value": 6838 + } + }, + "d59807d201ad429c8ea23b66bacd38ab": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6090,26 +5745,31 @@ "width": null } }, - "6e31f257c4854bb7a750f4c3277670a7": { + "d854bf698c7140e68c7d257479464266": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_784c346e239e450fa3b8328cd7b5fcf2", + "placeholder": "​", + "style": "IPY_MODEL_a997f9c7bfa24237b1022583b8a1af2d", + "value": "Downloading (…)of-00002.safetensors: 100%" } }, - "9fbb36f08fba449a8f06f76269111f36": { + "d86a7262444f4825aee3eec687a9685f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -6158,885 +5818,1224 @@ "width": null } }, - "34fee92f9fb84fc9b2d5fba485fa00c7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", + "d93c9b7c1d1b406395247061e91d3c78": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - } - } - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "This notebook shows how to quantize Llama 2 with GPTQ.\n", - "It runs on Google Colab Pro. It can also run on a machine with at least 24 GB of CPU RAM and a GPU with 12 GB VRAM\n", - "\n", - "For more details check out this article:\n", - "[Quantization of Llama 2 with GTPQ for Fast Inference on Your Computer](https://kaitchup.substack.com/p/quantization-of-llama-2-with-gtpq)" - ], - "metadata": { - "id": "pX0IffauAEmI" - } - }, - { - "cell_type": "markdown", - "source": [ - "We need the last version of AutoGPTQ, so we will install it from GitHub." - ], - "metadata": { - "id": "LlokkEwtAWEs" - } - }, - { - "cell_type": "code", - "source": [ - "!git clone https://github.com/PanQiWei/AutoGPTQ.git" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "bF1zZBemKrb4", - "outputId": "d20629e4-bf0c-4e20-abbb-46ba3539c65d" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Cloning into 'AutoGPTQ'...\n", - "remote: Enumerating objects: 2487, done.\u001b[K\n", - "remote: Counting objects: 100% (825/825), done.\u001b[K\n", - "remote: Compressing objects: 100% (427/427), done.\u001b[K\n", - "remote: Total 2487 (delta 503), reused 574 (delta 382), pack-reused 1662\u001b[K\n", - "Receiving objects: 100% (2487/2487), 7.48 MiB | 19.33 MiB/s, done.\n", - "Resolving deltas: 100% (1627/1627), done.\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "First we patch the repository to enable use_auth_token support. Don't do this if you want to use a model that doesn't require an access token. Also, this patch may become obsolete very soon so you may try without it." - ], - "metadata": { - "id": "e6YsmwJo99Bf" - } - }, - { - "cell_type": "code", - "source": [ - "!wget https://about.benjaminmarie.com/data/py/auto-gptq-patch/_utils.py\n", - "!wget https://about.benjaminmarie.com/data/py/auto-gptq-patch/auto.py\n", - "\n", - "!mv _utils.py AutoGPTQ/auto_gptq/modeling/\n", - "!mv auto.py AutoGPTQ/auto_gptq/modeling/" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "PqehoDrz98vC", - "outputId": "6173578c-3a47-4b1f-a640-21a816c035cb" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "--2023-07-26 20:59:49-- https://about.benjaminmarie.com/data/py/auto-gptq-patch/_utils.py\n", - "Resolving about.benjaminmarie.com (about.benjaminmarie.com)... 192.95.30.6\n", - "Connecting to about.benjaminmarie.com (about.benjaminmarie.com)|192.95.30.6|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 7224 (7.1K) [text/x-python]\n", - "Saving to: ‘_utils.py’\n", - "\n", - "_utils.py 100%[===================>] 7.05K --.-KB/s in 0s \n", - "\n", - "2023-07-26 20:59:50 (182 MB/s) - ‘_utils.py’ saved [7224/7224]\n", - "\n", - "--2023-07-26 20:59:50-- https://about.benjaminmarie.com/data/py/auto-gptq-patch/auto.py\n", - "Resolving about.benjaminmarie.com (about.benjaminmarie.com)... 192.95.30.6\n", - "Connecting to about.benjaminmarie.com (about.benjaminmarie.com)|192.95.30.6|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 4697 (4.6K) [text/x-python]\n", - "Saving to: ‘auto.py’\n", - "\n", - "auto.py 100%[===================>] 4.59K --.-KB/s in 0s \n", - "\n", - "2023-07-26 20:59:50 (134 MB/s) - ‘auto.py’ saved [4697/4697]\n", - "\n" - ] - } - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } }, - "id": "JZTifEWAX6cf", - "outputId": "fc1cd929-cacc-42ac-d4eb-5034e89712a3" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "/content/AutoGPTQ\n", - "Processing /content/AutoGPTQ\n", - " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "Collecting accelerate>=0.19.0 (from auto-gptq==0.3.2+cu118)\n", - " Downloading accelerate-0.21.0-py3-none-any.whl (244 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m244.2/244.2 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting datasets (from auto-gptq==0.3.2+cu118)\n", - " Downloading datasets-2.14.0-py3-none-any.whl (492 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m492.2/492.2 kB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from auto-gptq==0.3.2+cu118) (1.22.4)\n", - "Collecting rouge (from auto-gptq==0.3.2+cu118)\n", - " Downloading rouge-1.0.1-py3-none-any.whl (13 kB)\n", - "Requirement already satisfied: torch>=1.13.0 in /usr/local/lib/python3.10/dist-packages (from auto-gptq==0.3.2+cu118) (2.0.1+cu118)\n", - "Collecting safetensors (from auto-gptq==0.3.2+cu118)\n", - " Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m54.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting transformers>=4.31.0 (from auto-gptq==0.3.2+cu118)\n", - " Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m49.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting peft (from auto-gptq==0.3.2+cu118)\n", - " Downloading peft-0.4.0-py3-none-any.whl (72 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.9/72.9 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.19.0->auto-gptq==0.3.2+cu118) (23.1)\n", - "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.19.0->auto-gptq==0.3.2+cu118) (5.9.5)\n", - "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.19.0->auto-gptq==0.3.2+cu118) (6.0.1)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.12.2)\n", - "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (4.7.1)\n", - "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (1.11.1)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.1)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.1.2)\n", - "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.13.0->auto-gptq==0.3.2+cu118) (2.0.0)\n", - "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.13.0->auto-gptq==0.3.2+cu118) (3.25.2)\n", - "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.13.0->auto-gptq==0.3.2+cu118) (16.0.6)\n", - "Collecting huggingface-hub<1.0,>=0.14.1 (from transformers>=4.31.0->auto-gptq==0.3.2+cu118)\n", - " Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m27.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.31.0->auto-gptq==0.3.2+cu118) (2022.10.31)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers>=4.31.0->auto-gptq==0.3.2+cu118) (2.27.1)\n", - "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers>=4.31.0->auto-gptq==0.3.2+cu118)\n", - " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m116.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.31.0->auto-gptq==0.3.2+cu118) (4.65.0)\n", - "Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (9.0.0)\n", - "Collecting dill<0.3.8,>=0.3.0 (from datasets->auto-gptq==0.3.2+cu118)\n", - " Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m14.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (1.5.3)\n", - "Collecting xxhash (from datasets->auto-gptq==0.3.2+cu118)\n", - " Downloading xxhash-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.5/212.5 kB\u001b[0m \u001b[31m25.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting multiprocess (from datasets->auto-gptq==0.3.2+cu118)\n", - " Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m18.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (2023.6.0)\n", - "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets->auto-gptq==0.3.2+cu118) (3.8.5)\n", - "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from rouge->auto-gptq==0.3.2+cu118) (1.16.0)\n", - "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (23.1.0)\n", - "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (2.0.12)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (6.0.4)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (4.0.2)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (1.9.2)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (1.4.0)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->auto-gptq==0.3.2+cu118) (1.3.1)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.31.0->auto-gptq==0.3.2+cu118) (1.26.16)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.31.0->auto-gptq==0.3.2+cu118) (2023.7.22)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.31.0->auto-gptq==0.3.2+cu118) (3.4)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.13.0->auto-gptq==0.3.2+cu118) (2.1.3)\n", - "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->auto-gptq==0.3.2+cu118) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->auto-gptq==0.3.2+cu118) (2022.7.1)\n", - "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.13.0->auto-gptq==0.3.2+cu118) (1.3.0)\n", - "Building wheels for collected packages: auto-gptq\n", - " Building wheel for auto-gptq (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for auto-gptq: filename=auto_gptq-0.3.2+cu118-cp310-cp310-linux_x86_64.whl size=5667878 sha256=1e2e7e301393c5b4299ed46ca9f3f673e0565446b1899a102d3eacd1dc8898f4\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-52c3z5ek/wheels/8c/41/f4/48ea4848ab4977e74d11a4abbc2c42745c5b1d33f931e8cadf\n", - "Successfully built auto-gptq\n", - "Installing collected packages: tokenizers, safetensors, xxhash, rouge, dill, multiprocess, huggingface-hub, transformers, datasets, accelerate, peft, auto-gptq\n", - "Successfully installed accelerate-0.21.0 auto-gptq-0.3.2+cu118 datasets-2.14.0 dill-0.3.7 huggingface-hub-0.16.4 multiprocess-0.70.15 peft-0.4.0 rouge-1.0.1 safetensors-0.3.1 tokenizers-0.13.3 transformers-4.31.0 xxhash-3.2.0\n" - ] - } - ], - "source": [ - "%cd AutoGPTQ\n", - "!pip install .\n" - ] - }, - { - "cell_type": "markdown", - "source": [ - "We import all the necessary libraries:\n", - "\n", - "*Note all of them were installed as dependencies of auto-gptq*" - ], - "metadata": { - "id": "WldO7DIZ_HDw" - } - }, - { - "cell_type": "code", - "source": [ - "import random\n", - "import numpy as np\n", - "import torch\n", - "from datasets import load_dataset\n", - "from transformers import AutoTokenizer\n", - "from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig" - ], - "metadata": { - "id": "X_TV093r2IAB" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Set up some variables, load the tokenizer, and define a function to deal with the data used for calibration." - ], - "metadata": { - "id": "T0MYHD2b_XYn" - } - }, - { - "cell_type": "code", - "source": [ - "#Replace the following with your own Hugging Face access token.\n", - "#This is my token (revocated, of course, never share your token online)\n", - "access_token = \"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\"\n", - "\n", - "#The model we want to quantize\n", - "pretrained_model_dir = \"meta-llama/Llama-2-7b-chat-hf\"\n", - "\n", - "#The name of the model once quantized\n", - "#Note that we will only save the model, the tokenizer will remain the same\n", - "quantized_model_dir = \"Llama-2-7b-4bit-chat-hf\"\n", - "\n", - "tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, use_auth_token=access_token)\n", - "#I copied and edited this function from AutoGPTQ repository\n", - "def get_wikitext2(nsamples, seed, seqlen, model):\n", - "\n", - " #I load the validation split since the training split is unecessary large\n", - " traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='validation')\n", - "\n", - "\n", - " trainenc = tokenizer(\"\\n\\n\".join(traindata['text']), return_tensors='pt')\n", - "\n", - " random.seed(seed)\n", - " np.random.seed(0)\n", - " torch.random.manual_seed(0)\n", - "\n", - " traindataset = []\n", - "\n", - " #This is unecessary to use the entire dataset for calibration\n", - " #Here I use only 128 samples\n", - " for _ in range(nsamples):\n", - " i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)\n", - " j = i + seqlen\n", - " inp = trainenc.input_ids[:, i:j]\n", - " attention_mask = torch.ones_like(inp)\n", - " traindataset.append({'input_ids':inp,'attention_mask': attention_mask})\n", - " return traindataset" - ], - "metadata": { - "id": "5cvBQlszaMeb", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 312, - "referenced_widgets": [ - "3537c2a9d15f4ff7a0d170459f959ef7", - "eea87a848431477587a79db561f3013f", - "c52bdd43a472471486bbbbcb96ee1a39", - "420d32b41b0144b3924bd1dccda169dc", - "cbcc440ae3c040ab822c2b2c5fa5f55d", - "fdeb2f5d6f9e44c098b8e11ca678b5f3", - "28d81134a5934780941c632e7d5df3e7", - "7b3329934cde4998bb0b0e585010c761", - "ecc66ec306e243bfa88619ffac0a364a", - "647102c6bb264a02acd51baec051f5c1", - "f6da1b054f784db88437b0858e2b2da4", - "9cff3946b97441e3a31f4e069bd636e7", - "e8119d4c0c494edda88a568160cd5d16", - "f8afe190bc72445ebd64592fbfb6af77", - "383e17c7abad4febbe3b053fa849a029", - "712735ae7df54ba6bb2307c186893446", - "8f2be0b1f16b45b0a71889369e83f6cf", - "15c2ab71679a4806bca6c92254d9d1d4", - "94aa997c559141fda3188fa31296a835", - "96789b46561b4d0d9831a2ef78a71aa5", - "6227f44359c3499aa7550b1f682557c6", - "b888b0df503d4c0ba396a7134f18ffe7", - "18c6916531ef40738a89cb692fb56488", - "aafa72ef19504229895e329714cc43a3", - "d3aecac0211b4696b64265560dd03b7f", - "8f88ad638f0a449ab77bd40f6d7a0a70", - "ef4a7aa02bdf481bb386d428668da6f8", - "e7223ff4f0f8450cbb56a54536987961", - "eb6e7d1222574213bc8ea7eae3c3e667", - "b1751d1bb4834f38a7ff48f4dafbbbb8", - "ab95d77429734d59b935d7c71189db4d", - "2ee1f06f16ea44b694e2e7f4cb7ea2df", - "e3c2a5881f27469580b923974b4baf98", - "40081a093e8b435da1a12b583bf6331b", - "2a6bd38dcf8c4281b097580cf6879a95", - "e6c3c82a96c044beb121bbd952e7caf5", - "aa3cceab43ce420fbc4daf319eb119e8", - "e37ceb1a70644cc09d6263bc213d6b29", - "2ac4786cd1494740a01d9465e3f1305f", - "27073ef8ef89411582cb5132754b42cf", - "1f9eab6219254fc5aba5b1b12f3f7a91", - "fe494d54133c445f9b26618f0147c424", - "d86a7262444f4825aee3eec687a9685f", - "4ea9a13ed2e54e5db8a898578bb6d93c" - ] + "db9b8080998441a0bab18ddc28a18315": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dd2a1d22759041c290e86d091fd3da00", + "placeholder": "​", + "style": "IPY_MODEL_78c55b2e5aba4473912497d6dda5f7ff", + "value": "Generating test split: 100%" + } }, - "outputId": "82c359cd-2163-4293-b89a-512debdcaa08" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Downloading (…)okenizer_config.json: 0%| | 0.00/770 [00:00 Tell me about gravity. everybody knows what it is, but can you explain it in a way that makes it easy to understand?\n", - "Gravity is a fundamental force of nature that causes objects with mass to attract each other. It is the weakest of the four fundamental forces of nature, but it is the one that dominates at large scales, shaping the structure of the universe as we know it today.\n", - "Gravity is a two-way force, meaning that any two objects with mass will attract each other. The strength of the gravitational force between two objects depends on their mass and the distance between them. The greater the mass of the objects and the closer they are to each other, the stronger the gravitational force will be.\n", - "Gravity is a universal force that affects everything with mass, from the smallest subatomic particles to the largest galaxies. It is the force that keeps planets in orbit around their stars, causes objects to fall towards the ground, and holds galaxies together.\n", - "One of the most famous examples of gravity is the way that planets orbit around their stars. The gravitational force of the star pulls the planet towards it, keeping it in a stable orbit. The strength of the gravitational force depends on the mass of the star and the distance between the planet and the star.\n", - "Gravity is also responsible for the way that objects fall towards the ground. Any object with mass will experience a force towards the ground due\n" - ] - } - ] } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/LLMs/models/llama2/Run_Llama_2_Chat_Models_on_Your_Computer.ipynb b/LLMs/models/llama2/Run_Llama_2_Chat_Models_on_Your_Computer.ipynb index 8475cbf..0918ac5 100644 --- a/LLMs/models/llama2/Run_Llama_2_Chat_Models_on_Your_Computer.ipynb +++ b/LLMs/models/llama2/Run_Llama_2_Chat_Models_on_Your_Computer.ipynb @@ -1,217 +1,333 @@ { - "nbformat": 4, - "nbformat_minor": 0, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "UaHcYzEKlwI_" + }, + "source": [ + "In this notebook, we use 4-bit quantization to run Llama-7B Chat model. This code uses only 10 GB of VRAM. It can run on a free instance of Google Colab or on a local GPU (e.g., RTX 3060 12GB).\n", + "[More details here.](https://open.substack.com/pub/kaitchup/p/run-llama-2-chat-models-on-your-computer?r=2kp66c&utm_campaign=post&utm_medium=web)\n", + "\n", + "\n", + "We only need the following libraries:\n", + "\n", + "\n", + "* transformers\n", + "* accelerate (for device_map)\n", + "* bitsandbytes (for 4-bit quantization)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZgGyWYanlvr_", + "outputId": "0e6d7ec6-0826-44b1-e275-06d4c696f9ae" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting transformers\n", + " Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting accelerate\n", + " Downloading accelerate-0.21.0-py3-none-any.whl (244 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m244.2/244.2 kB\u001b[0m \u001b[31m17.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting bitsandbytes\n", + " Downloading bitsandbytes-0.40.2-py3-none-any.whl (92.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.5/92.5 MB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)\n", + "Collecting huggingface-hub<1.0,>=0.14.1 (from transformers)\n", + " Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m22.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.22.4)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2022.10.31)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.27.1)\n", + "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)\n", + " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m70.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers)\n", + " Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m48.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.65.0)\n", + "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)\n", + "Requirement already satisfied: torch>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.0.1+cu118)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.6.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.7.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (1.11.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.10.0->accelerate) (3.25.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.10.0->accelerate) (16.0.6)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.16)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.5.7)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.12)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.3)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)\n", + "Installing collected packages: tokenizers, safetensors, bitsandbytes, huggingface-hub, transformers, accelerate\n", + "Successfully installed accelerate-0.21.0 bitsandbytes-0.40.2 huggingface-hub-0.16.4 safetensors-0.3.1 tokenizers-0.13.3 transformers-4.31.0\n" + ] + } + ], + "source": [ + "!pip install transformers accelerate bitsandbytes" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KCdND_LSkVPg" + }, + "source": [ + "Note that to run the following code, you must have got access to Llama 2's weights and have an access token from Hugging Face. You can find instructions on the model cards on the hugging face hub: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 736, + "referenced_widgets": [ + "264bcc9bf48f4692ab0eddc3bf13726c", + "fa0ecba07eb0431ebea39bd34a3c31df", + "9de8d2be583845aea7b4622b6af7b0ae", + "ebe59d6553cb4a52904cf94036699b37", + "b569e2596e1b453d8adff6d2a81dbc17", + "c7d5707235134f63821a7470dcecea24", + "8fd1c4e74d5246779ae67f42b2de6e7f", + "cc9f4eed50cb46bb8fbbd2a9312e3760", + "18c26d959ed24503b19db31d79135d62", + "4c1a628c1ff2457facffe64f7e7fa817", + "9fc3323e6e7344da8ed1e26a953318a8", + "f9c8dc9560d540c6a04ad6a6bc2abe1a", + "366e4f3dc8de40aca3d8e931014e0702", + "fc7ab333004148419bcec0eb390ebada", + "d03003148cdf4911acf48739c7f42a91", + "d352d8aeb81641fca5a042494559656a", + "29eb8371e5e04ef3a2b2a856a1cd1f10", + "bbc3ba50afc84775a3e459dd98eac18f", + "89de0c22651840238a1888c01453e4b7", + "4df98adcc3544b73be66f327ca760dc9", + "5af4c4fe89d040529cb7ecec46f49436", + "1eabeff2cefa47a68bf970ebdc23cacc", + "6dd40e02f002475692f45df133266de6", + "38315452546c47b59f03dd42e9a0f16b", + "c5899e2047ef444cbd7353a32e3f796c", + "d164961d54fd48328febeae5eaf23e2d", + "b8e232800a6b47988f729803d666e3cb", + "6a9ee9fbbd4c478b9d73c65a8499b48e", + "4140d84f73854654acd261ea419bd0af", + "6a773438ef7348c0b784c0e3a4bc9086", + "e80c6ba1bbc04c26a2595feb35bf691f", + "fe217af46ddb44b6b00468501867ead0", + "c9c5b827a55146958080fa505471e42f", + "5bd068bcf81e4e73bcb94ebc572739b3", + "ddddaeeb1ef84cafbdab252e4c30766e", + "d9132af90b82464a96042a2b60f617cf", + "61843b9d72a44bdc95e126c43b999ebf", + "85f50bb0b71147c890fa970ea0a4daed", + "d3484c41a7aa434e9762097e21fe1df3", + "cb495c83f14f45d8b59fb262fa6c4584", + "f997b67da7f945b48faf302f10241175", + "900644dcee334d669d0997266d4d504a", + "bd5c46ec0fe34acabf32a5ca35ab07f0", + "c2c1a00c79d249b3b21066299e0d47a1", + "de4466de4a754850afa2146498e17905", + "5073919b44394157b25a7228faeaa435", + "6d7d90f44f5f4abd8d542866f1f27507", + "dbdfc59f94d74426ba7f9b2ac47a935a", + "47a72916852d4046b295897983d912e4", + "b8860d589ed64516b2807cfb3fe18772", + "f2e2fc940fb342c7b241da7673da0422", + "740e270ec74949038db77dc5afcbb669", + "e51bc9e3b2d34829ac5204bf93788dbb", + "4356b66cd1ad41b08df684df1b9a0c81", + "692f1c1c2ec64d779acca5a0494b5ffa" + ] + }, + "id": "THqfvzHIjSK9", + "outputId": "5f99ed0e-55e5-4875-f8a2-77ee38fbd59c" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "264bcc9bf48f4692ab0eddc3bf13726c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/2 [00:00=0.14.1 (from transformers)\n", - " Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m22.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.22.4)\n", - "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n", - "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0)\n", - "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2022.10.31)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.27.1)\n", - "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)\n", - " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m70.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting safetensors>=0.3.1 (from transformers)\n", - " Downloading safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m48.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.65.0)\n", - "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate) (5.9.5)\n", - "Requirement already satisfied: torch>=1.10.0 in /usr/local/lib/python3.10/dist-packages (from accelerate) (2.0.1+cu118)\n", - "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.6.0)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.7.1)\n", - "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (1.11.1)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (3.1.2)\n", - "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.10.0->accelerate) (2.0.0)\n", - "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.10.0->accelerate) (3.25.2)\n", - "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.10.0->accelerate) (16.0.6)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.16)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.5.7)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.12)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.3)\n", - "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)\n", - "Installing collected packages: tokenizers, safetensors, bitsandbytes, huggingface-hub, transformers, accelerate\n", - "Successfully installed accelerate-0.21.0 bitsandbytes-0.40.2 huggingface-hub-0.16.4 safetensors-0.3.1 tokenizers-0.13.3 transformers-4.31.0\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "Note that to run the following code, you must have got access to Llama 2's weights and have an access token from Hugging Face. You can find instructions on the model cards on the hugging face hub: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf\n" - ], - "metadata": { - "id": "KCdND_LSkVPg" - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 736, - "referenced_widgets": [ - "264bcc9bf48f4692ab0eddc3bf13726c", - "fa0ecba07eb0431ebea39bd34a3c31df", - "9de8d2be583845aea7b4622b6af7b0ae", - "ebe59d6553cb4a52904cf94036699b37", - "b569e2596e1b453d8adff6d2a81dbc17", - "c7d5707235134f63821a7470dcecea24", - "8fd1c4e74d5246779ae67f42b2de6e7f", - "cc9f4eed50cb46bb8fbbd2a9312e3760", - "18c26d959ed24503b19db31d79135d62", - "4c1a628c1ff2457facffe64f7e7fa817", - "9fc3323e6e7344da8ed1e26a953318a8", - "f9c8dc9560d540c6a04ad6a6bc2abe1a", - "366e4f3dc8de40aca3d8e931014e0702", - "fc7ab333004148419bcec0eb390ebada", - "d03003148cdf4911acf48739c7f42a91", - "d352d8aeb81641fca5a042494559656a", - "29eb8371e5e04ef3a2b2a856a1cd1f10", - "bbc3ba50afc84775a3e459dd98eac18f", - "89de0c22651840238a1888c01453e4b7", - "4df98adcc3544b73be66f327ca760dc9", - "5af4c4fe89d040529cb7ecec46f49436", - "1eabeff2cefa47a68bf970ebdc23cacc", - "6dd40e02f002475692f45df133266de6", - "38315452546c47b59f03dd42e9a0f16b", - "c5899e2047ef444cbd7353a32e3f796c", - "d164961d54fd48328febeae5eaf23e2d", - "b8e232800a6b47988f729803d666e3cb", - "6a9ee9fbbd4c478b9d73c65a8499b48e", - "4140d84f73854654acd261ea419bd0af", - "6a773438ef7348c0b784c0e3a4bc9086", - "e80c6ba1bbc04c26a2595feb35bf691f", - "fe217af46ddb44b6b00468501867ead0", - "c9c5b827a55146958080fa505471e42f", - "5bd068bcf81e4e73bcb94ebc572739b3", - "ddddaeeb1ef84cafbdab252e4c30766e", - "d9132af90b82464a96042a2b60f617cf", - "61843b9d72a44bdc95e126c43b999ebf", - "85f50bb0b71147c890fa970ea0a4daed", - "d3484c41a7aa434e9762097e21fe1df3", - "cb495c83f14f45d8b59fb262fa6c4584", - "f997b67da7f945b48faf302f10241175", - "900644dcee334d669d0997266d4d504a", - "bd5c46ec0fe34acabf32a5ca35ab07f0", - "c2c1a00c79d249b3b21066299e0d47a1", - "de4466de4a754850afa2146498e17905", - "5073919b44394157b25a7228faeaa435", - "6d7d90f44f5f4abd8d542866f1f27507", - "dbdfc59f94d74426ba7f9b2ac47a935a", - "47a72916852d4046b295897983d912e4", - "b8860d589ed64516b2807cfb3fe18772", - "f2e2fc940fb342c7b241da7673da0422", - "740e270ec74949038db77dc5afcbb669", - "e51bc9e3b2d34829ac5204bf93788dbb", - "4356b66cd1ad41b08df684df1b9a0c81", - "692f1c1c2ec64d779acca5a0494b5ffa" - ] - }, - "id": "THqfvzHIjSK9", - "outputId": "5f99ed0e-55e5-4875-f8a2-77ee38fbd59c" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Loading checkpoint shards: 0%| | 0/2 [00:00