-
Notifications
You must be signed in to change notification settings - Fork 0
/
Math.cpp
375 lines (300 loc) · 9.23 KB
/
Math.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#include <bits/stdc++.h>
using namespace std;
#define cin_2d(vec, n, m) for(int i = 0; i < n; i++) for(int j = 0; j < m && cin >> vec[i][j]; j++);
#define cout_2d(vec, n, m) for(int i = 0; i < n; i++, cout << "\n") for(int j = 0; j < m && cout << vec[i][j] << " "; j++);
#define fixed(n) fixed << setprecision(n)
#define ceil(n, m) (((n) / (m)) + ((n) % (m) ? 1 : 0))
#define fill(vec, value) memset(vec, value, sizeof(vec));
#define mul_mod(a, b, m) (((a % m) * (b % m)) % m)
#define add_mod(a, b, m) (((a % m) + (b % m)) % m)
#define all(vec) vec.begin(), vec.end()
#define rall(vec) vec.rbegin(), vec.rend()
#define sz(x) int(x.size())
#define debug(x) cout << #x << ": " << (x) << "\n";
#define fi first
#define se second
#define ll long long
#define ull unsigned long long
#define Mod 1'000'000'007
#define OO 2'000'000'000
#define EPS 1e-9
#define PI acos(-1)
template < typename T = int > using Pair = pair < T, T >;
vector < string > RET = {"NO", "YES"};
template < typename T = int > istream& operator >> (istream &in, vector < T > &v) {
for (auto &x : v) in >> x;
return in;
}
template < typename T = int > ostream& operator << (ostream &out, const vector < T > &v) {
for (const T &x : v) out << x << ' ';
return out;
}
struct Math {
Math(){}
// Greatest common divisors between two numbers
ll GCD(ll a, ll b){
return (!b ? a : GCD(b, a % b));
}
// least common multiplication between two numbers
ll LCM(ll a, ll b){
return a / GCD(a, b) * b;
}
// Get vector with the prime factors of number
vector < int > prime_factorization(ll n){
vector < int > factors;
while(n % 2 == 0) factors.push_back(2), n /= 2;
for(int i = 3; i <= sqrt(n); i += 2)
while(n % i == 0) factors.push_back(i), n /= i;
if(n > 2) factors.push_back(n);
return factors;
}
// Combination
ll nCr(ll n, ll r){
if(r > n) return 0;
ll p = 1, k = 1;
if (n - r < r) r = n - r;
// condition for minimum choose
if(n < 1) return 0;
while (r > 0){
p *= n, k *= r;
ll m = __gcd(p, k);
p /= m, k /= m, n--, r--;
}
return p;
}
// Permutation
ll nPr(ll n, ll r){
if(r > n) return 0;
ll npr = 1;
while(r-- > 0)
npr *= n--;
return npr;
}
// get a mod for big int
ll Big_Mod(string s, ll mod){
ll res = 0;
for(auto& c : s)
res = (res * 10 + (c - '0')) % mod;
return res;
}
// add two number and take mod for them
void add(ll& a, ll b, ll mod = 1e9 + 7){
a += b;
if(a >= mod)
a -= mod;
}
// multiply two number and take mod for them
void mul(ll& a, ll b, ll mod = 1e9 + 7){
a = ((a % mod) * (b % mod)) % mod;
}
// b power e in O(log(n))
ll Bin_Pow(ll b, ll e){
ll power = 1;
while(e){
if(e & 1) power *= b;
e >>= 1;
b *= b;
}
return power;
}
// b power e % mod in O(log(e))
ll Bin_Pow(ll b, ll e, ll mod){
ll power = 1;
while(e){
if(e & 1) mul(power, b, mod);
e >>= 1;
mul(b, b, mod);
}
return power % mod;
}
// b multiply e % mod in O(log(e))
ll Bin_Mul(ll b, ll e, ll mod){
b %= mod;
ll mult = 0;
while(e){
if(e & 1) add(mult, b, mod);
e >>= 1;
add(b, b, mod);
}
return mult % mod;
}
// Check if number is prime or not
bool is_prime(ll n){
if(n < 2 || (n % 2 == 0 && n != 2)) return false;
for(int i = 3; i <= sqrt(n); i += 2)
if(n % i == 0) return false;
return true;
}
// get the number of divisors for n
int number_of_divisors(ll n){
int divisors = 0;
for(int i = 1; i < sqrt(n); i++)
if(n % i == 0) divisors += 2;
return divisors + (sqrt(n) == (int)sqrt(n));
}
// get Summation of divisors for n
ll sum_of_divisors(ll n){
ll sum_divisors = 0;
for(int i = 1; i < sqrt(n); i++)
if(n % i == 0) sum_divisors += ((n / i) + i);
ll sq = sqrt(n);
return sum_divisors + (sq * sq == n ? sq : 0);
}
// sum of divisor of number in range [1 ... n]
ll divisorSum(ll num){
ll sum = 0;
for (ll i = 1; i <= sqrt(num); i++) {
ll t1 = i * (num / i - i + 1);
ll t2 = (((num / i) * (num / i + 1)) / 2) - ((i * (i + 1)) / 2);
sum += t1 + t2;
}
return sum;
}
// get vector with the divisors for n
vector < ll > Get_Divisors(ll n){
vector < ll > divisors;
for(int i = 1; i < sqrt(n); i++)
if(n % i == 0) divisors.push_back(i), divisors.push_back(n / i);
if(sqrt(n) == int(sqrt(n))) divisors.push_back(sqrt(n));
return divisors;
}
// print all permutation of an array
void Print_Permutation(vector < int >& nums){
sort(all(nums));
do {
for(auto& i : nums)
cout << i << " ";
cout << "\n";
} while(next_permutation(nums.begin(), nums.end()));
}
// print all permutation of a string
void Print_Permutation(string s){
sort(all(s));
do {
cout << s << "\n";
} while(next_permutation(s.begin(), s.end()));
}
// get the summation between two numbers or the summation between 1 and n
ll Summation(ll r, ll l = 0){
if(l > r) swap(l, r);
return (r * (r + 1) / 2) - (l * (l - 1) / 2);
}
// Get how many number divisable by c between a and b
ll how_many_divisors(ll a, ll b, ll c){
return (b / c) - ((a - 1) / c);
}
// Get summation of numbers divisable by c between a and b
ll Summation_of_Devisors(ll a, ll b, ll c){
ll right = Summation(b / c);
ll left = Summation((a - 1) / c);
return (right - left) * c;
}
// get logb(a)
double get_log(ll a, int b){
return log(a) / log(b);
}
// Check if number power of another or not
bool is_power(ll number, int base = 2){
return (get_log(number, base) - (ll) get_log(number, base) <= EPS);
}
// Distination Between two points
double dist(double x1, double y1, double x2, double y2){
return sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2));
}
// Check if it valid triangle with 3 length sides
bool is_triangle(ll a, ll b, ll c){
return (a + b > c) && (a + c > b) && (b + c > a) && (a && b && c);
}
// Get Slope of two points
double slope(double x1, double y1, double x2, double y2){
if(x2 == x1) return 0;
return (y2 - y1) / (x2 - x1);
}
// Check if three points in the same line
bool is_same_line(ll x1, ll y1, ll x2, ll y2, ll x3, ll y3){
return (y2 - y1) * (x3 - x1) == (y3 - y1) * (x2 - x1);
}
// Check if is perfect square
bool is_perfect_square(ll n){
ll sq = sqrt(n);
return sq * sq == n;
}
// number of coprime witn n from 1 to n
ll phi(ll n) {
ll result = n;
for (ll i = 2; i * i <= n; i++) {
if (n % i == 0) {
while (n % i == 0)
n /= i;
result -= result / i;
}
}
if (n > 1)
result -= result / n;
return result;
}
// get the power of prime factor in n
ll FactN_PrimePowers(ll n, ll p){
ll powers = 0;
for(ll i = p; i <= n; i *= p)
powers += n / i;
return powers;
}
// extended euclidean algorithm and diofantian equation
int extended_gcd(int a, int b, int& x, int& y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int x1, y1;
int d = extended_gcd(b, a % b, x1, y1);
x = y1;
y = x1 - y1 * (a / b);
return d;
}
bool find_any_solution(int a, int b, int c, int &x0, int &y0, int &g) {
g = extended_gcd(abs(a), abs(b), x0, y0);
if (c % g) {
return false;
}
x0 *= c / g;
y0 *= c / g;
if (a < 0) x0 = -x0;
if (b < 0) y0 = -y0;
return true;
}
// Convert Decimal to any base
string decimal_to_any_base(ll decimal, ll base){
if(decimal == 0) return "0";
string num = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
string result;
do{
result.push_back(num[decimal % base]);
decimal /= base;
}while(decimal != 0);
return string(result.rbegin(), result.rend());
}
// Convert any base to decimal
ll any_base_to_decimal(string str, int base) {
auto val = [](char c){
return (c >= '0' && c <= '9' ? (int) c - '0' : (int) c - 'A' + 10);
};
ll len = sz(str), power = 1, num = 0, i;
for (i = len - 1; i >= 0; i--) {
num += val(str[i]) * power;
power = power * base;
}
return num;
}
};
void Solve(){
}
int main(){
ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int t = 1;
//cin >> t;
while(t--)
Solve();
return 0;
}