-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
70 lines (51 loc) · 2.39 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import glob
import csv
import cv2
from ultralytics import YOLO
import supervision as sv
from collections import Counter
# 类别
classes_of_interest = ['bench', 'large bike rack', 'shelter', 'sign', 'small bike rack']
# 加载 YOLOv8 模型和权重
model = YOLO('../runs/detect/train11/weights/best.pt')
def process_folder(folder):
image_files = glob.glob(f'{folder}/*.jpg')
# 从文件夹名称提取 stop_id
folder_name = [part for part in folder.split('/') if part][-1]
stop_id = folder_name.split('_')[0]
if not image_files:
return [stop_id] + [None for _ in range(len(classes_of_interest) + 3)]
total_counts = Counter()
total_images = len(image_files)
first_image = image_files[0]
_, latlon, _ = os.path.basename(first_image).split('_')[0:3]
lat, lon = latlon.split(',')
for image_path in glob.glob(f'{folder}/*.jpg'):
# image = cv2.imread(image_path)
results = model.predict(image_path, save=True, imgsz=320, conf=0.5)
# results = model(image)
detections = sv.Detections.from_ultralytics(results[0])
detected_classes = set(detections.class_id)
for class_name in classes_of_interest:
if classes_of_interest.index(class_name) in detected_classes:
total_counts[class_name] += 1
with open(os.path.join(folder, 'detection_summary.txt'), 'w') as file:
for class_name, count in total_counts.items():
file.write(f'{class_name}: {count}/{total_images}\n') # 输出比例
return [stop_id, lat, lon] + [total_counts[class_name] for class_name in classes_of_interest] + [total_images]
def main():
# 遍历所有城市级别的文件夹
for parent_folder in glob.glob('./*_stops_imgs/'):
city_name = [part for part in parent_folder.split('/') if part][-1]
city_name = city_name.split("_stops_imgs")[0]
csv_filename = os.path.join(parent_folder, f'{city_name}_stops_analysis.csv')
# 遍历大文件夹内的所有子文件夹
with open(csv_filename, 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(['stop_id', 'lat', 'lon'] + classes_of_interest + ['total'])
for sub_folder in glob.glob(f'{parent_folder}/*/'):
row = process_folder(sub_folder)
csvwriter.writerow(row)
if __name__ == '__main__':
main()