Skip to content

Latest commit

 

History

History
181 lines (91 loc) · 4.59 KB

README.md

File metadata and controls

181 lines (91 loc) · 4.59 KB

环境配置

ubuntu:18.04

cuda:11.0

cudnn:8.0

tensorrt:7.2.16

OpenCV:3.4.2

cuda,cudnn,tensorrt和OpenCV安装包(编译好了,也可以自己从官网下载编译)可以从链接: https://pan.baidu.com/s/1Nl5XTAsUOyTbY6VbigsMNQ 密码: c4dn

cuda安装

如果系统有安装驱动,运行如下命令卸载

sudo apt-get purge nvidia*

禁用nouveau,运行如下命令

sudo vim /etc/modprobe.d/blacklist.conf

在末尾添加

blacklist nouveau

然后执行

sudo update-initramfs -u

chmod +x cuda_11.0.2_450.51.05_linux.run

sudo ./cuda_11.0.2_450.51.05_linux.run

是否接受协议: accept

然后选择Install

最后回车

vim ~/.bashrc 添加如下内容:

export PATH=/usr/local/cuda-11.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH

source ~/.bashrc 激活环境

cudnn 安装

tar -xzvf cudnn-11.0-linux-x64-v8.0.4.30.tgz

cd cuda/include

sudo cp *.h /usr/local/cuda-11.0/include

cd cuda/lib64

sudo cp libcudnn* /usr/local/cuda-11.0/lib64

tensorrt及OpenCV安装

定位到用户根目录

tar -xzvf TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz

cd TensorRT-7.2.1.6/python,该目录有4个python版本的tensorrt安装包

sudo pip3 install tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl(根据自己的python版本安装)

pip install pycuda 安装python版本的cuda

定位到用户根目录

tar -xzvf opencv-3.4.2.zip 以备推理调用

RepVGG模型训练以及转换onnx

定位到用户根目录

git clone https://github.com/Wulingtian/RepVGG_TensorRT_int8.git

cd RepVGG_TensorRT_int8/models

vim convert_model.py

设置 num_classes,例如:我训练的是猫狗识别,则设置为2

python convert_model.py 生成可加载的ImageNet预训练模型路径

cd RepVGG_TensorRT_int8

vim repvgg.py 定位到154行,修改类别数

vim train.py 修改IMAGENET_TRAINSET_SIZE参数 指定训练图片的数量

根据自己的训练数据及配置设置data(数据集路径),arch(我选择的是最小的模型RepVGG-A0),epochs,lr,batch-size,model_path(设置ImageNet预训练模型路径,就是上面convert_model.py转换得到的模型)等参数

python train.py,开始训练,模型保存在当前目录,名为model_best.pth.tar

python convert.py model_best.pth.tar RepVGG-A0-deploy.pth -a RepVGG-A0(指定模型类型,我训练的是RepVGG-A0)

vim export_onnx.py

设置arch,weights_file(convert.py生成的模型),output_file(输出模型名称),img_size(图片输入大小),batch_size(推理的batch)

python export_onnx.py得到onnx模型

onnx模型转换为 int8 tensorrt引擎

cd RepVGG_TensorRT_int8/repvgg_tensorrt_int8_tools

vim convert_trt_quant.py 修改如下参数

BATCH_SIZE 模型量化一次输入多少张图片

BATCH 模型量化次数

height width 输入图片宽和高

CALIB_IMG_DIR 量化图片路径(把训练的图片放到一个文件夹下,然后把这个文件夹设置为此参数,注意BATCH_SIZE*BATCH要小于或等于训练图片数量)

onnx_model_path onnx模型路径(上面运行export_onnx.py得到的onnx模型)

python convert_trt_quant.py 量化后的模型存到models_save目录下

tensorrt模型推理

cd RepVGG_TensorRT_int8/repvgg_tensorrt_int8

cd yolov5_tensorrt_int8

vim CMakeLists.txt

修改USER_DIR参数为自己的用户根目录

vim repvgg_infer.cc修改如下参数

output_name repvgg模型有1个输出

我们可以通过netron查看模型输出名

pip install netron 安装netron

vim netron_repvgg.py 把如下内容粘贴

    import netron

    netron.start('此处填充简化后的onnx模型路径', port=3344)

python netron_repvgg.py 即可查看 模型输出名

trt_model_path 量化的tensorrt推理引擎(models_save目录下trt后缀的文件)

test_img 测试图片路径

INPUT_W INPUT_H 输入图片宽高

NUM_CLASS 训练的模型有多少类

参数配置完毕

mkdir build

cd build

cmake ..

make

./RepVGGsEngine 输出平均推理时间,实测平均推理时间小于1ms一帧,不得不说,RepVGG真的很香!至此,部署完成!

训练数据链接

由于我训练的是猫狗识别下面放一张猫狗同框的图片结尾

顺便放一下我的数据集链接

链接: https://pan.baidu.com/s/1Mh6GxTLoXRTCRQh-TPUc3Q 密码: 3dt3