-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPipeline.groovy
232 lines (208 loc) · 10 KB
/
Pipeline.groovy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
datasink: A Pipeline for Large-Scale Heterogeneous Ensemble Learning
Copyright (C) 2013 Sean Whalen
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see [http://www.gnu.org/licenses/].
*/
import java.io.*
import java.text.*
import java.util.*
import java.util.zip.*
import weka.classifiers.*
import weka.classifiers.meta.*
import weka.core.*
import weka.core.converters.ConverterUtils.DataSource
import weka.filters.*
import weka.filters.supervised.instance.*
import weka.filters.unsupervised.attribute.*
import weka.filters.unsupervised.instance.*
void dump(instances, filename) {
w = new BufferedWriter(new FileWriter(filename))
w.write(instances.toString())
w.write("\n")
w.flush()
w.close()
}
Instances balance(instances) {
balanceFilter = new SpreadSubsample()
balanceFilter.setDistributionSpread(1.0)
balanceFilter.setInputFormat(instances)
return Filter.useFilter(instances, balanceFilter)
}
// parse options
rootDir = args[0]
currentFold = args[1]
currentBag = Integer.valueOf(args[2])
String[] classifierString = args[3..-1]
String classifierName = classifierString[0]
String shortClassifierName = classifierName.split("\\.")[-1]
String[] classifierOptions = new String[0]
if (classifierString.length > 1) {
classifierOptions = classifierString[1..-1]
}
// load data parameters from properties file
p = new Properties()
p.load(new FileInputStream(rootDir + "/weka.properties"))
inputFilename = p.getProperty("inputFilename").trim()
workingDir = rootDir + "/" + p.getProperty("workingDir", ".").trim()
idAttribute = p.getProperty("idAttribute", "").trim()
classAttribute = p.getProperty("classAttribute").trim()
predictClassValue = p.getProperty("predictClassValue").trim()
balanceTraining = Boolean.valueOf(p.getProperty("balanceTraining", "true"))
balanceTest = Boolean.valueOf(p.getProperty("balanceTest", "false"))
assert p.containsKey("foldCount") || p.containsKey("foldAttribute")
if (p.containsKey("foldCount")) {
foldCount = Integer.valueOf(p.getProperty("foldCount"))
}
foldAttribute = p.getProperty("foldAttribute", "").trim()
nestedFoldCount = Integer.valueOf(p.getProperty("nestedFoldCount"))
bagCount = Integer.valueOf(p.getProperty("bagCount"))
writeModel = Boolean.valueOf(p.getProperty("writeModel", "false"))
// load data, set class variable
source = new DataSource(rootDir + "/" + inputFilename)
data = source.getDataSet()
data.randomize(new Random(1))
data.setClass(data.attribute(classAttribute))
predictClassIndex = data.attribute(classAttribute).indexOfValue(predictClassValue)
assert predictClassIndex != -1
printf "[%s] %s, generating probabilities for class %s (index %d)\n", shortClassifierName, data.attribute(classAttribute), predictClassValue, predictClassIndex
// add ids
if (idAttribute == "") {
idAttribute = "ID"
idFilter = new AddID()
idFilter.setIDIndex("last")
idFilter.setInputFormat(data)
data = Filter.useFilter(data, idFilter)
}
// generate folds
if (foldAttribute != "") {
foldCount = data.attribute(foldAttribute).numValues()
foldAttributeIndex = String.valueOf(data.attribute(foldAttribute).index() + 1) // 1-indexed
foldAttributeValueIndex = String.valueOf(data.attribute(foldAttribute).indexOfValue(currentFold) + 1) // 1-indexed
printf "[%s] generating %s folds for leave-one-value-out CV\n", shortClassifierName, foldCount
testFoldFilter = new RemoveWithValues()
testFoldFilter.setModifyHeader(false)
testFoldFilter.setAttributeIndex(foldAttributeIndex)
testFoldFilter.setNominalIndices(foldAttributeValueIndex)
testFoldFilter.setInvertSelection(true)
testFoldFilter.setInputFormat(data)
test = Filter.useFilter(data, testFoldFilter)
trainingFoldFilter = new RemoveWithValues()
trainingFoldFilter.setModifyHeader(false)
trainingFoldFilter.setAttributeIndex(foldAttributeIndex)
trainingFoldFilter.setNominalIndices(foldAttributeValueIndex)
trainingFoldFilter.setInvertSelection(false)
trainingFoldFilter.setInputFormat(data)
train = Filter.useFilter(data, trainingFoldFilter)
} else {
printf "[%s] generating folds for %s-fold CV\n", shortClassifierName, foldCount
test = data.testCV(foldCount, Integer.valueOf(currentFold))
train = data.trainCV(foldCount, Integer.valueOf(currentFold), new Random(1))
}
// resample and balance training fold if necessary
if (bagCount > 0) {
printf "[%s] generating bag %d\n", shortClassifierName, currentBag
train = train.resample(new Random(currentBag))
}
if (balanceTraining) {
printf "[%s] balancing training samples\n", shortClassifierName
train = balance(train)
}
if (balanceTest) {
printf "[%s] balancing test samples\n", shortClassifierName
test = balance(test)
}
// init filtered classifier
classifier = AbstractClassifier.forName(classifierName, classifierOptions)
removeFilter = new Remove()
if (foldAttribute != "") {
removeIndices = new int[2]
removeIndices[0] = data.attribute(foldAttribute).index()
removeIndices[1] = data.attribute(idAttribute).index()
} else {
removeIndices = new int[1]
removeIndices[0] = data.attribute(idAttribute).index()
}
removeFilter.setAttributeIndicesArray(removeIndices)
filteredClassifier = new FilteredClassifier()
filteredClassifier.setClassifier(classifier)
filteredClassifier.setFilter(removeFilter)
// train, store duration
printf "[%s] fold: %s bag: %s training size: %d test size: %d\n", shortClassifierName, currentFold, (bagCount == 0) ? "none" : currentBag, train.numInstances(), test.numInstances()
start = System.currentTimeMillis()
filteredClassifier.buildClassifier(train)
duration = System.currentTimeMillis() - start
durationMinutes = duration / (1e3 * 60)
printf "[%s] trained in %.2f minutes, evaluating\n", shortClassifierName, durationMinutes
// write predictions to csv
classifierDir = new File(workingDir, classifierName)
if (!classifierDir.exists()) {
classifierDir.mkdir()
}
outputPrefix = sprintf "predictions-%s-%02d", currentFold, currentBag
writer = new PrintWriter(new GZIPOutputStream(new FileOutputStream(new File(classifierDir, outputPrefix + ".csv.gz"))))
if (writeModel) {
SerializationHelper.write(new GZIPOutputStream(new FileOutputStream(new File(classifierDir, outputPrefix + ".model.gz"))), filteredClassifier)
}
header = sprintf "# %s@%s %.2f minutes %s\n", System.getProperty("user.name"), java.net.InetAddress.getLocalHost().getHostName(), durationMinutes, classifierString.join(" ")
writer.write(header)
writer.write("id,label,prediction,fold,bag,classifier\n")
for (instance in test) {
id = (int) instance.value(test.attribute(idAttribute))
label = (instance.stringValue(instance.classAttribute()).equals(predictClassValue)) ? 1 : 0
prediction = filteredClassifier.distributionForInstance(instance)[predictClassIndex]
row = sprintf "%s,%s,%f,%s,%s,%s\n", id, label, prediction, currentFold, currentBag, shortClassifierName
writer.write(row)
}
writer.flush()
writer.close()
if (nestedFoldCount == 0) {
System.exit(0)
}
train = data.trainCV(foldCount, Integer.valueOf(currentFold), new Random(1))
printf "[%s] re-generated training data, starting %d-fold nested cv\n", shortClassifierName, nestedFoldCount
for (currentNestedFold in 0..nestedFoldCount - 1) {
nestedTest = train.testCV(nestedFoldCount, currentNestedFold)
nestedTrain = train.trainCV(nestedFoldCount, currentNestedFold, new Random(1))
// resample and balance training fold if necessary
if (bagCount > 0) {
printf "[%s inner %s] generating bag %d\n", shortClassifierName, currentNestedFold, currentBag
nestedTrain = nestedTrain.resample(new Random(currentBag))
}
if (balanceTraining) {
printf "[%s inner %s] balancing training samples\n", shortClassifierName, currentNestedFold
nestedTrain = balance(nestedTrain)
}
if (balanceTest) {
printf "[%s inner %s] balancing test samples\n", shortClassifierName, currentNestedFold
nestedTest = balance(nestedTest)
}
printf "[%s inner %s] fold: %s bag: %s training size: %d test size: %d\n", shortClassifierName, currentNestedFold, currentFold, (bagCount == 0) ? "none" : currentBag, nestedTrain.numInstances(), nestedTest.numInstances()
start = System.currentTimeMillis()
filteredClassifier.buildClassifier(nestedTrain)
duration = System.currentTimeMillis() - start
durationMinutes = duration / (1e3 * 60)
printf "[%s inner %s] trained in %.2f minutes, evaluating\n", shortClassifierName, currentNestedFold, durationMinutes
outputPrefix = sprintf "validation-%s-%02d-%02d", currentFold, currentNestedFold, currentBag
writer = new PrintWriter(new GZIPOutputStream(new FileOutputStream(new File(classifierDir, outputPrefix + ".csv.gz"))))
header = sprintf "# %s@%s %.2f minutes %s\n", System.getProperty("user.name"), java.net.InetAddress.getLocalHost().getHostName(), durationMinutes, classifierString.join(" ")
writer.write(header)
writer.write("id,label,prediction,fold,nested_fold,bag,classifier\n")
for (instance in nestedTest) {
id = (int) instance.value(nestedTest.attribute(idAttribute))
label = (instance.stringValue(instance.classAttribute()).equals(predictClassValue)) ? 1 : 0
prediction = filteredClassifier.distributionForInstance(instance)[predictClassIndex]
row = sprintf "%s,%s,%f,%s,%s,%s,%s\n", id, label, prediction, currentFold, currentNestedFold, currentBag, shortClassifierName
writer.write(row)
}
writer.flush()
writer.close()
}