-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery.py
61 lines (42 loc) · 1.75 KB
/
query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import json
from collections import defaultdict
from search import ranked_retrieval, okapi_tf, vector_space
from bs4 import BeautifulSoup
import xml.etree.ElementTree as ET
from argparse import ArgumentParser
def extract_queries(file_path):
tree = ET.parse(file_path)
root = tree.getroot()
queries = {}
for element in root:
queries[element.attrib['number']] = element[0].text
return queries
def generate_results(queries, score_function):
result = defaultdict(list)
for key in queries:
scores = ranked_retrieval(queries[key], score_function)
if scores is not None:
# print top 3
for i in range(len(scores)):
#print("[Ranked-Retriever]", key, scores[i]["name"], i+1, scores[i]["score"])
result[key].append({"name": scores[i]["name"], "rank": i+1, "score":scores[i]["score"]})
return result
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--score', dest='score', help='name of scoring function (TF or TF-IDF)',
metavar='SCORE', required=True)
parser.add_argument('--output', dest='output', help='name of the output file',
metavar='OUTPUT_FILE', required=True)
options = parser.parse_args()
score_function = options.score.lower()
if score_function == "okapi-tf":
score_function = okapi_tf
elif score_function == "vector-space":
score_function = vector_space
else:
print('Please select valid score function')
exit(-1)
queries = extract_queries("topics.xml")
result = generate_results(queries, score_function)
output_file = open(options.output, encoding='utf-8', mode='w')
output_file.write(json.dumps(result))