-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim.py
executable file
·306 lines (247 loc) · 10 KB
/
sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/usr/bin/env python3
import argparse
import math
import numpy as np
import logging
import multiprocessing
import sys
import time
import yaml
from robot import Robot
from robot_motion import RobotMotion
from vis import Visualizer
from long_range_message import LongRangeMessage
from sensor_model import SensorModel
parser = argparse.ArgumentParser()
parser.add_argument(
"robot_config",
type=str,
help="Configuration file for the robot."
)
parser.add_argument(
"-r", "--random",
action="store_true",
default=False,
help="Use random number generation rather than a fixed seed."
)
parser.add_argument(
"-d", "--delay",
type=float,
default=0.5,
help="Time to sleep (in seconds) between time steps."
)
parser.add_argument(
"-x", "--headless",
action="store_true",
default=False,
help="Disable visualization, but still write movie."
)
parser.add_argument(
"-t", "--time",
type=int,
default=25,
help="Number of iterations to run the simulator for before exiting. "
" A time of 0 will result in an infinite simulation."
)
parser.add_argument(
"-m", "--multiprocessing",
action="store_true",
default=False,
help="Use multiprocessing during the compute step."
)
parser.add_argument(
"-l", "--loglevel",
type=lambda s: s.upper(),
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
default='DEBUG',
help="Set the logging level"
)
args = parser.parse_args()
def initialize_robots_and_motions(config):
"""Initialize robots and robot motions.
For each robot, a RobotMotion object will be created. The RobotMotion object
will store the ground truth sampled from the mean and covariance specified
in the robot configuration. The Robot will receive the actual mean and
covariance specified in the initialization file. The number of robots will
be determined by the configuration file, and they'll be initialized round
robin from the parameters.
Args:
config: Configuration file.
Returns:
(robots, motions) tuple of type (list of Robots, list of RobotMotions)
"""
num_robots = config['num_robots']
num_parameters = len(config['robot_parameters'])
logging.debug("Initializing %d Robots, RobotMotions from %d parameters",
num_robots, num_parameters)
robots = []
motions = []
for i in range(num_robots):
robot_config = config['robot_parameters'][i % num_parameters].copy()
robot_config['id'] = i
robot_config['sensor_parameters'] = config['sensor_parameters']
robot_config['goal_parameters'] = config['goal_parameters']
motion_config = robot_config.copy()
robot_config.update(config['slam_parameters'])
motion_config.update(config['motion_parameters'])
# Make everything a numpy array.
for key in robot_config:
if type(robot_config[key]) == list:
try:
# We might be able to make it a numpy array.
robot_config[key] = np.array(robot_config[key], dtype=float)
except:
# But if not, leave it as the mixed types array it is.
pass
# Make everything a numpy array.
for key in motion_config:
if type(motion_config[key]) == list:
try:
# We might be able to make it a numpy array.
motion_config[key] = np.array(motion_config[key], dtype=float)
except:
# But if not, leave it as the mixed types array it is.
pass
robots.append(Robot(robot_config))
motions.append(RobotMotion(motion_config))
return robots, motions
def dist(p1, p2):
"""Euclidean distance between two points.
Args:
p1: numpy vector for n-dimensional position.
p2: numpy vector for n-dimensional position.
Returns:
Euclidean distance between p1, p2
"""
return np.linalg.norm(p2 - p1)
def do_long_range_message(config, robot1, robot2, motion1, motion2):
"""Potentially transfer long range messages between robots.
Depending on whether the robots are within thresh distance, they will
exchange long range measurements. The long range measurements are sent in
the form of LongRangeMeasurement objects.
Args:
config: Configuration file.
robot1: First Robot object.
robot2: Second Robot object.
motion1: First RobotMotion object.
motion2: Second RobotMotion object.
"""
# If within long range, exchange long range sensor measurements.
if dist(motion1.pos, motion2.pos) < config['long_thresh']:
# Get message data from each robot.
message1to2_data = robot1.get_long_range_message()
message2to1_data = robot2.get_long_range_message()
# Create the sensor model, which will be used to make all measurements.
sm = SensorModel(config)
# Compute the pairwise sensor measurements between each robot.
num_sensors = len(config['sensor_parameters'])
robot1_measurements = [sm.get_measurement(motion1, i, motion2)
for i in range(num_sensors)]
robot2_measurements = [sm.get_measurement(motion2, i, motion1)
for i in range(num_sensors)]
logging.debug("Robot 1 Measurements: %s", robot1_measurements)
logging.debug("Robot 2 Measurements: %s", robot2_measurements)
# Stuff the data into the LongRangeMessages
message1to2 = LongRangeMessage(message1to2_data, robot2_measurements)
message2to1 = LongRangeMessage(message2to1_data, robot1_measurements)
# And then transmit both of the messages.
# Do it this way to ensure that receiving a message doesn't
# modify some state inside the robot.
robot1.receive_long_range_message(message2to1)
robot2.receive_long_range_message(message1to2)
# indicate whether these two robots communicated
return True
return False
def do_short_range_message(config, robot1, robot2, motion1, motion2):
"""Potentially transfer long range messages between robots.
Depending on whether the robots are within thresh distance, they will
exchange short range measurements. The data exchanged is just what is
returned by get_short_range_message(), with no additional sensor data.
Args:
config: Configuration file.
robot1: First Robot object.
robot2: Second Robot object.
motion1: First RobotMotion object.
motion2: Second RobotMotion object.
"""
# If within short range, exchange more detailed data. Note that
# this allows both long range and short range measurements to be
# sent when the robots are close enough, with the long range
# measurements being sent first.
if dist(motion1.pos, motion2.pos) < config['short_thresh']:
# Get both message first.
message1to2 = robot1.get_short_range_message()
message2to1 = robot2.get_short_range_message()
# And then transmit both of the messages.
robot1.receive_short_range_message(message2to1)
robot2.receive_short_range_message(message1to2)
# indicate whether the two robots communicated
return True
return False
def compute_map(robot):
robot.compute()
return robot
def main():
logging.basicConfig(level=args.loglevel)
if not args.random:
np.random.seed(42)
with open(args.robot_config) as f:
config = yaml.load(f.read())
robots, motions = initialize_robots_and_motions(config)
num_robots = len(robots)
vis = Visualizer(num_robots, config['motion_parameters']['disturbance'],
args.headless)
pool = multiprocessing.Pool()
elapsed = 0
while True:
# create array of pairs of robots that sent messages
long_range_measurements = []
short_range_measurements = []
for i, (robot, motion) in enumerate(zip(robots, motions)):
# Ground truth for the robots will be stored elsewhere.
control_output = robot.get_control_output()
odometry = motion.apply_control_input(control_output)
robot.receive_odometry_message(odometry)
for i in range(num_robots):
for j in range(i+1, num_robots): # No self messages
robot1 = robots[i]
robot2 = robots[j]
motion1 = motions[i]
motion2 = motions[j]
# Potentially exchange long / short messages, and log their results
did_short_range_comm = do_long_range_message(
config, robot1, robot2, motion1, motion2)
did_long_range_comm = do_short_range_message(
config, robot1, robot2, motion1, motion2)
# if we exchanged the messages, add the indices of the pair to the visualizer
if did_short_range_comm:
short_range_measurements.append((i, j))
if did_long_range_comm:
long_range_measurements.append((i, j))
# Let each robot perform some computation at each time step.
start_time = time.time()
if args.multiprocessing:
robots = pool.map(compute_map, robots)
else:
for robot in robots:
robot.compute()
end_time = time.time()
logging.warning("Took %f seconds to perform all computation!",
end_time - start_time)
# Perform visualization update.
vis.update(robots, motions, short_range_measurements,
long_range_measurements)
# As the final step of the loop, update the timestamp for each robot.
for robot in robots:
robot.step(1)
# Potentially exit the simulation.
elapsed += 1
if args.time > 0 and elapsed >= args.time:
sys.exit(0)
# Sleep for some amount of time.
if (args.delay > 0):
time.sleep(args.delay)
elif (args.delay < 0):
input()
if __name__ == "__main__":
main()