generated from jtr13/quarto-edav-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch6_a.html
819 lines (800 loc) · 290 KB
/
ch6_a.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.3.450">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>ch6_a</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="ch6_a_files/libs/clipboard/clipboard.min.js"></script>
<script src="ch6_a_files/libs/quarto-html/quarto.js"></script>
<script src="ch6_a_files/libs/quarto-html/popper.min.js"></script>
<script src="ch6_a_files/libs/quarto-html/tippy.umd.min.js"></script>
<script src="ch6_a_files/libs/quarto-html/anchor.min.js"></script>
<link href="ch6_a_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="ch6_a_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="ch6_a_files/libs/bootstrap/bootstrap.min.js"></script>
<link href="ch6_a_files/libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="ch6_a_files/libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script src="ch6_a_files/libs/htmlwidgets-1.6.4/htmlwidgets.js"></script>
<script src="ch6_a_files/libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<link href="ch6_a_files/libs/leaflet-1.3.1/leaflet.css" rel="stylesheet">
<script src="ch6_a_files/libs/leaflet-1.3.1/leaflet.js"></script>
<link href="ch6_a_files/libs/leafletfix-1.0.0/leafletfix.css" rel="stylesheet">
<script src="ch6_a_files/libs/proj4-2.6.2/proj4.min.js"></script>
<script src="ch6_a_files/libs/Proj4Leaflet-1.0.1/proj4leaflet.js"></script>
<link href="ch6_a_files/libs/rstudio_leaflet-1.3.1/rstudio_leaflet.css" rel="stylesheet">
<script src="ch6_a_files/libs/leaflet-binding-2.2.1/leaflet.js"></script>
<script src="ch6_a_files/libs/leaflet-providers-2.0.0/leaflet-providers_2.0.0.js"></script>
<script src="ch6_a_files/libs/leaflet-providers-plugin-2.2.1/leaflet-providers-plugin.js"></script>
<script src="ch6_a_files/libs/r1crp - 1_c0df6b-1/data_stars_r1crp11cb387.txt"></script>
<script src="ch6_a_files/libs/joda-0.0.1/joda.js"></script>
<script src="ch6_a_files/libs/joda-0.0.1/addImageQuery-bindings.js"></script>
<script src="ch6_a_files/libs/clipboard-0.0.1/setClipboardText.js"></script>
<link href="ch6_a_files/libs/HomeButton-0.0.1/home-button.css" rel="stylesheet">
<script src="ch6_a_files/libs/HomeButton-0.0.1/home-button.js"></script>
<script src="ch6_a_files/libs/HomeButton-0.0.1/easy-button-src.min.js"></script>
<link href="ch6_a_files/libs/mapviewCSS-0.0.1/mapview-popup.css" rel="stylesheet">
<link href="ch6_a_files/libs/mapviewCSS-0.0.1/mapview.css" rel="stylesheet">
</head>
<body class="fullcontent">
<div id="quarto-content" class="page-columns page-rows-contents page-layout-article">
<main class="content quarto-banner-title-block" id="quarto-document-content">
<section id="popular-climate-data-format" class="level2">
<h2 class="anchored" data-anchor-id="popular-climate-data-format">Popular Climate Data Format</h2>
<p>Raster and netCDF are two popular formats used for gridded climate data dissemination and archiving.</p>
<p>We are all too familiar with the raster format (pixelated, georeferenced data) from the previous chapters. NetCDF (Network Common Data Form), is a common data type for multi-layered, structured, gridded dataset. NetCDF is a machine-independent data format and is a community standard for sharing scientific data. A netCDF has certain features which makes it suitable for complex scientific data archiving and sharing, namely,</p>
<div>
<blockquote class="blockquote">
<ul>
<li><p><em>Self-Describing</em>. A netCDF file includes information about the data it contains.</p></li>
<li><p><em>Portable</em>. A netCDF file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.</p></li>
<li><p><em>Scalable</em>. A small subset of a large dataset may be accessed efficiently.</p></li>
<li><p><em>Appendable</em>. Data may be appended to a properly structured netCDF file without copying the dataset or redefining its structure.</p></li>
<li><p><em>Shareable</em>. One writer and multiple readers may simultaneously access the same netCDF file.</p></li>
<li><p><em>Archivable</em>. Access to all earlier forms of netCDF data will be supported by current and future versions of the software.</p>
<p>- From [Unidata | NetCDF (ucar.edu) <a href="https://www.unidata.ucar.edu/software/netcdf/" class="uri">https://www.unidata.ucar.edu/software/netcdf/</a>]</p></li>
</ul>
</blockquote>
</div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-628643623.png" class="img-fluid figure-img" width="750"></p>
<figcaption class="figure-caption">Two widely used formats for gridded climate data storage and dissemination: (<em>Left</em>) Raster and (<em>Right)</em> netCDF</figcaption>
</figure>
</div>
<p>Several open-source plaforms and agencies provide open access to a multitude of gridded land and climate datasets generated using satellites and land-surface/ climate models. In the following sections, we will familiarize ourselves with some of these resources.</p>
</section>
<section id="open-data-platforms" class="level2">
<h2 class="anchored" data-anchor-id="open-data-platforms">Open-Data Platforms</h2>
<section id="climate-data-from-noaa-physical-sciences-lab" class="level3">
<h3 class="anchored" data-anchor-id="climate-data-from-noaa-physical-sciences-lab">Climate Data from NOAA Physical Sciences Lab</h3>
<ul>
<li>Product overview / Data access/ Information: <a href="https://psl.noaa.gov/data/gridded/tables/daily.html" class="uri">https://psl.noaa.gov/data/gridded/tables/daily.html</a></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="https://psl.noaa.gov/data/gridded/tables/daily.html"><img src="images/clipboard-3047835026.png" class="img-fluid figure-img" width="750"></a></p>
<figcaption class="figure-caption">A snapshot of NOAA’s Physical Sciences Lab’s portal for gridded climate data access</figcaption>
</figure>
</div>
<p>This website provides several land and climate variables such as: CPC Global Unified Gauge-Based Analysis of Daily Precipitation, CPC Global Temperature, NCEP/NCAR Reanalysis, Livneh daily CONUS near-surface gridded meteorological and derived hydrometeorological data.</p>
</section>
<section id="daymet-daily-gridded-weather-and-climate-data-for-north-america-1-km-x-1-km" class="level3">
<h3 class="anchored" data-anchor-id="daymet-daily-gridded-weather-and-climate-data-for-north-america-1-km-x-1-km">DAYMET: Daily Gridded Weather and Climate Data for North America [1 km x 1 km]</h3>
<ul>
<li><p>Product overview: <a href="https://daymet.ornl.gov/" class="uri">https://daymet.ornl.gov/</a></p></li>
<li><p>Data access: <a href="https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32" class="uri">https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32</a></p></li>
<li><p>Data information: Refer to the User Guide provided with each dataset.</p></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-471744230.png" class="img-fluid figure-img" width="750"></p>
<figcaption class="figure-caption">Daymet Webpage for Gridded Climate/ Weather Data Access</figcaption>
</figure>
</div>
<p>Daymet provides long-term, continuous, gridded estimates of daily weather and climatology variables at 1 km grid resolution for North America. The dataset is available in several forms, including monthly and annual climate summaries, in addition to the daily and/or sub-daily climate forcings: </p>
<ol type="1">
<li><p><a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1977">Sub-daily Climate Forcings for Puerto Rico</a></p></li>
<li><p><a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1904">Daymet Version 4 Monthly Latency: Daily Surface Weather Data</a></p></li>
<li><p><a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2130">Annual Climate Summaries on a 1-km Grid for North America, Version 4 R1</a></p></li>
<li><p><a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2131">Monthly Climate Summaries on a 1-km Grid for North America, Version 4 R1</a></p></li>
<li><p><a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2132">Station-Level Inputs and Cross-Validation for North America, Version 4 R1</a></p></li>
<li><p><a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2129">Daily Surface Weather Data on a 1-km Grid for North America, Version 4 R1</a></p></li>
</ol>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2129"><img src="images/clipboard-477261930.png" class="img-fluid figure-img" width="450"></a></p>
<figcaption class="figure-caption">Daymet Resource for Daily, 1 km Surface Weather Data Download</figcaption>
</figure>
</div>
</section>
<section id="chirps-global-precipitation-5-km-x-5km" class="level3">
<h3 class="anchored" data-anchor-id="chirps-global-precipitation-5-km-x-5km">CHIRPS Global Precipitation [~5 km x 5km]</h3>
<ul>
<li><p>Product overview: <a href="https://climatedataguide.ucar.edu/climate-data/chirps-climate-hazards-infrared-precipitation-station-data-version-2" class="uri">https://climatedataguide.ucar.edu/climate-data/chirps-climate-hazards-infrared-precipitation-station-data-version-2</a></p></li>
<li><p>Data access: <a href="https://data.chc.ucsb.edu/products/CHIRPS-2.0/" class="uri">https://data.chc.ucsb.edu/products/CHIRPS-2.0/</a></p></li>
<li><p>Data information: <a href="#0">https://data.chc.ucsb.edu/products/CHIRPS-2.0/docs/README-CHIRPS.txt</a></p></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="https://data.chc.ucsb.edu/products/CHIRPS-2.0/"><img src="images/clipboard-1182974535.png" class="img-fluid figure-img" width="450"></a></p>
<figcaption class="figure-caption">Snapshot of the web portal for CHIRPS-2.0 (Climate Hazards InfraRed Precipitation with Station data, version 2) data access</figcaption>
</figure>
</div>
</section>
<section id="gimms-modis-global-ndvi-225-m-x-225-m" class="level3">
<h3 class="anchored" data-anchor-id="gimms-modis-global-ndvi-225-m-x-225-m">GIMMS MODIS Global NDVI [~225 m x 225 m]</h3>
<ul>
<li><p>Product overview: <a href="https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD13Q1" class="uri">https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD13Q1</a></p></li>
<li><p>Data access: <a href="https://gimms.gsfc.nasa.gov/MODIS/" class="uri">https://gimms.gsfc.nasa.gov/MODIS/</a></p></li>
<li><p>Data information: <a href="https://gimms.gsfc.nasa.gov/MODIS/README-global.txt" class="uri">https://gimms.gsfc.nasa.gov/MODIS/README-global.txt</a></p></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="https://gimms.gsfc.nasa.gov/MODIS/"><img src="images/clipboard-3173143460.png" class="img-fluid figure-img" width="750"></a></p>
<figcaption class="figure-caption">Global Inventory Modeling and Mapping Studies (GIMMS) portal for global MODIS (Terra & Aqua) NDVI access</figcaption>
</figure>
</div>
</section>
<section id="climate-prediction-center" class="level3">
<h3 class="anchored" data-anchor-id="climate-prediction-center">Climate Prediction Center</h3>
<ul>
<li>Product overview / Data access/ Information: <a href="https://ftp.cpc.ncep.noaa.gov/GIS/" class="uri">https://ftp.cpc.ncep.noaa.gov/GIS/</a></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="https://ftp.cpc.ncep.noaa.gov/GIS/"><img src="images/clipboard-2345890941.png" class="img-fluid figure-img" width="400"></a></p>
<figcaption class="figure-caption">FTP portal for NOAA’s Climate Prediction Center (CPC) data access</figcaption>
</figure>
</div>
<p>Includes several variables including (but not limited to):</p>
<ul>
<li><p>Climate Prediction Center (CPC) Morphing Technique (MORPH) to form a global, high resolution precipitation analysis</p></li>
<li><p>Joint Agricultural Weather Facility (JAWF)</p></li>
<li><p>Grid Analysis and Display System (GRADS): Global precipitation monitoring and forecasts, Tmax, Tmin</p></li>
<li><p>Input variables for US Drought Monitor (USDM)</p></li>
</ul>
</section>
<section id="soil-texture-for-conus-30-m-x-30-m" class="level3">
<h3 class="anchored" data-anchor-id="soil-texture-for-conus-30-m-x-30-m">Soil Texture for CONUS [30 m x 30 m]</h3>
<p>Probabilistic Remapping of SSURGO (POLARIS) is a database of 30-m probabilistic soil property maps over the Contiguous United States (CONUS) generated by removing artificial discontinuities in Soil Survey Geographic (SSURGO) database. using an artificial intelligence algorithm <span class="citation" data-cites="chaney2016polaris chaney2019polaris">(<a href="#ref-chaney2016polaris" role="doc-biblioref">Chaney et al. 2016</a>, <a href="#ref-chaney2019polaris" role="doc-biblioref">2019</a>)</span>. Estimates provided by POLARIS include soil texture, organic matter, pH, saturated hydraulic conductivity, Brooks-Corey and Van Genuchten water retention curve parameters, bulk density, and saturated water content for six profile depths, namely, 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm. </p>
<ul>
<li><p>Product overview: <a href="https://www.usgs.gov/publications/polaris-properties-30-meter-probabilistic-maps-soil-properties-over-contiguous-united" class="uri">https://www.usgs.gov/publications/polaris-properties-30-meter-probabilistic-maps-soil-properties-over-contiguous-united</a></p></li>
<li><p>Data access: <a href="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/" class="uri">http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/</a></p></li>
<li><p>Data information: <a href="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/Readme" class="uri">http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/Readme</a></p></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/"><img src="images/clipboard-1081448423.png" class="img-fluid figure-img" width="450"></a></p>
</figure>
</div>
</section>
<section id="nasa-aρρeears" class="level3">
<h3 class="anchored" data-anchor-id="nasa-aρρeears"><strong>NASA <em>A</em></strong><em>ρρ</em><strong>EEARS</strong></h3>
<ul>
<li>Product overview / Data access/ Information: <a href="https://appeears.earthdatacloud.nasa.gov/" class="uri">https://appeears.earthdatacloud.nasa.gov/</a></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="https://appeears.earthdatacloud.nasa.gov/"><img src="images/clipboard-2997479403.png" class="img-fluid figure-img" width="750"></a></p>
<figcaption class="figure-caption">Interface for the Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS)</figcaption>
</figure>
</div>
<p>Climate/ land data variables can be extracted for an area or a point using the interactive interface. Click on point samples/ area samples:</p>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-58271291.png" class="img-fluid figure-img" width="400"></p>
<figcaption class="figure-caption">Start a new request</figcaption>
</figure>
</div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-3257417500.png" class="img-fluid figure-img" width="400"></p>
<figcaption class="figure-caption">Select the variable and Lat-Long/ area of interest</figcaption>
</figure>
</div>
</section>
<section id="nasa-earth-data-search" class="level3">
<h3 class="anchored" data-anchor-id="nasa-earth-data-search">NASA Earth Data Search</h3>
<ul>
<li>Product overview / Data access/ Information: <a href="https://search.earthdata.nasa.gov/search" class="uri">https://search.earthdata.nasa.gov/search</a></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><a href="https://search.earthdata.nasa.gov/search"><img src="images/clipboard-1059799726.png" class="img-fluid figure-img" width="750"></a></p>
<figcaption class="figure-caption">Earth Data Search application interface</figcaption>
</figure>
</div>
<section id="bulk-download-order" class="level4">
<h4 class="anchored" data-anchor-id="bulk-download-order">Bulk Download Order</h4>
<p>NASA Earth Data provides customization options for bulk data download. Lets say we are interested in downloading global SMAP Level 3 soil moisture. We start by selecting the product, and specify start/ end date as needed.</p>
<ol type="1">
<li><div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-2012053062.png" class="img-fluid figure-img" width="750"></p>
<figcaption class="figure-caption">Search for the product, click “Download All”. You will be taken to a log-in page.</figcaption>
</figure>
</div>
</div></li>
<li><div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-40460522.png" class="img-fluid figure-img" width="750"></p>
<figcaption class="figure-caption">After logging in, Click “Edit Options”-> “Customize” and select options as needed. Click “Done”.</figcaption>
</figure>
</div>
</div></li>
<li><div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-1173527781.png" class="img-fluid figure-img" width="750"></p>
<figcaption class="figure-caption">Click “Download Data”</figcaption>
</figure>
</div>
</div></li>
<li><div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-2315624312.png" class="img-fluid figure-img" width="750"></p>
<figcaption class="figure-caption">A “Download Status” page will appear. Click on the “.html” link.</figcaption>
</figure>
</div>
</div></li>
<li><div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-32527255.png" class="img-fluid figure-img" width="500"></p>
<figcaption class="figure-caption">Several download options will available. For bulk download, click the link under “Retrieve list of files as a text listing (no html)”</figcaption>
</figure>
</div>
</div></li>
<li><div>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-2725729723.png" class="img-fluid figure-img" width="500"></p>
<figcaption class="figure-caption">You will be able to see the active download links.</figcaption>
</figure>
</div>
</div></li>
</ol>
<p>Copy and Paste these links in any internet download manager (my favorite in Chrono for Google Chrome), Select output location (typically an external hard drive) and let the download begin.</p>
</section>
</section>
</section>
<section id="programmatic-data-acquisition" class="level2">
<h2 class="anchored" data-anchor-id="programmatic-data-acquisition">Programmatic Data Acquisition</h2>
<p>In the HTTP, FTP or HTP links provided before, one can download a file by clicking on the individual hyperlink. Alternatively, we can use <code>download.file</code> function to download the file programmatically in R. This help us by opening the path to automate download and processing of multiple files with minimal supervision.</p>
<section id="downloading-raster-files" class="level3">
<h3 class="anchored" data-anchor-id="downloading-raster-files">Downloading Raster files</h3>
<p>Let us take an example of <code>us_tmax</code> data available at: <u>https://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/</u></p>
<p>Right-click on the raster file for 20240218, and copy the file path. We will then use this link to access the files programmatically using <em>Client URL</em>, or <em>cURL</em> - a utility for transferring data between systems. We will download the raster using <code>download.file</code> to local disk, and saved with a uder-defined name <code>tmax_20240218.tif</code>.</p>
<p><img src="images/clipboard-4016904923.png" class="img-fluid" width="450"></p>
<p>Copied link: <u>https://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/us.tmax_nohads_ll_20240218_float.tif</u></p>
<div class="cell">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Copied path of the raster</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a>data_path <span class="ot"><-</span> <span class="st">"https://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/us_tmax/us.tmax_nohads_ll_20240218_float.tif"</span></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Download the raster using download.file, assign the name tmax_20240218.tif to the downloaded </span></span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">download.file</span>(<span class="at">url =</span> data_path, </span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a> <span class="at">method=</span><span class="st">"curl"</span>,</span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a> <span class="at">destfile =</span> <span class="st">"tmax_20240218.tif"</span>) </span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot downloaded file</span></span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(terra)</span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>tempRas<span class="ot">=</span><span class="fu">rast</span>(<span class="st">"tmax_20240218.tif"</span>) <span class="co"># Import raster to the environment </span></span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>usSHP<span class="ot">=</span>terra<span class="sc">::</span><span class="fu">vect</span>(spData<span class="sc">::</span>us_states) <span class="co"># Shapefile for CONUS</span></span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(tempRas)</span>
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(usSHP, <span class="at">add=</span><span class="cn">TRUE</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<p><img src="ch6_a_files/figure-html/6a1-1.png" class="img-fluid" width="672"></p>
</div>
</div>
<p>Now that we have the <code>tmax_20240218</code> raster, let us extract the values for certain selected locations: s</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Import sample locations from contrasting hydroclimate</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(readxl)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>loc<span class="ot">=</span> <span class="fu">read_excel</span>(<span class="st">"./SampleData-master/location_points.xlsx"</span>)</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(loc)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code># A tibble: 3 × 4
Aridity State Longitude Latitude
<chr> <chr> <dbl> <dbl>
1 Humid Louisiana -92.7 34.3
2 Arid Nevada -116. 38.7
3 Semi-arid Kansas -99.8 38.8</code></pre>
</div>
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Value of the lat & lon of the locations</span></span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a>latlon<span class="ot">=</span>loc[,<span class="dv">3</span><span class="sc">:</span><span class="dv">4</span>] </span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(latlon)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code># A tibble: 3 × 2
Longitude Latitude
<dbl> <dbl>
1 -92.7 34.3
2 -116. 38.7
3 -99.8 38.8</code></pre>
</div>
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Extract time series using "terra::extract"</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>loc_temp<span class="ot">=</span>terra<span class="sc">::</span><span class="fu">extract</span>(tempRas,</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a> latlon, <span class="co">#2-column matrix or data.frame with lat-long</span></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a> <span class="at">method=</span><span class="st">'bilinear'</span>) <span class="co"># Use bilinear interpolation (or ngb) option</span></span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(loc_temp)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code> ID tmax_20240218
1 1 12.58291
2 2 11.52682
3 3 13.41145</code></pre>
</div>
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Add temperature attribute to the data frame as "temp"</span></span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>loc<span class="sc">$</span>temp<span class="ot">=</span>loc_temp<span class="sc">$</span>tmax_20240218</span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(loc)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code># A tibble: 3 × 5
Aridity State Longitude Latitude temp
<chr> <chr> <dbl> <dbl> <dbl>
1 Humid Louisiana -92.7 34.3 12.6
2 Arid Nevada -116. 38.7 11.5
3 Semi-arid Kansas -99.8 38.8 13.4</code></pre>
</div>
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Export the modified data as CSV</span></span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="fu">write.csv</span>(loc, <span class="st">"df_with_temp.csv"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Lets explore raster files for mean clay percentage for top 5 cm soil profile accessible through: <a href="http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/" class="uri">http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/</a>. The link provides rasters for 1x1 degree areal domain.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(spData)</span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Note the spatial extent of Louisiana State. We need corresponding raster files</span></span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="fu">ext</span>(spData<span class="sc">::</span>us_states[spData<span class="sc">::</span>us_states<span class="sc">$</span>NAME<span class="sc">==</span><span class="st">"Louisiana"</span>,]) <span class="co"># ext function gives extent of the rast/vect object</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>SpatExtent : -94.042964, -89.066617, 28.991623, 33.019219 (xmin, xmax, ymin, ymax)</code></pre>
</div>
<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>pth1<span class="ot">=</span><span class="st">"http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat3031_lon-91-90.tif"</span></span>
<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Download the raster using download.file</span></span>
<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="fu">download.file</span>(<span class="at">url =</span> pth1, </span>
<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a> <span class="at">method=</span><span class="st">"curl"</span>,</span>
<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a> <span class="at">destfile =</span> <span class="st">"lat3031_lon-90-89.tif"</span>) </span>
<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="co"># Import the downloaded raster to workspace</span></span>
<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a>r1<span class="ot">=</span><span class="fu">rast</span>(<span class="st">"lat3031_lon-90-89.tif"</span>)</span>
<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a><span class="co"># Fetch shapefile for Louisiana from spData package</span></span>
<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>LAvct<span class="ot">=</span><span class="fu">vect</span>(spData<span class="sc">::</span>us_states[spData<span class="sc">::</span>us_states<span class="sc">$</span>NAME<span class="sc">==</span><span class="st">"Louisiana"</span>,])</span>
<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot downloaded raster against the map of Louisiana. Note that the raster fits 1x1 grid</span></span>
<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(LAvct, <span class="at">col=</span><span class="st">"gray90"</span>)</span>
<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(r1, <span class="at">range=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">100</span>), <span class="at">add=</span><span class="cn">TRUE</span>)</span>
<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a><span class="fu">grid</span>()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<p><img src="ch6_a_files/figure-html/6a3-1.png" class="img-fluid" width="672"></p>
</div>
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Crop raster to smaller region of interest for easy visualization</span></span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co">#~~~ We will crop raster to a user-defined extent</span></span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>r1crp<span class="ot">=</span><span class="fu">crop</span>(r1, <span class="fu">ext</span>(<span class="fu">c</span>(<span class="sc">-</span><span class="dv">91</span>,<span class="sc">-</span><span class="fl">90.8</span>,<span class="dv">30</span>,<span class="fl">30.2</span>))) </span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="co"># Explore a smaller subset of the dataset</span></span>
<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="co">#~~~ Can you identify the Mississipi flood-plain using the clay percentage? </span></span>
<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mapview)</span>
<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="fu">mapview</span>(r1crp, <span class="co"># Raster to be plotted</span></span>
<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a> <span class="at">at=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">10</span>,<span class="dv">20</span>,<span class="dv">30</span>,<span class="dv">40</span>,<span class="dv">50</span>,<span class="dv">60</span>,<span class="dv">75</span>), <span class="co"># Legend breaks</span></span>
<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a> <span class="at">map.types=</span><span class="st">"Esri.WorldImagery"</span>, <span class="co"># Select background map </span></span>
<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a> <span class="at">main=</span><span class="st">"Clay % (0-5 cm profile)"</span>) <span class="co"># Plot title</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<div class="leaflet html-widget html-fill-item" id="htmlwidget-51d10a3f905dcd53a279" style="width:100%;height:464px;"></div>
<script type="application/json" data-for="htmlwidget-51d10a3f905dcd53a279">{"x":{"options":{"minZoom":1,"maxZoom":52,"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}},"preferCanvas":false,"bounceAtZoomLimits":false,"maxBounds":[[[-90,-370]],[[90,370]]]},"calls":[{"method":"addProviderTiles","args":["Esri.WorldImagery","Esri.WorldImagery","Esri.WorldImagery",{"errorTileUrl":"","noWrap":false,"detectRetina":false,"pane":"tilePane"}]},{"method":"addRasterImage","args":["",[[30.20003793890422,-90.99999999999999],[29.99980035366066,-90.79990944514509]],0.8,null,"r1crp - 1","r1crp - 1"]},{"method":"removeLayersControl","args":[]},{"method":"addLayersControl","args":["Esri.WorldImagery","r1crp - 1",{"collapsed":true,"autoZIndex":true,"position":"topleft"}]},{"method":"addControl","args":["","topright","imageValues-r1crp - 1","info legend "]},{"method":"addImageQuery","args":["r1crp - 1",[-90.99999999999999,29.99976000337992,-90.79972206447569,30.20003793890422],"mousemove",7,"Layer"]},{"method":"addLegend","args":[{"colors":["#040404","#3E134D","#84146D","#C4356C","#ED723F","#F8B743","#FFFE9E"],"labels":["0 – 10","10 – 20","20 – 30","30 – 40","40 – 50","50 – 60","60 – 75"],"na_color":"#BEBEBE","na_label":"NA","opacity":1,"position":"topright","type":"bin","title":"r1crp - 1","extra":null,"layerId":null,"className":"info legend","group":"r1crp - 1"}]},{"method":"addScaleBar","args":[{"maxWidth":100,"metric":true,"imperial":true,"updateWhenIdle":true,"position":"bottomleft"}]},{"method":"addHomeButton","args":[-91,29.99999999999665,-90.79999999999933,30.19999999999732,true,"r1crp - 1","Zoom to r1crp - 1","<strong> r1crp - 1 <\/strong>","bottomright"]}],"limits":{"lat":[29.99980035366066,30.20003793890422],"lng":[-90.99999999999999,-90.79990944514509]}},"evals":[],"jsHooks":{"render":[{"code":"function(el, x, data) {\n return (\n function(el, x, data) {\n // get the leaflet map\n var map = this; //HTMLWidgets.find('#' + el.id);\n // we need a new div element because we have to handle\n // the mouseover output separately\n // debugger;\n function addElement () {\n // generate new div Element\n var newDiv = $(document.createElement('div'));\n // append at end of leaflet htmlwidget container\n $(el).append(newDiv);\n //provide ID and style\n newDiv.addClass('lnlt');\n newDiv.css({\n 'position': 'relative',\n 'bottomleft': '0px',\n 'background-color': 'rgba(255, 255, 255, 0.7)',\n 'box-shadow': '0 0 2px #bbb',\n 'background-clip': 'padding-box',\n 'margin': '0',\n 'padding-left': '5px',\n 'color': '#333',\n 'font': '9px/1.5 \"Helvetica Neue\", Arial, Helvetica, sans-serif',\n 'z-index': '700',\n });\n return newDiv;\n }\n\n\n // check for already existing lnlt class to not duplicate\n var lnlt = $(el).find('.lnlt');\n\n if(!lnlt.length) {\n lnlt = addElement();\n\n // grab the special div we generated in the beginning\n // and put the mousmove output there\n\n map.on('mousemove', function (e) {\n if (e.originalEvent.ctrlKey) {\n if (document.querySelector('.lnlt') === null) lnlt = addElement();\n lnlt.text(\n ' lon: ' + (e.latlng.lng).toFixed(5) +\n ' | lat: ' + (e.latlng.lat).toFixed(5) +\n ' | zoom: ' + map.getZoom() +\n ' | x: ' + L.CRS.EPSG3857.project(e.latlng).x.toFixed(0) +\n ' | y: ' + L.CRS.EPSG3857.project(e.latlng).y.toFixed(0) +\n ' | epsg: 3857 ' +\n ' | proj4: +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs ');\n } else {\n if (document.querySelector('.lnlt') === null) lnlt = addElement();\n lnlt.text(\n ' lon: ' + (e.latlng.lng).toFixed(5) +\n ' | lat: ' + (e.latlng.lat).toFixed(5) +\n ' | zoom: ' + map.getZoom() + ' ');\n }\n });\n\n // remove the lnlt div when mouse leaves map\n map.on('mouseout', function (e) {\n var strip = document.querySelector('.lnlt');\n if( strip !==null) strip.remove();\n });\n\n };\n\n //$(el).keypress(67, function(e) {\n map.on('preclick', function(e) {\n if (e.originalEvent.ctrlKey) {\n if (document.querySelector('.lnlt') === null) lnlt = addElement();\n lnlt.text(\n ' lon: ' + (e.latlng.lng).toFixed(5) +\n ' | lat: ' + (e.latlng.lat).toFixed(5) +\n ' | zoom: ' + map.getZoom() + ' ');\n var txt = document.querySelector('.lnlt').textContent;\n console.log(txt);\n //txt.innerText.focus();\n //txt.select();\n setClipboardText('\"' + txt + '\"');\n }\n });\n\n }\n ).call(this.getMap(), el, x, data);\n}","data":null},{"code":"function(el, x, data) {\n return (function(el,x,data){\n var map = this;\n\n map.on('keypress', function(e) {\n console.log(e.originalEvent.code);\n var key = e.originalEvent.code;\n if (key === 'KeyE') {\n var bb = this.getBounds();\n var txt = JSON.stringify(bb);\n console.log(txt);\n\n setClipboardText('\\'' + txt + '\\'');\n }\n })\n }).call(this.getMap(), el, x, data);\n}","data":null}]}}</script>
</div>
</div>
</section>
<section id="raster-mosaic" class="level3">
<h3 class="anchored" data-anchor-id="raster-mosaic">Raster Mosaic</h3>
<p>We note that the raster files in POLARIS are available for a 1x1 areal domain. For an analysis for a large spatial extent, multiple smaller rasters can be stitched together to generate a larger mosaic of rasters. We will use the <code>terra::mosaic</code> function to generate a mosaic of several smaller rasters of percentage clay content in 0-5 cm soil profile in Southeastern Louisiana. This function requires the user to specify the summary function (“sum”, “mean”, “median”, “min”, or “max”) to be applied on the overlapping pixels from 2 or more rasters. Let us download some more rasters from POLARIS and <em>mosaic</em> them together.</p>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/clipboard-3087017181.png" class="img-fluid figure-img" width="300"></p>
<figcaption class="figure-caption">"Beware of the dog" mosaic (Pompeii, Casa di Orfeo) is made of several constituent pieces.</figcaption>
</figure>
</div>
<div class="cell">
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Links to soil texture rasters </span></span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>pth2<span class="ot">=</span><span class="st">"http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat2930_lon-91-90.tif"</span></span>
<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>pth3<span class="ot">=</span><span class="st">"http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat3031_lon-90-89.tif"</span></span>
<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>pth4<span class="ot">=</span><span class="st">"http://hydrology.cee.duke.edu/POLARIS/PROPERTIES/v1.0/clay/mean/0_5/lat3031_lon-92-91.tif"</span></span>
<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a><span class="co"># Download the raster using download.file function</span></span>
<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a><span class="fu">download.file</span>(<span class="at">url =</span> pth2, </span>
<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a> <span class="at">method=</span><span class="st">"curl"</span>,</span>
<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a> <span class="at">destfile =</span> <span class="st">"r2.tif"</span>) </span>
<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a><span class="fu">download.file</span>(<span class="at">url =</span> pth3, </span>
<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a> <span class="at">method=</span><span class="st">"curl"</span>,</span>
<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a> <span class="at">destfile =</span> <span class="st">"r3.tif"</span>)</span>
<span id="cb15-14"><a href="#cb15-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-15"><a href="#cb15-15" aria-hidden="true" tabindex="-1"></a><span class="fu">download.file</span>(<span class="at">url =</span> pth4, </span>
<span id="cb15-16"><a href="#cb15-16" aria-hidden="true" tabindex="-1"></a> <span class="at">method=</span><span class="st">"curl"</span>,</span>
<span id="cb15-17"><a href="#cb15-17" aria-hidden="true" tabindex="-1"></a> <span class="at">destfile =</span> <span class="st">"r4.tif"</span>) </span>
<span id="cb15-18"><a href="#cb15-18" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-19"><a href="#cb15-19" aria-hidden="true" tabindex="-1"></a><span class="co"># Import downloaded files to workspace</span></span>
<span id="cb15-20"><a href="#cb15-20" aria-hidden="true" tabindex="-1"></a>r2<span class="ot">=</span><span class="fu">rast</span>(<span class="st">"r2.tif"</span>)</span>
<span id="cb15-21"><a href="#cb15-21" aria-hidden="true" tabindex="-1"></a>r3<span class="ot">=</span><span class="fu">rast</span>(<span class="st">"r3.tif"</span>)</span>
<span id="cb15-22"><a href="#cb15-22" aria-hidden="true" tabindex="-1"></a>r4<span class="ot">=</span><span class="fu">rast</span>(<span class="st">"r4.tif"</span>)</span>
<span id="cb15-23"><a href="#cb15-23" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-24"><a href="#cb15-24" aria-hidden="true" tabindex="-1"></a><span class="co"># DIY: Plot the downloaded raster against the map of Louisiana</span></span>
<span id="cb15-25"><a href="#cb15-25" aria-hidden="true" tabindex="-1"></a><span class="co"># plot(LAvct)</span></span>
<span id="cb15-26"><a href="#cb15-26" aria-hidden="true" tabindex="-1"></a><span class="co"># plot(r1, range=c(0,100), add=TRUE)</span></span>
<span id="cb15-27"><a href="#cb15-27" aria-hidden="true" tabindex="-1"></a><span class="co"># plot(r2, range=c(0,100), add=TRUE, legend=FALSE)</span></span>
<span id="cb15-28"><a href="#cb15-28" aria-hidden="true" tabindex="-1"></a><span class="co"># plot(r3, range=c(0,100), add=TRUE, legend=FALSE)</span></span>
<span id="cb15-29"><a href="#cb15-29" aria-hidden="true" tabindex="-1"></a><span class="co"># plot(r4, range=c(0,100), add=TRUE, legend=FALSE)</span></span>
<span id="cb15-30"><a href="#cb15-30" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-31"><a href="#cb15-31" aria-hidden="true" tabindex="-1"></a><span class="co"># Raster mosaic</span></span>
<span id="cb15-32"><a href="#cb15-32" aria-hidden="true" tabindex="-1"></a>r_mos<span class="ot">=</span><span class="fu">mosaic</span>(r1,r2,r3,r4, <span class="at">fun=</span><span class="st">"mean"</span>)</span>
<span id="cb15-33"><a href="#cb15-33" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-34"><a href="#cb15-34" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot raster mossaic</span></span>
<span id="cb15-35"><a href="#cb15-35" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(LAvct, <span class="at">main=</span><span class="st">"Clay % [0-5 cm depth]"</span>,<span class="at">axes=</span><span class="cn">FALSE</span>, <span class="at">col=</span><span class="st">"gray90"</span>)</span>
<span id="cb15-36"><a href="#cb15-36" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(r_mos, <span class="at">range=</span><span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">100</span>), <span class="at">add=</span><span class="cn">TRUE</span>)</span>
<span id="cb15-37"><a href="#cb15-37" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(LAvct, <span class="at">add=</span><span class="cn">TRUE</span>)</span>
<span id="cb15-38"><a href="#cb15-38" aria-hidden="true" tabindex="-1"></a><span class="fu">grid</span>()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<p><img src="ch6_a_files/figure-html/6a4-1.png" class="img-fluid" width="672"></p>
</div>
</div>
</section>
<section id="downloading-netcdf" class="level3">
<h3 class="anchored" data-anchor-id="downloading-netcdf">Downloading netCDF</h3>
<p>We will now download a netCDF of global daily precipitation for the year 2023 from CHIRPS, accessible through the link: <u>https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/chirps-v2.0.2023.days_p05.nc</u></p>
<div class="cell">
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Copied path of the raster</span></span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>data_path <span class="ot"><-</span> <span class="st">"https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/chirps-v2.0.2023.days_p05.nc"</span></span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Download the raster using download.file, assign the name "daily_pcp_2023.nc" to the downloaded </span></span>
<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="fu">file.exists</span>(<span class="st">"daily_pcp_2023.nc"</span>)<span class="sc">==</span><span class="cn">FALSE</span>){</span>
<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">download.file</span>(<span class="at">url =</span> data_path, </span>
<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a> <span class="at">method=</span><span class="st">"curl"</span>,</span>
<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a> <span class="at">destfile =</span> <span class="st">"daily_pcp_2023.nc"</span>) </span>
<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot downloaded file</span></span>
<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(terra)</span>
<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a>pcp<span class="ot">=</span><span class="fu">rast</span>(<span class="st">"daily_pcp_2023.nc"</span>) <span class="co"># Import raster to the environment </span></span>
<span id="cb16-16"><a href="#cb16-16" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(pcp) <span class="co"># Notice the attributes (esp. nlyr, i.e. number of layers, unit and time)</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>class : SpatRaster
dimensions : 2000, 7200, 365 (nrow, ncol, nlyr)
resolution : 0.05, 0.05 (x, y)
extent : -180, 180, -50, 50 (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84 (CRS84) (OGC:CRS84)
source : daily_pcp_2023.nc
varname : precip (Climate Hazards group InfraRed Precipitation with Stations)
names : precip_1, precip_2, precip_3, precip_4, precip_5, precip_6, ...
unit : mm/day, mm/day, mm/day, mm/day, mm/day, mm/day, ...
time (days) : 2023-01-01 to 2023-12-31 </code></pre>
</div>
<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(<span class="fu">time</span>(pcp)) <span class="co"># time variable in the netCDF indicating corresponding time of acquisition</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>[1] "2023-01-01" "2023-01-02" "2023-01-03" "2023-01-04" "2023-01-05"
[6] "2023-01-06"</code></pre>
</div>
<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>worldSHP<span class="ot">=</span>terra<span class="sc">::</span><span class="fu">vect</span>(spData<span class="sc">::</span>world) <span class="co"># Shapefile for CONUS</span></span>
<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb20-3"><a href="#cb20-3" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot data for a specific layer</span></span>
<span id="cb20-4"><a href="#cb20-4" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(pcp[[<span class="dv">100</span>]]) <span class="co"># Same as pcp[[which(time(pcp)=="2023-04-10")]]</span></span>
<span id="cb20-5"><a href="#cb20-5" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(worldSHP, <span class="at">add=</span><span class="cn">TRUE</span>)</span>
<span id="cb20-6"><a href="#cb20-6" aria-hidden="true" tabindex="-1"></a><span class="fu">points</span>(latlon, <span class="at">pch=</span><span class="dv">19</span>, <span class="at">col=</span><span class="st">"red"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<p><img src="ch6_a_files/figure-html/6a5-1.png" class="img-fluid" width="672"></p>
</div>
</div>
</section>
</section>
<div id="quarto-appendix" class="default"><section class="quarto-appendix-contents" role="doc-bibliography"><h2 class="anchored quarto-appendix-heading">References</h2><div id="refs" class="references csl-bib-body hanging-indent" role="list">
<div id="ref-chaney2019polaris" class="csl-entry" role="listitem">
Chaney, Nathaniel W, Budiman Minasny, Jonathan D Herman, Travis W Nauman, Colby W Brungard, Cristine LS Morgan, Alexander B McBratney, Eric F Wood, and Yohannes Yimam. 2019. <span>“POLARIS Soil Properties: 30-m Probabilistic Maps of Soil Properties over the Contiguous United States.”</span> <em>Water Resources Research</em> 55 (4): 2916–38.
</div>
<div id="ref-chaney2016polaris" class="csl-entry" role="listitem">
Chaney, Nathaniel W, Eric F Wood, Alexander B McBratney, Jonathan W Hempel, Travis W Nauman, Colby W Brungard, and Nathan P Odgers. 2016. <span>“POLARIS: A 30-Meter Probabilistic Soil Series Map of the Contiguous United States.”</span> <em>Geoderma</em> 274: 54–67.
</div>
</div></section></div></main>
<!-- /main column -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
function tippyHover(el, contentFn) {
const config = {
allowHTML: true,
content: contentFn,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start'
};
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
return note.innerHTML;
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html>