-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlitapp.py
82 lines (66 loc) · 2.84 KB
/
streamlitapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import json
import traceback
import pandas as pd
from dotenv import load_dotenv
from src.mcqgenerator.utils import read_file,get_table_data
import streamlit as st
from langchain.callbacks import get_openai_callback
from src.mcqgenerator.MCQgenerator import generate_evaluate_chain
from src.mcqgenerator.logger import logging
#Reading the json file
with open("/data/venkat/mcqgen/Response.json","r") as file:
RESPONSE_JSON=json.load(file)
st.title("MCQs Creator Application with LangChain 🦜⛓️")
#Create a form using st.form
with st.form("user_inputs"):
#File Upload
uploaded_file=st.file_uploader("Uplaod a PDF or txt file")
#Input Fields
mcq_count=st.number_input("No. of MCQs", min_value=3, max_value=50)
#Subject
subject=st.text_input("Insert Subject",max_chars=20)
# Quiz Tone
tone=st.text_input("Complexity Level Of Questions", max_chars=20, placeholder="Simple")
#Add Button
button=st.form_submit_button("Create MCQs")
# Check if the button is clicked and all fields have input
if button and uploaded_file is not None and mcq_count and subject and tone:
with st.spinner("loading..."):
try:
text=read_file(uploaded_file)
#Count tokens and the cost of API call
with get_openai_callback() as cb:
response=generate_evaluate_chain(
{
"text": text,
"number": mcq_count,
"subject":subject,
"tone": tone,
"response_json": json.dumps(RESPONSE_JSON)
}
)
#st.write(response)
except Exception as e:
traceback.print_exception(type(e), e, e.__traceback__)
st.error("Error")
else:
print(f"Total Tokens:{cb.total_tokens}")
print(f"Prompt Tokens:{cb.prompt_tokens}")
print(f"Completion Tokens:{cb.completion_tokens}")
print(f"Total Cost:{cb.total_cost}")
if isinstance(response, dict):
#Extract the quiz data from the response
quiz=response.get("quiz", None)
if quiz is not None:
table_data=get_table_data(quiz)
if table_data is not None:
df=pd.DataFrame(table_data)
df.index=df.index+1
st.table(df)
#Display the review in atext box as well
st.text_area(label="Review", value=response["review"])
else:
st.error("Error in the table data")
else:
st.write(response)