-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain_tc.py
265 lines (259 loc) · 16.4 KB
/
train_tc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
import os
import sys
import numpy
import torch
import models
import dataset
import utils
import supervision as L
import exporters as IO
import spherical as S360
def parse_arguments(args):
usage_text = (
"Omnidirectional Trinocular Stereo Placement (Up-Down & Left-Right , UD+LR) Training"
)
parser = argparse.ArgumentParser(description=usage_text)
# durations
parser.add_argument('-e',"--epochs", type=int, help="Train for a total number of <epochs> epochs.")
parser.add_argument('-b',"--batch_size", type=int, help="Train with a <batch_size> number of samples each train iteration.")
parser.add_argument("--test_batch_size", default=1, type=int, help="Test with a <batch_size> number of samples each test iteration.")
parser.add_argument('-d','--disp_iters', type=int, default=50, help='Log training progress (i.e. loss etc.) on console every <disp_iters> iterations.')
parser.add_argument('--save_iters', type=int, default=100, help='Maximum test iterations to perform each test run.')
# paths
parser.add_argument("--configuration", required=False, type=str, default='mono', help="Data loader configuration <mono>, <lr>, <ud>, <tc>", choices=['mono', 'lr', 'ud', 'tc'])
parser.add_argument("--test_path", type=str, help="Path to the testing file containing the test set file paths")
parser.add_argument("--save_path", type=str, help="Path to the folder where the models and results will be saved at.")
# model
parser.add_argument("--configuration", required = False, type = str, default='tc', help = "Training configuration <mono>, <lr>, <ud>, <tc>", choices=['mono', 'lr', 'ud', 'tc'])
parser.add_argument('--weight_init', type=str, default="xavier", help='Weight initialization method, or path to weights file (for fine-tuning or continuing training)')
parser.add_argument('--model', default="default", type=str, help='Model selection argument.')
# optimization
parser.add_argument('-o','--optimizer', type=str, default="adam", help='The optimizer that will be used during training.')
parser.add_argument("--opt_state", type=str, help="Path to stored optimizer state file to continue training)")
parser.add_argument('-l','--lr', type=float, default=0.0002, help='Optimization Learning Rate.')
parser.add_argument('-m','--momentum', type=float, default=0.9, help='Optimization Momentum.')
parser.add_argument('--momentum2', type=float, default=0.999, help='Optimization Second Momentum (optional, only used by some optimizers).')
parser.add_argument('--epsilon', type=float, default=1e-8, help='Optimization Epsilon (optional, only used by some optimizers).')
parser.add_argument('--weight_decay', type=float, default=0, help='Optimization Weight Decay.')
# hardware
parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
# other
parser.add_argument('-n','--name', type=str, default='default_name', help='The name of this train/test. Used when storing information.')
parser.add_argument("--visdom", type=str, nargs='?', default=None, const="127.0.0.1", help="Visdom server IP (port defaults to 8097)")
parser.add_argument("--visdom_iters", type=int, default=400, help = "Iteration interval that results will be reported at the visdom server for visualization.")
parser.add_argument("--seed", type=int, default=1337, help="Fixed manual seed, zero means no seeding.")
# network specific params
parser.add_argument("--photo_w", type=float, default=1.0, help = "Photometric loss weight.")
parser.add_argument("--photo_ratio", type=float, default=0.5, help = "Ratio between right (1-ratio) and up (ratio) photometric loss.")
parser.add_argument("--smooth_reg_w", type=float, default=0.1, help = "Smoothness regularization weight.")
parser.add_argument("--ssim_window", type=int, default=7, help = "Kernel size to use in SSIM calculation.")
parser.add_argument("--ssim_mode", type=str, default='gaussian', help = "Type of SSIM averaging (either gaussian or box).")
parser.add_argument("--ssim_std", type=float, default=1.5, help = "SSIM standard deviation value used when creating the gaussian averaging kernels.")
parser.add_argument("--ssim_alpha", type=float, default=0.85, help = "Alpha factor to weight the SSIM and L1 losses, where a x SSIM and (1 - a) x L1.")
parser.add_argument("--pred_bias", type=float, default=5.0, help = "Initialize prediction layers' bias to the given value (helps convergence).")
# details
parser.add_argument("--depth_thres", type=float, default=20.0, help = "Depth threshold - depth clipping.")
parser.add_argument("--baseline", type=float, default=0.26, help = "Stereo baseline distance (in either axis).")
parser.add_argument("--width", type=float, default=512, help = "Spherical image width.")
return parser.parse_known_args(args)
if __name__ == "__main__":
args, unknown = parse_arguments(sys.argv)
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
# device & visualizers
device, visualizers, model_params = utils.initialize(args)
plot_viz = visualizers[0]
img_viz = visualizers[1]
# model
model = models.get_model(args.model, model_params)
utils.init.initialize_weights(model, args.weight_init, pred_bias=args.pred_bias)
if (len(gpus) > 1):
model = torch.nn.parallel.DataParallel(model, gpus)
model = model.to(device)
# optimizer
optimizer = utils.init_optimizer(model, args)
# train data
train_data = dataset.dataset_360D.Dataset360D(args.train_path, " ", args.configuration, [256, 512])
train_data_iterator = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,\
num_workers=args.batch_size // len(gpus) // 4, pin_memory=False, shuffle=True)
# test data
test_data = dataset.dataset_360D.Dataset360D(args.test_path, " ", args.configuration, [256, 512])
test_data_iterator = torch.utils.data.DataLoader(test_data, batch_size=args.test_batch_size,\
num_workers=args.batch_size // len(gpus) // 4, pin_memory=False, shuffle=True)
print("Data size : {0} | Test size : {1}".format(\
args.batch_size * train_data_iterator.__len__(), \
args.test_batch_size * test_data_iterator.__len__()))
# params
width = args.width
height = args.width // 2
photo_params = L.photometric.PhotometricLossParameters(
alpha=args.ssim_alpha, l1_estimator='none', ssim_estimator='none',
ssim_mode=args.ssim_mode, std=args.ssim_std, window=args.ssim_window
)
iteration_counter = 0
# meters
total_loss = utils.AverageMeter()
running_photo_loss_lr = utils.AverageMeter()
running_photo_loss_ud = utils.AverageMeter()
running_depth_smooth_loss = utils.AverageMeter()
# train / test loop
model.train()
plot_viz.config(**vars(args))
for epoch in range(args.epochs):
print("Training | Epoch: {}".format(epoch))
img_viz.update_epoch(epoch)
for batch_id, batch in enumerate(train_data_iterator):
optimizer.zero_grad()
active_loss = torch.tensor(0.0).to(device)
''' Data '''
left_rgb = batch['leftRGB'].to(device)
b, _, __, ___ = left_rgb.size()
expand_size = (b, -1, -1, -1)
sgrid = S360.grid.create_spherical_grid(width).to(device)
uvgrid = S360.grid.create_image_grid(width, height).to(device)
right_rgb = batch['rightRGB'].to(device)
up_rgb = batch['upRGB'].to(device)
left_depth = batch['leftDepth'].to(device)
up_depth = batch['upDepth'].to(device)
right_depth = batch['rightDepth'].to(device)
''' Prediction '''
left_depth_pred = torch.abs(model(left_rgb))
''' Forward Rendering LR '''
disp_lr = torch.cat(
(
S360.derivatives.dphi_horizontal(sgrid, left_depth_pred, args.baseline),
S360.derivatives.dtheta_horizontal(sgrid, left_depth_pred, args.baseline)
),
dim=1
)
right_render_coords = uvgrid + disp_lr
right_render_coords[:, 0, :, :] = torch.fmod(right_render_coords[:, 0, :, :] + width, width)
right_render_coords[torch.isnan(right_render_coords)] = 0.0
right_render_coords[torch.isinf(right_render_coords)] = 0.0
right_rgb_t, right_mask_t = L.splatting.render(left_rgb, left_depth_pred,\
right_render_coords, max_depth=args.depth_thres)
''' Forward Rendering UD '''
disp_ud = torch.cat(
(
torch.zeros_like(left_depth_pred),
S360.derivatives.dtheta_vertical(sgrid, left_depth_pred, args.baseline)
),
dim=1
)
up_render_coords = uvgrid + disp_ud
up_render_coords[torch.isnan(up_render_coords)] = 0.0
up_render_coords[torch.isinf(up_render_coords)] = 0.0
up_rgb_t, up_mask_t = L.splatting.render(left_rgb, left_depth_pred,\
up_render_coords, max_depth=args.depth_thres)
''' Loss LR '''
right_cutoff_mask = (right_depth < args.depth_thres)
attention_weights_lr = S360.weights.phi_confidence(
S360.grid.create_spherical_grid(width)).to(device)
# attention_weights_lr = S360.weights.spherical_confidence(
# S360.grid.create_spherical_grid(width), zero_low=0.001
# ).to(device)
photo_loss_lr = L.photometric.calculate_loss(right_rgb_t, right_rgb, photo_params,
mask=right_cutoff_mask, weights=attention_weights_lr)
active_loss += photo_loss_lr * args.photo_w * (1 - args.photo_ratio)
''' Loss UD '''
up_cutoff_mask = (up_depth < args.depth_thres)
attention_weights_ud = S360.weights.theta_confidence(
S360.grid.create_spherical_grid(width)).to(device)
photo_loss_ud = L.photometric.calculate_loss(up_rgb_t, up_rgb, photo_params,
mask=up_cutoff_mask, weights=attention_weights_ud)
active_loss += photo_loss_ud * args.photo_w * args.photo_ratio
''' Loss Prior (3D Smoothness) '''
left_xyz = S360.cartesian.coords_3d(sgrid, left_depth_pred)
dI_dxyz = S360.derivatives.dV_dxyz(left_xyz)
tc_cuttof_mask = right_cutoff_mask & up_cutoff_mask
guidance_duv = S360.derivatives.dI_duv(left_rgb)
depth_smooth_loss = L.smoothness.guided_smoothness_loss(
dI_dxyz, guidance_duv, tc_cuttof_mask, (1.0 - attention_weights_ud)
* tc_cuttof_mask.type(attention_weights_ud.dtype)
)
active_loss += depth_smooth_loss * args.smooth_reg_w
''' Update Params '''
active_loss.backward()
optimizer.step()
''' Visualize'''
total_loss.update(active_loss)
running_depth_smooth_loss.update(depth_smooth_loss)
running_photo_loss_lr.update(photo_loss_lr)
running_photo_loss_ud.update(photo_loss_ud)
iteration_counter += b
if (iteration_counter + 1) % args.disp_iters <= args.batch_size:
print("Epoch: {}, iteration: {}\nPhotometric (LR-UD): {} - {}\nSmoothness: {}\nTotal average loss: {}\n"\
.format(epoch, iteration_counter, running_photo_loss_lr.avg, \
running_photo_loss_ud.avg, running_depth_smooth_loss.avg, total_loss.avg))
plot_viz.append_loss(epoch + 1, iteration_counter, total_loss.avg, "avg")
plot_viz.append_loss(epoch + 1, iteration_counter, running_photo_loss_lr.avg, "photo_lr")
plot_viz.append_loss(epoch + 1, iteration_counter, running_photo_loss_ud.avg, "photo_ud")
plot_viz.append_loss(epoch + 1, iteration_counter, running_depth_smooth_loss.avg, "smooth")
total_loss.reset()
running_photo_loss_lr.reset()
running_photo_loss_ud.reset()
running_depth_smooth_loss.reset()
if args.visdom_iters > 0 and (iteration_counter + 1) % args.visdom_iters <= args.batch_size:
img_viz.show_separate_images(left_rgb, 'input')
img_viz.show_separate_images(right_rgb, 'right')
img_viz.show_separate_images(up_rgb, 'up')
img_viz.show_map(left_depth_pred, 'depth')
img_viz.show_separate_images(torch.clamp(right_rgb_t, min=0.0, max=1.0), 'recon_lr')
img_viz.show_separate_images(torch.clamp(up_rgb_t, min=0.0, max=1.0), 'recon_ud')
''' Save '''
print("Saving model @ epoch #" + str(epoch))
utils.checkpoint.save_network_state(model, optimizer, epoch,\
args.name + "_model_state", args.save_path)
''' Test '''
print("Testing model @ epoch #" + str(epoch))
model.eval()
with torch.no_grad():
rmse_avg = torch.tensor(0.0).float()
counter = torch.tensor(0.0).float()
for test_batch_id , test_batch in enumerate(test_data_iterator):
left_rgb = test_batch['leftRGB'].to(device)
b, c, h, w = left_rgb.size()
rads = sgrid.expand(b, -1, -1, -1)
uv = uvgrid.expand(b, -1, -1, -1)
left_depth_pred = torch.abs(model(left_rgb))
left_depth = test_batch['leftDepth'].to(device)
left_depth[torch.isnan(left_depth)] = 50.0
left_depth[torch.isinf(left_depth)] = 50.0
mse = (left_depth_pred ** 2) - (left_depth ** 2)
mse[torch.isnan(mse)] = 0.0
mse[torch.isinf(mse)] = 0.0
mask = (left_depth < args.depth_thres).float()
if torch.sum(mask) == 0:
continue
rmse = torch.sqrt(torch.sum(mse * mask) / torch.sum(mask).float())
if not torch.isnan(rmse):
rmse_avg += rmse.cpu().float()
counter += torch.tensor(b).float()
if counter < args.save_iters:
disp = torch.cat(
(
S360.derivatives.dphi_horizontal(rads, left_depth_pred, args.baseline),
S360.derivatives.dtheta_horizontal(rads, left_depth_pred, args.baseline)
), dim=1
)
right_render_coords = uv + disp
right_render_coords[:, 0, :, :] = torch.fmod(right_render_coords[:, 0, :, :] + width, width)
right_render_coords[torch.isnan(right_render_coords)] = 0.0
right_render_coords[torch.isinf(right_render_coords)] = 0.0
right_rgb_t, right_mask_t = L.splatting.render(left_rgb, left_depth_pred, right_render_coords, max_depth=args.depth_thres)
# save
IO.image.save_image(os.path.join(args.save_path,\
str(epoch) + "_" + str(counter) + "_#_left.png"), left_rgb)
IO.image.save_image(os.path.join(args.save_path,\
str(epoch) + "_" + str(counter) + "_#_right_t.png"), right_rgb_t)
IO.image.save_data(os.path.join(args.save_path,\
str(epoch) + "_" + str(counter) + "_#_depth.exr"), left_depth_pred, scale=1.0)
if (counter == 0) or (torch.isnan(rmse_avg) > 0):
print("Error calculating RMSE (val:%f , sum:%d)" % (rmse_avg, counter))
plot_viz.append_loss(epoch + 1, epoch + 1, torch.tensor(0.0), "rmse", mode='test')
else:
rmse_avg /= counter
print("Testing epoch {}: RMSE = {}".format(epoch+1, rmse_avg))
plot_viz.append_loss(epoch + 1, epoch + 1, rmse_avg, "rmse", mode='test')
torch.enable_grad()
model.train()