-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
217 lines (201 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import os
import sys
import argparse
import torch
import torchvision
import models
import utils
import dataset
from supervision import *
from exporters import *
from utils import *
def parse_arguments(args):
usage_text = (
"Deep Depth Denoising Training."
"Usage: python train.py [options],"
" with [options]: (as described below)"
)
parser = argparse.ArgumentParser(description=usage_text)
# durations
parser.add_argument('-e',"--epochs", type = int, help = "Train for a total number of <epochs> epochs.")
parser.add_argument('-b',"--batch_size", type = int, help = "Train with a <batch_size> number of samples each train iteration.")
parser.add_argument("--test_batch_size", default=1, type = int, help = "Test with a <batch_size> number of samples each test iteration.")
parser.add_argument('-d','--disp_iters', type=int, default=50, help='Log training progress (i.e. loss etc.) on console every <disp_iters> iterations.')
parser.add_argument('-c','--checkpoint_iters', type=int, default=1000, help='Save checkpoint (i.e. weights & optimizer) every <checkpoint_iters> iterations.')
parser.add_argument('-t','--test_iters', type=int, default=1000, help='Test model every <test_iters> iterations.')
parser.add_argument('--max_test_iters', type=int, default=100, help='Maximum test iterations to perform each test run.')
# paths
parser.add_argument("--train_path", type = str, help = "Path to the training folder containing the files")
parser.add_argument("--test_path", type = str, help = "Path to the testing folder containing the files")
# model
parser.add_argument('--weight_init', type=str, default="xavier", help='Weight initialization method, or path to weights file (for fine-tuning or continuing training)')
parser.add_argument('--dilation', type=int, default=1, help='Dilation value for bottleneck convolutions')
parser.add_argument('--normalization', type=str, default="elu", help='Choose in-model activation normalization. Supported types elu or batch_norm')
parser.add_argument('--ndf', type=int, default=8, help='Constant values used to define input and output channels at nn layers')
parser.add_argument('--upsample_type', default="nearest", type=str, help='Model selection argument.')
# optimization
parser.add_argument('-o','--optimizer', type=str, default="adam", help='The optimizer that will be used during training.')
parser.add_argument("--opt_state", type = str, help = "Path to stored optimizer state file (for continuing training)")
parser.add_argument('-l','--lr', type=float, default=0.0002, help='Optimization Learning Rate.')
parser.add_argument('-m','--momentum', type=float, default=0.9, help='Optimization Momentum.')
parser.add_argument('--momentum2', type=float, default=0.999, help='Optimization Second Momentum (optional, only used by some optimizers).')
parser.add_argument('--epsilon', type=float, default=1e-8, help='Optimization Epsilon (optional, only used by some optimizers).')
parser.add_argument('--weight_decay', type=float, default=0, help='Optimization Weight Decay.')
# hardware
parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
# other
parser.add_argument('-n','--name', type=str, default='default_name', help='The name of this train/test. Used when storing information.')
parser.add_argument("--device_list",nargs="*", type=str, default = ["M72e","M72h","M72i","M72j"], help = "List of device names to be loaded")
parser.add_argument("--super_list",nargs="*", type=str, default = ["M72e","M72h","M72i","M72j"], help = "List of device names to be used as supervision")
parser.add_argument("--visdom", type=str, nargs='?', default=None, const="127.0.0.1", help = "Visdom server IP (port defaults to 8097)")
parser.add_argument("--visdom_iters", type=int, default=400, help = "Iteration interval that results will be reported at the visdom server for visualization.")
parser.add_argument("--seed", type=int, default=1337, help="Fixed manual seed, zero means no seeding.")
# network specific params
parser.add_argument("--photo_w", type=float, default=0.85, help = "Photometric loss weight.")
parser.add_argument("--depth_reg_w", type=float, default=0.1, help = "Depth regularization weight.")
parser.add_argument("--normal_reg_w", type=float, default=0.05, help = "Surface smoothness weight.")
# data handlers
parser.add_argument("--depth_thres", type=float, default=3.0, help = "Depth threshold - depth clipping.")
return parser.parse_known_args(args)
if __name__ == "__main__":
args, unknown = parse_arguments(sys.argv)
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
device, visualizer, model_params = utils.initialize(args)
# set model type and init weights
model = models.get_model(model_params)
utils.init.initialize_weights(model, args.weight_init)
if (len(gpus) > 1):
model = torch.nn.parallel.DataParallel(model, gpus)
model = model.to(device)
# init optimizer
optimizer = utils.init_optimizer(model, args)
# training data loader
train_data_params = dataset.dataloader.DataLoaderParams(\
root_path=args.train_path, device_list=args.device_list,\
device_repository_path=args.train_path, depth_threshold=args.depth_thres)
train_data_iterator = dataset.dataloader.DataLoad(train_data_params)
train_set = torch.utils.data.DataLoader(train_data_iterator,\
batch_size = args.batch_size, shuffle=True,\
num_workers = args.batch_size // len(gpus), pin_memory=False)
# validation data loader
test_data_params = dataset.dataloader.DataLoaderParams(root_path=args.test_path,\
device_list=["M72j"], device_repository_path=args.train_path,\
depth_threshold=args.depth_thres)
test_data_iterator = dataset.dataloader.DataLoad(test_data_params)
test_set = torch.utils.data.DataLoader(test_data_iterator,\
batch_size = args.test_batch_size, shuffle=True,\
num_workers = args.test_batch_size // len(gpus), pin_memory=False)
print("Data size : {0} | Test size : {1}".format(train_data_iterator.__len__(),test_data_iterator.__len__()))
# loss definition
total_loss = AverageMeter()
running_photo_loss = AverageMeter()
running_depth_reg_loss = AverageMeter()
running_surface_smooth_loss = AverageMeter()
uv_grid = create_image_domain_grid(640, 360).to(device).expand(args.batch_size, -1, -1, -1)
fov_w = fov_weights(uv_grid).to(device).expand(args.batch_size, -1, -1, -1)
# training
model.train()
iteration_counter = 0
for epoch in range(args.epochs):
print("Training | Epoch: {}".format(epoch))
utils.opt.adjust_learning_rate(optimizer, epoch)
for batch_id, batch in enumerate(train_set):
b, c, h, w = next(iter(batch.items()))[1]["depth"].size()
if b < args.batch_size:
continue
# loss init
active_loss = torch.tensor(0.0).to(device)
photo_loss = 0.0
depth_reg_loss = 0.0
normal_loss = 0.0
optimizer.zero_grad()
processed = get_processed_info(batch, model, device,\
args.super_list, threshold=args.depth_thres)
add_3d_info(processed, batch, uv_grid)
add_forward_rendering_info(processed, uv_grid,\
depth_threshold=args.depth_thres, fov_w=fov_w)
if args.photo_w > 0.0:
photo_l, photo_l_map = robust_photometric_supervision_splat(processed)
active_loss += args.photo_w * photo_l
photo_loss += args.photo_w * photo_l
if args.depth_reg_w > 0.0:
d_reg_l, d_reg_l_map = depth_regularisation(processed)
active_loss += args.depth_reg_w * d_reg_l
depth_reg_loss += args.depth_reg_w * d_reg_l
if args.normal_reg_w > 0.0:
add_normal_info(processed)
normal_l, normal_l_map = surface_smoothness_prior(processed)
active_loss += args.normal_reg_w * normal_l
normal_loss += args.normal_reg_w * normal_l
active_loss.backward()
optimizer.step()
# loss update
total_loss.update(active_loss)
running_depth_reg_loss.update(depth_reg_loss)
running_photo_loss.update(photo_loss)
running_surface_smooth_loss.update(normal_loss)
iteration_counter += b
# validation
if (iteration_counter + 1) % args.test_iters <= args.batch_size:
model.eval()
test_loss = 0
counter = 0
with torch.no_grad():
for test_batch_id , test_batch in enumerate(test_set):
datum = next(iter(test_batch.values()))
b, c, h, w = datum["depth"].shape
counter += b
if counter > args.max_test_iters:
break
uv_grid_t = create_image_domain_grid(w, h).to(device)
for attribute in datum:
datum[attribute] = datum[attribute].to(device)
original_depth = datum["depth"]
original_mask, __count = get_mask(original_depth, max_threshold=args.depth_thres)
# predict and mask depth
predicted_depth, _ = model(original_depth, original_mask)
masked_predicted_depth = predicted_depth * original_mask
# save point clouds
intrinsics_inv = datum["intrinsics_inv"]
source_points3d = deproject_depth_to_points(original_depth, uv_grid_t, intrinsics_inv)
predicted_points3d = deproject_depth_to_points(predicted_depth, uv_grid_t, intrinsics_inv)
masked_predicted_points3d = deproject_depth_to_points(masked_predicted_depth, uv_grid_t, intrinsics_inv)
save_ply(os.path.join(args.test_path, str(iteration_counter) + "_original_#.ply"), source_points3d, 1000.0, color='red')
save_ply(os.path.join(args.test_path, str(iteration_counter) + "_denoised_#.ply"), predicted_points3d, 1000.0, color='green')
save_ply(os.path.join(args.test_path, str(iteration_counter) + "_masked_denoised_#.ply"), masked_predicted_points3d, 1000.0, color='blue')
source_n3d = calculate_normals(source_points3d)
masked_predicted_n3d = calculate_normals(masked_predicted_points3d)
save_depth_from_3d(os.path.join(args.test_path, str(iteration_counter) + "_depth_#.png"), source_points3d, 1000.0)
save_normals(os.path.join(args.test_path, str(iteration_counter) + "_normals_#.png"), source_n3d)
save_phong_normals(os.path.join(args.test_path, str(iteration_counter) + "_normals_phong_#.png"), source_n3d)
save_depth_from_3d(os.path.join(args.test_path, str(iteration_counter) + "_depth_dn_#.png"), masked_predicted_points3d, 1000.0)
save_normals(os.path.join(args.test_path, str(iteration_counter) + "_normals_dn_#.png"), masked_predicted_n3d)
save_phong_normals(os.path.join(args.test_path, str(iteration_counter) + "_normals_phong_dn_#.png"), masked_predicted_n3d)
print("Testing | Epoch: {} , iteration {}".format(epoch, iteration_counter))
model.train()
# visualization (visdom)
if (iteration_counter + 1) % args.checkpoint_iters <= args.batch_size:
utils.checkpoint.save_network_state(model, optimizer,epoch,\
args.name + "_model_state_epoch_" + str(epoch), args.test_path)
print("Checkpoint")
if (iteration_counter + 1) % args.disp_iters <= args.batch_size:
print("Epoch: {}, iteration: {}\nPhotometric: {}\nDepth: {}\nSurface: {}\nTotal average loss: {}\n\n"\
.format(epoch, iteration_counter, running_photo_loss.avg, running_depth_reg_loss.avg,\
running_surface_smooth_loss.avg, total_loss.avg))
#loss plots
visualizer.append_loss(epoch + 1, iteration_counter, total_loss.avg, "avg")
visualizer.append_loss(epoch + 1, iteration_counter, running_photo_loss.avg, "photo")
visualizer.append_loss(epoch + 1, iteration_counter, running_depth_reg_loss.avg, "depth")
visualizer.append_loss(epoch + 1, iteration_counter, running_surface_smooth_loss.avg, "normal")
total_loss.reset()
running_photo_loss.reset()
running_depth_reg_loss.reset()
running_surface_smooth_loss.reset()
if args.visdom_iters > 0 and (iteration_counter + 1) % args.visdom_iters <= args.batch_size:
for key in processed.keys():
splat_imgs = processed[key]["color"]["splatted"]
visualizer.show_images(splat_imgs, key + '_splat_img')
splat_depths = processed[key]["depth"]["splatted"]
visualizer.show_map(splat_depths, key + '_splat_depth')
visualizer.show_images(photo_l_map, 'photo_loss_imgs')