-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathinference.py
122 lines (100 loc) · 4.83 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import os
import sys
import argparse
import torch
import models
import utils
import dataset
import importers
from supervision import *
from exporters import *
from importers import *
import datetime
def parse_arguments(args):
usage_text = (
"Depth Denoising method predictions."
"Usage: python inference.py [options],"
" with [options]: (as described below)"
)
parser = argparse.ArgumentParser(description=usage_text)
parser.add_argument("--model_path", type=str , help="Path to saved model to load.")
parser.add_argument("--input_path", type=str, help="Path to files for inference.")
parser.add_argument("--output_path", type=str, help="Path to directory to save the infered files.")
parser.add_argument("--pointclouds", type=bool, default=False, help = "Save original and denoised pointclouds for RealSense input.")
parser.add_argument("--autoencoder", type=bool, default=False, help = "Set model to autoencoder mode (i.e. trained without multi-view supervision, but as a depth map autoencoder).")
parser.add_argument("-g","--gpu", type=str, default="0", help="The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.")
# other
parser.add_argument("--scale", type=float, default="0.001", help="How much meters does one bit represent in the input data.")
return parser.parse_known_args(args)
def run_model(
model_path : str, #path to trained model
input_path : str, #path containing data to be denoised
output_path : str,
device : str, #device on which the network will run
scale : float
):
assert os.path.exists(input_path), "{} does not exist\n".format(input_path)
assert os.path.exists(model_path), "{} does not exist\n".format(model_path)
if not os.path.exists(output_path):
print("{} does not exist,creating\n".format(input_path))
os.makedirs(output_path)
ndf = 16 if args.autoencoder else 8
model_params = {
'width': 640,
'height': 360,
'ndf': ndf,
'dilation': 1,
'norm_type': "elu",
'upsample_type': "nearest"
}
model = models.get_model(model_params).to(device)
utils.init.initialize_weights(model, model_path)
files = [os.path.join(input_path,file) for file in os.listdir(input_path)]
print("{} files loaded".format(len(files)))
uv_grid_t = create_image_domain_grid(model_params['width'], model_params['height'])
if args.pointclouds:
device_repo_path = os.path.join(args.input_path,"device_repository.json")
device_repository = importers.intrinsics.load_intrinsics_repository(device_repo_path)
for file in files:
filename, extension = os.path.basename(file).split('.')
if extension == "json":
continue
depthmap = load_depth(
filename = file,
scale = scale
)
if depthmap.shape[3] != model_params['width'] or depthmap.shape[2] != model_params['height']:
depthmap = crop_depth(# for inference /w InteriorNet (640x480), center cropped to 640x360
filename = file,
scale = scale
)
mask, _ = get_mask(depthmap)
mask, depthmap = mask.to(device), depthmap.to(device)
predicted_depth, _ = model(depthmap, mask)
masked_predicted_depth = predicted_depth * mask
# save denoising depthmap
output_file = os.path.join(output_path, filename + "_denoised." + extension)
save_depth(output_file, masked_predicted_depth, 1/scale)
print("{} denoised depthmap saved.".format(filename))
# save original (noisy) and denoised depthmaps as pointclouds
if args.pointclouds:
device_name = filename.split('_')[1]
_, intrinsics_inv = importers.intrinsics.get_intrinsics(\
device_name, device_repository, scale=2)
source_points3d = deproject_depth_to_points(depthmap.cpu(), uv_grid_t, intrinsics_inv)
save_ply(os.path.join(args.output_path, filename + "_original_#.ply"), source_points3d, 1000.0, color='red')
masked_predicted_points3d = deproject_depth_to_points(masked_predicted_depth.cpu(), uv_grid_t, intrinsics_inv)
save_ply(os.path.join(args.output_path, filename + "_masked_denoised_#.ply"), masked_predicted_points3d, 1000.0, color='blue')
print("{} pointclouds saved.".format(filename))
if __name__ == "__main__":
args, unknown = parse_arguments(sys.argv)
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
device = torch.device("cuda:{}" .format(gpus[0]) if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0 else "cpu")
run_model(
args.model_path,
args.input_path,
args.output_path,
device,
args.scale
)