-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsolver.py
271 lines (218 loc) · 11.3 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from model import Generator, Discriminator
from torch.autograd import Variable
from torchvision.utils import save_image
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import time
import datetime
from sys import exit
from vgg import VGG16FeatureExtractor
from loss import VGGLoss
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
elif classname.find('InstanceNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def r1_reg(d_out, x_in):
# zero-centered gradient penalty for real images
batch_size = x_in.size(0)
grad_dout = torch.autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert(grad_dout2.size() == x_in.size())
reg = 0.5 * grad_dout2.view(batch_size, -1).sum(1).mean(0)
return reg
class Solver(object):
def __init__(self, data_loader, config):
"""Initialize configurations."""
self.data_loader = data_loader
self.config = config
self.build_model(config)
def build_model(self, config):
"""Create a generator and a discriminator."""
self.G = Generator(config.g_conv_dim, config.d_channel, config.channel_1x1) # 2 for mask vector.
self.D = Discriminator(config.crop_size, config.d_conv_dim, config.d_repeat_num)
self.G.apply(weights_init)
self.D.apply(weights_init)
self.G.cuda()
self.D.cuda()
self.g_optimizer = torch.optim.Adam(self.G.parameters(), config.g_lr, [config.beta1, config.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), config.d_lr, [config.beta1, config.beta2])
self.G = nn.DataParallel(self.G)
self.D = nn.DataParallel(self.D)
self.VGGLoss = VGGLoss().eval()
self.VGGLoss.cuda()
self.VGGLoss = nn.DataParallel(self.VGGLoss)
def adv_loss(self, logits, target):
assert target in [1, 0]
targets = torch.full_like(logits, fill_value=target)
loss = F.binary_cross_entropy_with_logits(logits, targets)
return loss
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iters))
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def update_lr(self, g_lr, d_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def denorm(self, x):
"""Convert the range from [-1, 1] to [0, 1]."""
out = (x + 1) / 2
return out.clamp_(0, 1)
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).cuda()
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def train(self):
data_loader = self.data_loader
config = self.config
# Learning rate cache for decaying.
g_lr = config.g_lr
d_lr = config.d_lr
# Label for lsgan
real_target = torch.full((config.batch_size,), 1.).cuda()
fake_target = torch.full((config.batch_size,), 0.).cuda()
criterion = nn.MSELoss().cuda()
# Start training.
print('Start training...')
start_time = time.time()
iteration = 0
num_iters_decay = config.num_epoch_decay * len(data_loader)
for epoch in range(config.num_epoch):
for i, (I_ori, I_gt, I_r, I_s) in enumerate(data_loader):
iteration += i
I_ori = I_ori.cuda(non_blocking=True)
I_gt = I_gt.cuda(non_blocking=True)
I_r = I_r.cuda(non_blocking=True)
I_s = I_s.cuda(non_blocking=True)
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# Compute loss with real images.
I_gt.requires_grad_(requires_grad=True)
out = self.D(I_gt)
# d_loss_real = criterion(out, real_target) * 0.5
d_loss_real = self.adv_loss(out, 1)
d_loss_reg = r1_reg(out, I_gt)
# Compute loss with fake images.
I_fake = self.G(I_r, I_s)
out = self.D(I_fake.detach())
# d_loss_fake = criterion(out, fake_target) * 0.5
d_loss_fake = self.adv_loss(out, 0)
# Backward and optimize.
d_loss = d_loss_real + d_loss_fake + d_loss_reg
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging.
loss = {}
loss['D/loss_real'] = d_loss_real.item()
loss['D/loss_fake'] = d_loss_fake.item()
loss['D/loss_reg'] = d_loss_reg.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
I_gt.requires_grad_(requires_grad=False)
# if (i+1) % config.n_critic == 0:
I_fake, g_loss_tr = self.G(I_r, I_s, IsGTrain=True)
out = self.D(I_fake)
# g_loss_fake = criterion(out, real_target)
g_loss_fake = self.adv_loss(out, 1)
g_loss_rec = torch.mean(torch.abs(I_fake - I_gt)) # Eq.(6)
g_loss_prec, g_loss_style = self.VGGLoss(I_gt, I_fake)
g_loss_prec *= config.lambda_perc
g_loss_style *= config.lambda_style
# Backward and optimize.
g_loss = g_loss_fake + config.lambda_rec * g_loss_rec + config.lambda_tr * g_loss_tr + g_loss_prec + g_loss_style
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_rec'] = g_loss_rec.item()
loss['G/loss_tr'] = g_loss_tr.item()
loss['G/loss_prec'] = g_loss_prec.item()
loss['G/loss_style'] = g_loss_style.item()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % config.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Epoch [{}/{}], Iteration [{}/{}], g_lr {:.5f}, d_lr {:.5f}".format(
et, epoch, config.num_epoch, i+1, len(data_loader),
g_lr, d_lr)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
# Decay learning rates.
if (epoch+1) > config.num_epoch_decay:
g_lr -= (config.g_lr / float(num_iters_decay))
d_lr -= (config.d_lr / float(num_iters_decay))
self.update_lr(g_lr, d_lr)
# print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
# Translate fixed images for debugging.
if (epoch+1) % config.sample_epoch == 0:
with torch.no_grad():
I_fake_ori = self.G(I_ori, I_s)
I_fake_zero = self.G(torch.zeros(I_ori.size()), I_s)
sample_path = os.path.join(config.sample_dir, '{}.jpg'.format(epoch))
I_concat = self.denorm(torch.cat([I_ori, I_gt, I_r, I_fake, I_fake_ori, I_fake_zero], dim=2))
I_concat = torch.cat([I_concat, I_s.repeat(1,3,1,1)], dim=2)
save_image(I_concat.data.cpu(), sample_path)
print('Saved real and fake images into {}...'.format(sample_path))
G_path = os.path.join(config.model_save_dir, '{}-G.ckpt'.format(epoch+1))
torch.save(self.G.state_dict(), G_path)
print('Saved model checkpoints into {}...'.format(config.model_save_dir))
def test(self):
"""Translate images using StarGAN trained on a single dataset."""
# Load the trained generator.
self.restore_model(self.test_iters)
# Set data loader.
if self.dataset == 'CelebA':
data_loader = self.celeba_loader
elif self.dataset == 'RaFD':
data_loader = self.rafd_loader
with torch.no_grad():
for i, (x_real, c_org) in enumerate(data_loader):
# Prepare input images and target domain labels.
x_real = x_real.to(self.device)
c_trg_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs)
# Translate images.
x_fake_list = [x_real]
for c_trg in c_trg_list:
x_fake_list.append(self.G(x_real, c_trg))
# Save the translated images.
x_concat = torch.cat(x_fake_list, dim=3)
result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i+1))
save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(result_path))