-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathsave_full_model.py
184 lines (161 loc) · 8.93 KB
/
save_full_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import sys
import cv2
import time
import argparse
import numpy as np
import tensorflow as tf
import skimage.measure
from net.vqvae import vq_encoder_spec, vq_decoder_spec
from net.structure_generator import structure_condition_spec, structure_pixelcnn_spec
from net.texture_generator import texture_generator_spec, texture_discriminator_spec
import net.nn as nn
# -----------------------------------------------------------------------------
parser = argparse.ArgumentParser()
# Data
parser.add_argument('--checkpoint_dir', default='model_logs/', type=str,
help='directory of tensorflow checkpoint.')
parser.add_argument('--structure_generator_dir', type=str, default='/gdata/vqvae-inpainting/20200821-030240_celebahq_StructureGenerator',
help='pre-trained structure generator is given here.')
parser.add_argument('--texture_generator_dir', type=str, default='/gdata/vqvae-inpainting/20200819-025515_celebahq_TextureGenerator',
help='pre-trained texture generator is given here.')
# Architecture
parser.add_argument('--image_size', type=int, default=256,
help='provide square images of this size.')
parser.add_argument('--nr_channel_vq', type=int, default=128,
help='number of channels in VQVAE.')
parser.add_argument('--nr_res_block_vq', type=int, default=2,
help='number of residual blocks in VQVAE.')
parser.add_argument('--nr_res_channel_vq', type=int, default=64,
help='number of channels in the residual block in VQVAE.')
parser.add_argument('--nr_channel_s', type=int, default=128,
help='number of channels in structure pixelcnn.')
parser.add_argument('--nr_res_channel_s', type=int, default=128,
help='number of channels in the residual block in structure pixelcnn.')
parser.add_argument('--nr_resnet_s', type=int, default=20,
help='number of residual blocks in structure pixelcnn.')
parser.add_argument('--nr_resnet_out_s', type=int, default=20,
help='number of output residual blocks in structure pixelcnn.')
parser.add_argument('--nr_attention_s', type=int, default=4,
help='number of attention blocks in structure pixelcnn.')
parser.add_argument('--nr_head_s', type=int, default=8,
help='number of attention heads in attention blocks.')
parser.add_argument('--nr_channel_cond_s', type=int, default=32,
help='number of channels in structure condition network.')
parser.add_argument('--nr_res_channel_cond_s', type=int, default=32,
help='number of channels in the residual block of structure condition network.')
parser.add_argument('--resnet_nonlinearity', type=str, default='concat_elu',
help='nonlinearity in structure generator. One of "concat_elu", "elu", "relu". ')
parser.add_argument('--nr_channel_gen_t', type=int, default=64,
help='number of channels in texture generator.')
parser.add_argument('--nr_channel_dis_t', type=int, default=64,
help='number of channels in texture discriminator.')
# Vector quantizer
parser.add_argument('--embedding_dim', type=int, default=64,
help='number of the dimensions of embeddings in vector quantizer.')
parser.add_argument('--num_embeddings', type=int, default=512,
help='number of embeddings in vector quantizer.')
parser.add_argument('--commitment_cost', type=float, default=0.25,
help='weight of commitment loss in vector quantizer.')
parser.add_argument('--decay', type=float, default=0.99,
help='decay of EMA updates in vector quantizer.')
# EMA setting
parser.add_argument('--ema_decay', type=float, default=0.9997,
help='decay rate of EMA in validation.')
args = parser.parse_args()
print('------------ Options -------------')
for k, v in sorted(vars(args).items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
################### Build structure generator & texture generator ###################
# Create VQVAE network
vq_encoder = tf.make_template('vq_encoder', vq_encoder_spec)
vq_encoder_opt = {'nr_channel': args.nr_channel_vq,
'nr_res_block': args.nr_res_block_vq,
'nr_res_channel': args.nr_res_channel_vq,
'embedding_dim': args.embedding_dim,
'num_embeddings': args.num_embeddings,
'commitment_cost': args.commitment_cost,
'decay': args.decay}
vq_decoder = tf.make_template('vq_decoder', vq_decoder_spec)
vq_decoder_opt = {'nr_channel': args.nr_channel_vq,
'nr_res_block': args.nr_res_block_vq,
'nr_res_channel': args.nr_res_channel_vq,
'embedding_dim': args.embedding_dim}
# Create structure generator
structure_condition = tf.make_template('structure_condition', structure_condition_spec)
structure_condition_opt = {'nr_channel': args.nr_channel_cond_s,
'nr_res_channel': args.nr_res_channel_cond_s,
'resnet_nonlinearity': args.resnet_nonlinearity}
structure_pixelcnn = tf.make_template('structure_pixelcnn', structure_pixelcnn_spec)
structure_pixelcnn_opt = {'nr_channel': args.nr_channel_s,
'nr_res_channel': args.nr_res_channel_s,
'nr_resnet': args.nr_resnet_s,
'nr_out_resnet': args.nr_resnet_out_s,
'nr_attention': args.nr_attention_s,
'nr_head': args.nr_head_s,
'resnet_nonlinearity': args.resnet_nonlinearity,
'num_embeddings': args.num_embeddings}
# Create texture generator
texture_generator = tf.make_template('texture_generator', texture_generator_spec)
texture_generator_opt = {'nr_channel': args.nr_channel_gen_t}
texture_discriminator = tf.make_template('texture_discriminator', texture_discriminator_spec)
texture_discriminator_opt = {'nr_channel': args.nr_channel_dis_t}
# Full model
img_ph = tf.placeholder(tf.float32, shape=(1, args.image_size, args.image_size, 3))
mask_ph = tf.placeholder(tf.float32, shape=(1, args.image_size, args.image_size, 1))
e_sample = tf.placeholder(tf.float32, shape=(1, args.image_size//8, args.image_size//8, args.embedding_dim))
h_sample = tf.placeholder(tf.float32, shape=(1, args.image_size//8, args.image_size//8, 8*args.nr_channel_cond_s))
batch_pos = img_ph
mask = mask_ph
masked = batch_pos * (1. - mask)
enc_gt = vq_encoder(batch_pos, is_training=False, **vq_encoder_opt)
dec_gt = vq_decoder(enc_gt['quant_t'], enc_gt['quant_b'], **vq_decoder_opt)
cond_masked = structure_condition(masked, mask, **structure_condition_opt)
pix_out = structure_pixelcnn(e_sample, h_sample, dropout_p=0., **structure_pixelcnn_opt)
gen_out = texture_generator(masked, mask, e_sample, **texture_generator_opt)
dis_out = texture_discriminator(tf.concat([batch_pos, mask], axis=3), **texture_discriminator_opt)
# Variables to restore
ema = tf.train.ExponentialMovingAverage(decay=args.ema_decay)
structure_generator_params = []
for v in tf.trainable_variables():
if 'structure' in v.name:
structure_generator_params.append(v)
variables_to_restore = ema.variables_to_restore(moving_avg_variables=structure_generator_params)
structure_variables_to_restore = {}
else_variables_to_restore = {}
for item in variables_to_restore:
if 'structure' in item:
structure_variables_to_restore[item] = variables_to_restore[item]
else:
else_variables_to_restore[item] = variables_to_restore[item]
################### Evaluate test images ###################
# Create a saver to restore structure generator
restore_structure_saver = tf.train.Saver(structure_variables_to_restore)
# Create a saver to restore VQVAE & texture generator
restore_else_saver = tf.train.Saver(else_variables_to_restore)
# Create a saver to save full model
saver = tf.train.Saver()
# TF session
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Restore structure generator
ckpt = tf.train.get_checkpoint_state(args.structure_generator_dir)
if ckpt and ckpt.model_checkpoint_path:
restore_structure_saver.restore(sess, ckpt.model_checkpoint_path)
print('Structure generator restored ...')
else:
print('Restore structure generator failed! EXIT!')
sys.exit()
# Restore VQVAE & texture generator
ckpt = tf.train.get_checkpoint_state(args.texture_generator_dir)
if ckpt and ckpt.model_checkpoint_path:
restore_else_saver.restore(sess, ckpt.model_checkpoint_path)
print('VQVAE & texture generator restored ...')
else:
print('Restore VQVAE & texture generator failed! EXIT!')
sys.exit()
# Save full model
checkpoint_path = os.path.join(args.checkpoint_dir, 'model.ckpt')
saver.save(sess, checkpoint_path)
print('Full model saved.')
sys.stdout.flush()