diff --git a/cas/circuit.py b/cas/circuit.py index b89e923..613ec37 100644 --- a/cas/circuit.py +++ b/cas/circuit.py @@ -14,7 +14,7 @@ import scipy.sparse.linalg as sprsalg from scipy import sparse, interpolate import lmfit - +from itertools import combinations from cas.utils import multi_krond, multi_krons, basis_vec, _b from cas.elements import CSFQ, Coupler from cas.utils import e_j, e_c, e_l @@ -153,12 +153,15 @@ def __init__(self, elements, mutual_mat, trunc_vec): for element in self.elements: element.re_init() + # create a list of tuples containing all possible qubit pairs + self.coupling_pairs = list(combinations(range(len(self.qubit_indices)),2)) # define class attributes that can be calculated later self.low_e_dict = {} self.low_pauli_dict = {} self.low_p0_dict = {} self.hq = 0 self.ising_sw_dict = {} + self.ising_all_sw_dict = {} self.ising_bo_dict = {} self.ising_pwsw_dict = {} self.custom_flux_num = {} @@ -447,7 +450,7 @@ def calculate_ising_sw(self, index_list): return ising.real - def get_ising_sw(self, phi_dict, verbose=False, sparse_htot=True): + def get_ising_sw(self, phi_dict, verbose=False, sparse_htot=True, XX_YY=False): """Calculates the ising coefficients of the circuit along an anneal. Uses the full SW method. @@ -472,7 +475,18 @@ def get_ising_sw(self, phi_dict, verbose=False, sparse_htot=True): a dictionary of ising coefficients. Keys are "x_i", "z_i", and "zz_i,j", where i abs(phi_z_cutoff): + warnings.warn("Maximum allowed Phi_z for qubit {0} is {1:.4f} x 2π".format(i,phi_z_cutoff/2/np.pi)) + + pts = phi_dict["points"] phi_x_all = np.array( [phi_dict["phix_" + str(i)] for i in range(self.total_elements)] @@ -491,6 +505,11 @@ def get_ising_sw(self, phi_dict, verbose=False, sparse_htot=True): index_1 = np.argwhere(self.qubit_indices == index_of_coupled[1])[0, 0] self.ising_sw_dict["zz_" + str(index_0) + "," + str(index_1)] = np.zeros(pts) + if XX_YY == True: + self.ising_sw_dict["xx_" + str(index_0) + "," + + str(index_1)] = np.zeros(pts) + self.ising_sw_dict["yy_" + str(index_0) + "," + + str(index_1)] = np.zeros(pts) # calculate the full SW for p in range(pts): @@ -528,9 +547,112 @@ def get_ising_sw(self, phi_dict, verbose=False, sparse_htot=True): ising_index[index_0], ising_index[index_1] = 1, 1 self.ising_sw_dict["zz_" + str(index_0) + ',' + str(index_1)][p] = \ self.calculate_ising_sw(3 * ising_index) + if XX_YY == True: + self.ising_sw_dict["xx_" + str(index_0) + ',' + str(index_1)][p] = \ + self.calculate_ising_sw(1 * ising_index) + self.ising_sw_dict["yy_" + str(index_0) + ',' + str(index_1)][p] = \ + self.calculate_ising_sw(2 * ising_index) return copy.deepcopy(self.ising_sw_dict) + def get_ising_sw_ho(self, phi_dict, verbose=False, sparse_htot=True): + """Calculates all the ising coefficients of the circuit along an anneal. + Calculates ZZ coupling between any pair of qubits including higher orders (ho) + Uses the full SW method. + + Arguments + --------- + phi_dict : dictionary + a dictionary of circuit fluxes. Keys are "phix_i" and "phiz_i" where + i is the index of the circuit element. for each key there's an array + of circuit fluxes during the anneal. + verbose : bool + whether to show the progress or not. + default : False + sparse_htot : bool + Whether to calculate eigenvectors of h_tot using sparse matrix + or dense. For some geometries sparse fails, example is + FM triangle with the same parameters (degenerate) + default is True + + Returns + ------- + ising_sw_dict : dictionary + a dictionary of ising coefficients. Keys are "x_i", "z_i", + "xx_i,j", "yy_i,j", "zz_i,j", where i abs(phi_z_cutoff): + warnings.warn("Maximum allowed Phi_z for qubit {0} is {1:.4f} x 2π".format(i,phi_z_cutoff/2/np.pi)) + + + pts = phi_dict["points"] + phi_x_all = np.array( + [phi_dict["phix_" + str(i)] for i in range(self.total_elements)] + ) + phi_z_all = np.array( + [phi_dict["phiz_" + str(i)] for i in range(self.total_elements)] + ) + # create the empty dictionary + self.ising_all_sw_dict["points"] = pts + for i in range(len(self.qubit_indices)): + self.ising_all_sw_dict["x_" + str(i)] = np.zeros(pts) + self.ising_all_sw_dict["z_" + str(i)] = np.zeros(pts) + + + for (i,el) in enumerate(self.coupling_pairs): + index_0 = el[0] + index_1 = el[1] + self.ising_all_sw_dict["zz_" + str(index_0) + "," + + str(index_1)] = np.zeros(pts) + + # calculate the full SW + for p in range(pts): + if verbose: + print( + "Calculating full SW for schedule point", + p + 1, + "/", + pts, + end="\x1b[1K\r", + ) + + self.calculate_quantum( + phi_x_all[:, p], phi_z_all[:, p], sw=True, sparse_htot=sparse_htot + ) + # save single qubit terms + for i in range(len(self.qubit_indices)): + ising_index = basis_vec(i, len(self.qubit_indices)).astype(int) + self.ising_all_sw_dict["x_" + str(i)][p] = self.calculate_ising_sw( + 1 * ising_index + ) + self.ising_all_sw_dict["z_" + str(i)][p] = self.calculate_ising_sw( + 3 * ising_index + ) + + # save interaction terms + + for (i,el) in enumerate(self.coupling_pairs): + index_0 = el[0] + index_1 = el[1] + + ising_index = np.zeros(len(self.qubit_indices), dtype=int) + #print(index_0, index_1, ising_index) + ising_index[index_0], ising_index[index_1] = 1, 1 + + self.ising_all_sw_dict["zz_" + str(index_0) + ',' + str(index_1)][p] = \ + self.calculate_ising_sw(3 * ising_index) + + return copy.deepcopy(self.ising_all_sw_dict) + + + def _get_single_qubit_ising(self, phi_dict, verbose=False): """Calculates the ising coefficients for individual isolated qubits. Qubits are loaded but NOT interacting with others. @@ -896,7 +1018,7 @@ def _get_pwsw_coupling( return ising.real - def _get_coupler_zz_pwsw(self, phi_dict, verbose=False): + def _get_coupler_zz_pwsw(self, phi_dict, verbose=False, XX_YY=False): """Calculates the ZZ interaction Ising coefficients between qubits using pair-wise Schrieffer-Wolff method. @@ -920,6 +1042,9 @@ def _get_coupler_zz_pwsw(self, phi_dict, verbose=False): pts = phi_dict["points"] for i, coupler_index in enumerate(self.coupler_indices): zz_list = np.zeros(pts) + if XX_YY == True: + xx_list = np.zeros(pts) + yy_list = np.zeros(pts) if verbose: print( "calculating coupling strength for coupler", @@ -955,15 +1080,39 @@ def _get_coupler_zz_pwsw(self, phi_dict, verbose=False): 3, 3, ) + if XX_YY == True: + xx_list[p] = self._get_pwsw_coupling( + index_of_coupled[0], + coupler_index, + index_of_coupled[1], + phi_x_list, + phi_z_list, + 1, + 1, + ) + yy_list[p] = self._get_pwsw_coupling( + index_of_coupled[0], + coupler_index, + index_of_coupled[1], + phi_x_list, + phi_z_list, + 2, + 2, + ) index_0 = np.argwhere(self.qubit_indices == index_of_coupled[0])[0, 0] index_1 = np.argwhere(self.qubit_indices == index_of_coupled[1])[0, 0] self.ising_pwsw_dict["zz_" + str(index_0) + ',' + str(index_1)] = zz_list + if XX_YY == True: + self.ising_pwsw_dict["xx_" + str(index_0) + ',' + + str(index_1)] = xx_list + self.ising_pwsw_dict["yy_" + str(index_0) + ',' + + str(index_1)] = yy_list return self.ising_pwsw_dict - def get_ising_pwsw(self, phi_dict, verbose=False): + def get_ising_pwsw(self, phi_dict, verbose=False, XX_YY = False): """Calculates all the Ising coefficients of the system using pair-wise Schrieffer-Wolff method. @@ -983,9 +1132,17 @@ def get_ising_pwsw(self, phi_dict, verbose=False): a dictionary of ising coefficients. Keys are "x_i", "z_i", where i are indexes of qubits from 0 to len(qubit_indices) For each key there is an array of coefficients during the anneal. + + Put a warning for the value of phi_z which is not allowed. + Uses CSFQ.get_phi_z_cutoff """ + for (i,idx) in enumerate(self.qubit_indices): + phi_z_cutoff = self.elements[idx].get_phi_z_cutoff() + if abs(np.max(phi_dict["phiz_" + str(idx)]))> abs(phi_z_cutoff): + warnings.warn("Maximum allowed Phi_z for qubit {0} is {1:.4f} x 2π".format(i,phi_z_cutoff/2/np.pi)) + self.ising_pwsw_dict = self._get_single_qubit_ising(phi_dict, verbose=verbose) - _ = self._get_coupler_zz_pwsw(phi_dict, verbose=verbose) + _ = self._get_coupler_zz_pwsw(phi_dict, verbose=verbose, XX_YY=XX_YY) self.ising_pwsw_dict["points"] = phi_dict["points"] return copy.deepcopy(self.ising_pwsw_dict) @@ -1775,6 +1932,7 @@ def get_ips(self): return [ip_dict[str(i)] for i in self.qubit_indices] + def get_povms(self, delta_i=10): """Calculates POVM operator for measuring probability of right circulating current, M_r. diff --git a/cas/elements.py b/cas/elements.py index 8d9c535..84350b5 100644 --- a/cas/elements.py +++ b/cas/elements.py @@ -341,6 +341,41 @@ def get_povm(self, phi_x, phi_z, delta_i=10): m_right = eig_vecs @ np.diag(f_filter(eig_vals)) @ eig_vecs.conj().T return sparse.csr_matrix(m_right) + def get_phi_z_cutoff(self): + """Here we calculate the upper limit of phi_z above which + the first two eigenstates would be locailized in the same well + and the persistent currents in low energy subspace would have two lowest + eigenvalues with the same sign. Hence PC measurement would not be possible. + Refer to discussion on page 2 of arXiv:2103.06461v1""" + + num_pts = 200 + phix_val = 2*np.pi + """ We could take any value of phix_val in the flux qubit regime since + phix_val would not have any effect on get_phi_z_cutoff + """ + phi_z_cutoff = None + phi_z_list = np.linspace(0.0, 0.05, num_pts)*2*np.pi + for (i,phiz_val) in enumerate(phi_z_list): + ham = self.get_h(phix_val, phiz_val) + ip = self.get_ip(phix_val, phiz_val) + eign_e, eign_v = sprsalg.eigsh(ham, k=2, which="SA", v0=basis_vec(0, self.nmax)) + sort_index = np.argsort(eign_e) + eign_e = eign_e[sort_index] + eign_v = eign_v[:, sort_index] + ip_low_e = eign_v.T.conj() @ ip @ eign_v + ip_low_e = (ip_low_e + ip_low_e.conj().T) / 2 # assure hermitianity + eig_vals, u_vec = np.linalg.eigh(ip_low_e) + + if (np.sign(eig_vals[0])==np.sign(eig_vals[1])): + phi_z_cutoff = phiz_val + break + + if phi_z_cutoff==None: + phi_z_cutoff = phi_z_list[-1] + + return phi_z_cutoff + + def get_ising(self, phi_x, phi_z): """Calculates the Ising coefficients for single qubit. See arXiv:1912.00464 for more details. diff --git a/docs/examples/higher_order_and_other_couplings.ipynb b/docs/examples/higher_order_and_other_couplings.ipynb new file mode 100644 index 0000000..a8af646 --- /dev/null +++ b/docs/examples/higher_order_and_other_couplings.ipynb @@ -0,0 +1,649 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Converting between Ising and flux schedules for multiqubit systems" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import scipy as sc\n", + "import matplotlib.pyplot as plt\n", + "import cas as cas\n", + "import importlib\n", + "import pickle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook includes examples on how to calculate Ising schedules for given fluxes, and how to calculate fluxes for given Ising schedules." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we consider a chain of two qubit that are coupled via two tunable couplers and another chain of two qubits that are coupled via another Qubit (CSFQ).\n", + "First, let us create the qubit, coupler and Qubit as a coupler objects, using typical parameters of Indus.\n", + "Note that here we use symmetric junctions with `d=0`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "i_c = 230; c_shunt = 50; c_z = 4.4; lq = 480; alpha = 0.4; d = 0.0\n", + "qubit0 = cas.CSFQ(i_c, c_shunt, c_z, lq, alpha, d, 5, 10, 10)\n", + "qubit1 = cas.CSFQ(i_c, c_shunt, c_z, lq, alpha, d, 5, 10, 10)\n", + "qubit2 = cas.CSFQ(i_c, c_shunt, c_z, lq, alpha, d, 5, 10, 10)\n", + "\n", + "i_sigma = 565; c_sigma = 11; lc = 580; d = 0.0\n", + "coupler01 = cas.Coupler(i_sigma, c_sigma, lc, d)\n", + "coupler12 = cas.Coupler(i_sigma, c_sigma, lc, d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us define `elements1` for the chain with a coupler and `elements2` for the chain with a qubit as a coupler" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "elements = [qubit0, coupler01, qubit1, coupler12, qubit2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Having our qubits and coupler in this list, we will now have to set the mutuals between them to construct the mutual matrix `m_mat` between them.\n", + "For that, if `elements[i]` and `elements[j]` circuit elements are coupled via a mutual inductance of `m`, then for the mutual matrix we should have `m_mat[i, j] = m_mat[j, i] = -m` (notice the negative sign).\n", + "Note that the size of (both of axis of the) mutual matrix is the same as the size of the `elements`.\n", + "Therefore for a chain configuration we have:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "m = 65; m_mat = np.zeros((5, 5));\n", + "\n", + "m_mat[0, 1] = m; m_mat[1, 2] = m; m_mat[2, 3] = m; m_mat[3, 4] = m;\n", + "\n", + "m_mat = -(m_mat + m_mat.T)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -0., -65., -0., -0., -0.],\n", + " [-65., -0., -65., -0., -0.],\n", + " [ -0., -65., -0., -65., -0.],\n", + " [ -0., -0., -65., -0., -65.],\n", + " [ -0., -0., -0., -65., -0.]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "m_mat" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The last part is to choose a truncation size for the circuit elements.\n", + "For the couplers we can get away with keeping less number of levels but when we use qubit as coupler, then we should in principle keep same number of levels for all the circuit elments. But here let us first keep these to be same and see if it makes any difference." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "trunc_vec = np.array([6, 3, 6, 3, 6])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have now all the required elements to create our circuit object which we'll use for all the calculations" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "circuit = cas.AnnealingCircuit(elements, m_mat, trunc_vec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating Ising schedules for given circuit biases" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To calculate the schedules using the circuit biases, we first have to construct a dictionary of the circuit fluxes.\n", + "This dictionary will have a key named `points` which simply is the number of points used for the flux schedules.\n", + "For circuit element i (`elements[i]`), the x and z biases should have keys of `\"phix_i\"` and `\"phiz_i\"` respectively.\n", + "This keys then are assigned to an array of flux points.\n", + "The input for circuit biases are phase, i.e., $\\varphi = \\frac{\\Phi}{\\Phi_0}2\\pi$ where $\\varphi$ is the phase and $\\Phi$ is the magnetic flux.\n", + "\n", + "Note that we use the annealing region near $\\Phi_z = 0$, and NOT $\\Phi_z = \\Phi_0/2$.\n", + "Below we use some simple circuit biases that change linearly during the anneal." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we are trying to probe where the CSFQ can be used as a coupler. To do this, we park both the qubits at the end of the anneal and sweep $\\phi_x$ of the coupler (CSFQ here)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "phi_dict = {}; pts = 20;\n", + "s = np.linspace(0, 1, pts)\n", + "phi_dict[\"points\"] = pts\n", + "\n", + "phi_dict[\"phix_0\"] = np.linspace(0.73, 1, pts)*2*np.pi\n", + "phi_dict[\"phix_1\"] = np.linspace(0.5, 1, pts)*2*np.pi\n", + "phi_dict[\"phix_2\"] = np.linspace(0.73, 0.85, pts)*2*np.pi\n", + "phi_dict[\"phix_3\"] = np.linspace(0.5, 0.85, pts)*2*np.pi\n", + "phi_dict[\"phix_4\"] = np.linspace(0.75, 1, pts)*2*np.pi\n", + "\n", + "phi_dict[\"phiz_0\"] = np.linspace(0.0, 0.002, pts)*2*np.pi\n", + "phi_dict[\"phiz_1\"] = np.linspace(0, 0, pts)*2*np.pi\n", + "phi_dict[\"phiz_2\"] = np.linspace(0, 0.001, pts)*2*np.pi\n", + "phi_dict[\"phiz_3\"] = np.linspace(0, 0, pts)*2*np.pi\n", + "phi_dict[\"phiz_4\"] = np.linspace(0, 0.002, pts)*2*np.pi" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "spectrum_test = circuit.calculate_spectrum(phi_dict, levels=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAIuCAYAAAChCGWtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xcV5338c+ZqhmNukbdcrelOHaakzix00hIIYSwIYUWiDEYyFKeh6Xv8hB2Ayxld4FtpEOyAUIJJBAMAZbIjlOcailucbdl9d6n3fP8MWNZdmzHTRqV7/v10kujc6/u/FRs6avfuecYay0iIiIiIiIio82V7gJERERERERkalAAFRERERERkTGhACoiIiIiIiJjQgFURERERERExoQCqIiIiIiIiIwJBVAREREREREZEwqgIiICgDHmImPMlqMcn2GMscYYz1jWNZEZY54yxnw49fh9xpgnx+h59bUSEZFxSQFURGSSMsZ8yRiz6pCxrUcYe7e1do21dv6I8V3GmCtOsobzjDG/N8Z0GWM6jDHrjDHLRxz/sjFmpzGmzxhTb4x5ZMSxp4wxQ6lj+18uSB0zxpjPpWofNMbsMcZ8wxjjO5l6R5O19mFr7ZWjce1T8bU6yrUvNcbUj8a1D/Nc84wxvzDGtBljuo0xtcaYzxhj3KnjK4wxm40xvcaY5tT3Vlbq2I+MMdFDvl9uGXHt24wxdcaYAWNMkzHmv4wxOWPxcYmIyAEKoCIik9dq4MIRv7yXAl7grEPG5qTOPaVSYfF/gZrUcxQAHweuSR3/IHArcIW1NgQsBv5yyGU+Ya0NjXh5NjX+A2Al8AEgK3XNK4CfneqPQ8aGMWY28DywF1horc0BbiL5fZFljLkE+AbwHmttFlANPHLIZb59yPfLI6lr/x3wLeBzQA6wBJgBPGmM8Y7+RyciIvspgIqITF4vkAycZ6bevgj4K7DlkLHt1tqGkZ0uY8xDQCXw21Qn6fMjrvu+VMexzRjz90d5/u8AP7bWfsta22aTXrLW3pw6fi7wR2vtdgBrbZO19u43+6CMMXOB24H3WWuftdbGrbUbgHcB16aCyuHeL98Y84AxpsEY02mM+c2IYx8xxmxLdWkfN8aUpcbfMJX1kGm1txlj1hpj/iPVsdtsjLn8CM9/mzHm6RFvW2PMx1Jd3C5jzH8aY0zqmNsY8y+pz/FOY8wnjjSl9kS+VsYYlzHmi8aY7caYdmPMz40x+Ye5diawCigb0VUsS3WdC1Pn/L0xJm6MyU69/U/GmO+lHucYYx40xrQaY3YbY/7BGHOk3z2+Bjxjrf2MtbYRwFq7xVr7XmttF8nvl2etta+kjnVYa39sre09wvX2fwzZqWt/0lr7B2ttzFq7C7gZmAW8N3XeecaYF40xPanu6r8e7boiInJiFEBFRCYpa22UZEfp4tTQxcAa4OlDxt7Q/bTW3grsAa5LdZK+PeLwMmA+cDnw/4wx1Ye+vzEmCFwA/PIoJT4HfMAkp9Iu3t+VPQaXA/XW2nWH1Lw3dc0jTXN9CAgCC4Ai4N9Stb4F+CbJQFIK7Ob4OqnnA9uBQuCrwKOHC3NH8HaSwWpR6vmvSo1/hGRX90zgbOCdR7rACX6tPpm65iVAGdAJ/Odhrt2fqqNhRFexgeQfN/YH/UtIfs6Wjni7JvX430l2HGelxj8ADE/BPsQVHP375XngKmPM14wxS40x/qOcO9KFQAbw6CEfWx/wew58v3wf+L61NhuYDfz8GK8vIiLHQQFURGRyq+FA2LyIZABdc8hYzWHe72i+Zq0dtNauB9YDZxzmnDySP2Maj3QRa+3/kAxCV6VqaDHGfOGQ036Q6g52GWNeTo0VHuW6jUD40MHUVONrgI9ZaztTXbD9H/f7gPuttS9bayPAl4ALjDEzjlT7IVqA76Wu+QjJDvO1x/i+/2yt7bLW7iHZnT4zNX4zyTBUb63tBP75GK93qCN9rT4G/H3q+hHgDuDGw3VYj6AGuCR1/iKSU6IvMcZkkAzUq1N/UHg38CVrbW+q6/gvJKddH04BR/9+WQPcQDKQPwG0G2P+9ZA/XHx2xPdLW2qsEGiz1sYPc9mR3y8xYI4xptBa22etfe7NPgkiInL8FEBFRCa31cCyVEcubK3dCjxD8t7QfOB0jv/+z6YRjweA0GHO6QQckh3FI0otzHMFkEsyFP2TMeaqEad8ylqbm3o5OzXWdpTrlqaOH2oa0JEKc4cqI9nB219TH9AOlB+t9hH2WWvtiLd3p655LI70uSwjeS/kfiMfH48jXX868Ov9YQ3YBCSA4mO8bg1wKckwWAf8iWSHcwmwzVrbTjL4eRnxuU09PtLntZ03/35ZZa29DsgHrgduAz484pTvjvh+KUyNtQGFRwjXI79fVgDzgM3GmBeMMW8/Wi0iInJiFEBFRCa3Z0lOgfwIsBbAWtsDNKTGGqy1O4/wvvYI42/KWjuQeu53HeP5MWvtL4BakqH4aP4XmGaMOW/koDFmGskA9NRh3mcvkG+MyT3MsQaSgWz/dTJJduP2Af2p4eCI80sOef/y/fduplSmrnkyGoGKEW9Pe5Pzj/drtRe4ZkRYy7XWZlhr9x3jtZ8hObX3b4Aaa+1Gkh/32zjQUW8j2VWcPuL9Kkl+Xg/nzxz794tjrf0Lye+FN/t+eRaIkOyeDjPGhEh2xZ9KXXOrtfY9JKdnfwv4Zep7QURETiEFUBGRScxaOwi8CHyG5NTb/Z5OjR2t+9lM8t69E/V54LbUPZ4FAMaYM4wxP0s9vs0Yc60xJiu1KM41JO/PfP5oF7XWvg78EHjYGLMktWDPAuBXJIPRnw/zPo0kF9P5L2NMnjHGa4zZPw35p8ByY8yZqfsKvwE8b63dZa1tJRmY3p96ng+RvD9wpCLgU6lr3kRyddbfH/dn62A/Bz5tjClPheZDpyYf6ni/Vj8Evm6MmQ5gjAkbY64/yrULzIgtS1J/YHgJ+FsOBM5nSHaxa1LnJFIfx9dTX+PpJL/n/ucIz/NVkp357xhjSlJ1zTHG/I8xJtcYc70x5t2pr59J/QHiEpL3/R6Rtbab5CJE/26MuTr1dZqRqq0NeDj1XO83xoSttQ7QlXp352jXFhGR46cAKiIy+dWQDElPjxhbkxo7WgD9JvAPqWmanz3eJ7XWPgO8JfWywxjTAdzNgXDWA3yZ5AI6XcC3gY9ba59+49Xe4BPAvSTDzADwGsnpne9MBYjDuZVkR24zyfs2/0+qzj8DXyEZYBtJBsx3j3i/j5DcvqOdZEB+5pDrPg/MJRlmvg7cmJqCejLuAZ4k2RF+heTnLE5ymuzhHO/X6vvA4yS3IeklGeLOP9yJ1trNJEP6jtT1908vriE5xXbdiLezOPh76pMku8g7SH7//QS4/wjPs53kwlUzgA3GmG6SX5MXgV6S07o/Amwl+b3zP8B3rLUPv9kHm1qY6cvAd1PX2kmyq31FaqElgKtTz9uX+vy8O/UHHBEROYXMwbetiIiITDzGmK+RnA56cWrLjrF63tuAD1trl43y81wD/NBaO/1NT5Y3ZYxZDvwjsDS1AJSIiIyRY13tTkREZNyy1n7VGNNK8h7QP6S7npNljAkAl5HsghaTnJ7667QWNYlYax8wxsRJbtGiACoiMobUARURETlBo9UBTe2jWgNUAYMktx35dGoBKRERkQlLAVRERERERETGhBYhEhERERERkTGhACoiIiIiIiJjYkIsQlRYWGhnzJiR7jJERERERETkGLz00ktt1trwoeMTIoDOmDGDF198Md1liIiIiIiIyDEwxuw+3Lim4IqIiIiIiMiYUAAVERERERGRMaEAKiIiIiIiImNiQtwDejixWIz6+nqGhobSXcpxy8jIoKKiAq/Xm+5SRERERERExsyEDaD19fVkZWUxY8YMjDHpLueYWWtpb2+nvr6emTNnprscERERERGRMTNhp+AODQ1RUFAwocIngDGGgoKCCdm5FRERERERORkTNoACEy587jdR6xYRERERETkZEzqAioiIiIiIyMShACoiIiIiIiJjQgH0JN11112UlpZy5plnDr/U1dWluywREREREZFxZ8Kugjte1NXVceedd7JixYp0lyIiIiIiIjKuqQN6kmpraznzzDPTXYaIiIiIiMi4pwB6kjZs2MDy5cuHp9/efffd6S5JRERERERkXJoUU3C/9tsNbGzoOaXXPK0sm69et+Co5+zdu5dwOExtbe1B4/39/dx+++34fD4uvfRS3ve+953S2kRERERERCYidUBPQl1dHdXV1W8Yf/TRR7nxxhu55557ePzxx9NQmYiIiIiIyPgzKTqgb9apHC21tbVUVVW9Yby+vp6FCxcC4Ha7x7osERERERGRcWlSBNB0qauro6amhlWrVgFgjGHNmjVUVFRQX1/PmWeeieM4aa5SRERERERkfFAAPQkPP/zwYcdvuOEGPvGJT/DEE09w3XXXjXFVIiIiIiIi45MC6CjIzMzkgQceSHcZIiIiIiIi44oCqIiIiIiIyDjkWEvUscQOeu0QtZYSn5eQZ+KtN6MAKiIiIiIiU1bMsQw6DoMJh0HHIeocCHmxQ8JfxLHERhwbfu1YotY5eOyQ0Lj/OgcHSucwYweOxe2R677/9Bm8LZw7Zp+nU0UBVERERERExiXHWgYTDgOpgJh8bRlIJBh0UsdSwfENjw83NvzYMuAkGEwkA9+p4jUGr8vgT732GoPPZfAaV+q1we9KvoTcLnwuz/Ax30HnG3wu1/DbvtT1Rh47Iyt4yuoeSwqgIiIiIiJyUqy1DDqW3niCnniC3kSC3riTfBxP0JdIpMLf8YXGIef4w6HfZQi4XATdLgIuFwF38nGm203Y5yXgdhFwmeHjQbcrNZZ8fSDwuYaD33CgdBl8xpV6fXA49BqDMWYUPruTiwKoiIiIiMgUlrCWvniCnoSTfJ166Us4w4974wl6E85wwBx5vDcVOI82XXQ/FxB0vzEcBlwuiv3e4SD4xnBohh8HXYe8HnGNDJcLj0shcDxTABURERERmaAijkNvPBUME6kwGE/QE3dSXcj9AdI54vG+xJvvW+82kO12k+Vxk+VxkeV2U+b3Mj8zgyyPm2y3K3XMTbbHTVbq7ezUWCgVEn3qEk55CqAiIiIiImlmraU/4dAei9MZS9AZi9MRi9MZTyRfx/a/PvC4I5Zg0Hnz8BhwmWQ4dO8PiMluY5Z7f0B0jXj8xgAZ8iS7jQqOcioogIqIiIiInEKOtXS/ITiOCJDx/QHy4ONHWgzHALkeN3leD3leNyV+L9WhjOTbI0JjdqrTeOBxMlz6XK6x/QSIHIUCqIiIiIjIEcQcS1c82W18Ywfy4ADZGU+OdcUSHKkv6TaQ7/WQ5/GQ73UzK+DnnOwgeV5PctzrJn/E4zyPh1yvG7e6jzJJjFoANcbcD7wdaLHWnp4a+w5wHRAFtgPLrbVdo1XDWLjrrru44447KC4uHh576KGHWLhwYRqrEhEREZHj5VjL2s4+Hmxop7Z3gM54nJ74kae4ZrhMKjgmg2J1ZoD8VIDMG36dfFyQepzl1lRWmdpGswP6I+A/gAdHjP0J+JK1Nm6M+RbwJeALo1jDqKurq+POO+9kxYoV6S5FRERERE5ARyzOzxs7eLChnR2DEfK9bi7Oy6LgSF3J1OOgW1NbRY7XqAVQa+1qY8yMQ8aeHPHmc8CNo/X8Y6W2tpbly5enuwwREREROQ7WWl7qGeDHDW083tJFxLGcm53JZ2YU8/ZwLhkKlyKjIp33gH4IeOSUXGnVF6Gp7pRcaljJQrjmn9/0tA0bNrB8+XJcqZu7b7/9dlauXHlqaxERERGRU6IvnuBXzZ082NDGhr4hQm4X7ykt4ANlBZwWCqS7PJFJLy0B1Bjz90AcePgo56wEVgJUVlaOUWXHZ+/evYTDYWpraw8a37FjB1//+tfp7u7ml7/8ZZqqExEREZH9NvQN8uN9bfyquZP+hMPpoQDfmV/B3xTlEfK4012eyJQx5gHUGHMbycWJLrf2CGtNA9bau4G7ARYvXnzE84Bj6lSOhrq6Oqqrq98wPmvWLO677z5uvHHCzzAWERERmbAGEw6/be3iwX1tvNgzQIbLcH1RHh8sK+Cs7KAWAxJJgzENoMaYq4HPA5dYawfG8rlHQ21tLVVVVekuQ0RERERG2D4wxIMN7fy8sYPOeII5QT//OKeMm0ryyfNqF0KRdBrNbVh+ClwKFBpj6oGvklz11g/8KfUXp+estR8brRpGW11dHTU1NaxatQoAYwxr1qwhFAqluTIRERGRqSXmWP7Q1s2DDW2s6ezDY+Cawlw+WF7A0tyQup0i48RoroL7nsMM3zdaz5cODz98+FtY29vb+fu//3teeeUVvvnNb/KlL31pjCsTERERmRr2DUX5n4Z2Hm5spyUap9zv5YszS3hvaQFFfm+6yxORQ2gOwigoKCjghz/8YbrLEBEREZmUEtbyVEcvP97Xxp/be7DA5QXZfKCsgMsLsnGr2ykybimAioiIiMiE0BqN8bPGDh5saGfvUJRCr4dPTi/mfaX5VAb86S5PRI6BAqiIiIiIjFvWWp7t6ufBhjaeaO0mZi1Lc0P8w+xSrinMwZfai11EJgYFUBEREREZd7pjcX7R3MmP97WxdSBCjsfN8vJCbi0rYG5mRrrLE5ETpAAqIiIiIuPGKz0DPNjQxm+aOxl0LGdlBfle1TTeUZRH0K1up8hEpwAqIiIiImnVn0jwm+YuftzQRm3vIAGXi3cV5/OB8gIWZQXTXZ6InEIKoCIiIiKSFpv7B3lwXzu/aOqgN+FQlZnBN+dV8K7iPLI97nSXJyKjQAFURERERMZMxHF4orWbB/e18Vx3Pz5juK4olw+WFXBuTiZGW6iITGoKoCIiIiIy6jpice7a28pDDW10xBLMCPj4yuwy3l2ST4FPv5KKTBX61y4iIiIio6YrFTzvrm9lIOFwdWEOHywv4OK8LFzqdopMOQqgJ+muu+7ijjvuoLi4eHjsoYceYuHChWmsSkRERCS9umNx7q5v5e69rfQmHK4L5/J3M4upygykuzQRSSMF0JNUV1fHnXfeyYoVK9JdioiIiEja9cYT3FPfyl17W+mOJ7g2nMPfzSjhtJCCp4gogJ602tpali9fnu4yRERERNKqL57g/n1t/PeeFjrjCa4qzOazM0pYqG1URGSESRFAv7XuW2zu2HxKr1mVX8UXzvvCm563YcMGli9fjsuV3Bj59ttvZ+XKlae0FhEREZHxqj+R4IH6Nv5rbwsdsQRXFCSD55nZCp4i8kaTIoCmy969ewmHw9TW1h40/pvf/IYnnniCnp4eVqxYwZVXXpmmCkVERERGx0DC4cf72viPPS20x+Jclp/F52aWcHZ2ZrpLE5FxbFIE0GPpVI6Guro6qqur3zD+zne+k3e+8510dnby2c9+VgFUREREJo3BhMP/NLTzgz3NtEbjXJwX4nMzSzk3R8FTRN7cpAig6VJbW0tVVdURj99555387d/+7RhWJCIiIjI6hhIODze284PdzTRH4yzNDXHPghKW5IbSXZqITCAKoCehrq6OmpoaVq1aBYAxhjVr1pCZmckXv/hFrrnmGs4+++w0VykiIiJy4iKOw08bO/jB7mYaIjGW5GTyX6dNZ2leVrpLE5EJSAH0JDz88MOHHf/BD37An//8Z7q7u9m2bRsf+9jHxrgyERERkZMTcyyPNHXwb7ua2BeJcW52Jt+vqmRZXghjTLrLE5EJSgF0FHzqU5/iU5/6VLrLEBERETluMcfyi+YOvrermT1DUc7ODvLd+dO4ND9LwVNETpoCqIiIiIgQdyyPtnTyr7ua2DUY5YysAN+YN4vLFTxF5BRSABURERGZwhLW8pvmTv5lVzM7BiOcHgrw4MKZvLUgW8FTRE45BVARERGRKcixlsdbuviXXU1sHYhwWmYG958+g2sKcxQ8RWTUKICKiIiITCGOtTzR2s13dzWxpX+I+ZkZ3LNgBteGc3ApeIrIKFMAFREREZkCrLWsauvmuzub2Ng/xNygnx+eNp13FOUqeIrImFEAFREREZnErLU82d7Dd3c2Udc3yOyAn/+sruSdxXm4FTxFZIwpgIqIiIhMQtZa/tLRy3d2NrK+d5AZAR8/qK7khqI8PC4FTxFJDwVQERERkUnEWstTHb18Z1cTL/cMMC3Dx79VTePG4ny8Cp4iE5q1lkikkf7+7WRlVePzFaa7pOOmAHqS7rrrLu644w6Ki4uHxx566CEWLlyYxqpERERkqrHWsqazj+/sbOKFnn7K/V6+O38aN5fk4XO50l2eiBwHx4kyMLCLgYEd9PdvS74e2M7AwA4SiQEATj/93ykueluaKz1+CqAnqa6ujjvvvJMVK1akuxQRERGZotZ29vKdnU08191Pmd/Lt+ZV8J7SfAVPkXEuFuthYGB7Mlz2b6c/FTiHhvZibWL4vAx/GcHM2ZSV3kwwczaZwdlkZZ2WxspPnALoSaqtrWX58uXpLkNERESmoPW9A3xzeyNPdfZS7PPw9bnlvK+0gAy3gqfIeDE8bXZgBwP924ZD5sDADqLR1uHzjPERDE4nK1RNcfG1ZAbnEMycRTAwE48nM40fwamlAHqSNmzYwPLly3Gl/sJ4++23s3LlyjRXJSIiIpPZ1v4hvrWzkd+1dpPvdfPV2WXcVl5IQMFTJG0cJ8rA4O5UJ3P7gdcjps0CeDzZZAZnU1BwCZnB2amO5iwyMqbhck3+eDYpPsKmb3yDyKbNp/Sa/uoqSr785aOes3fvXsLhMLW1tQeNb9q0ie9///u0tbVx+eWX8/GPf/yU1iYiIiJT076hKP+yq4mfNXYQcLv4zIxiPj6tiCyPO92liUwZxzpt1u8vJTNzDqWlN5GZOYfM4CyCmXPweQswU3gLpEkRQNOlrq6O6urqN4xXV1fzwx/+EMdx+MAHPqAAKiIiIielLRrn33c386OGNqyFFRWFfGp6MWGfN92liUxKxz5t1kswOINQqCo1bTbZ0Zxs02ZPpUkRQN+sUzlaamtrqaqqOuyxxx9/nP/+7//m1ltvHeOqREREZLLoiyf44d5W/ntvC4MJh5tL8vm7mSVMy/CluzSRScFaSzTaSl/fJvr6NtPX9zr9A9sOM202i2BwTmra7CyCwdlkZs6eMtNmTyV9tk5CXV0dNTU1rFq1CgBjDGvWrCEUCvGOd7yDd7zjHVx77bW8973vTXOlIiIiMpEMJRwebGjje7ub6YgluDacwxdmljIvMyPdpYlMWI4Tob9/eypsbqE3FTpjsY7hc/z+EjKDqWmzqZAZDM7G5yuc0tNmTyUF0JPw8MMPH3b8qaee4tFHHyUSifC2t028vXlEREQkPeKO5efNHfzLzib2RWJclBfiS7NKOTtbU/lEjtWBruZm+vo20du3mb6+zQwM7MDaOAAul5/MzHkUFl5OVqiKUOrF681Nb/FTgALoKLj00ku59NJL012GiIiITBDWWp5o7eZbOxvZOhDhzKwg36uq5KL8rHSXJjKuHWtXMxSqJlx4eSpoVhMITNfU2TTRZ11EREQkjVZ39PL1HQ2s7x1kbtDP/afP4JrCHE33Exnh0K7m/rCprubEowAqIiIikgYvd/fzjR2NPN3VR7nfy/eqpnFTST5uBU+Z4g50NTcPv/T2bTpsV3Nk2AwEZqirOQHoKyQiIiIyhjb3D/KtHU2sauumwOvhzrnl3FpWgN/lSndpImMq2dVsS3U0j9bVnKuu5iSiACoiIiIyBvYMRvjuriZ+2dRJ0O3i8zNLWFkRJuRxp7s0kVGnrqbsp6+miIiIyChqjcb43q5mHmxox2Vg5bQwn6wspsCnX8NkcrI2QX//Nnp61tPTU0tPTy19/VtGdDV9w/dqhkLzyQpVq6s5heh/PhEREZFR0BNP8N97WrirvpWI4/CekgI+M6OYsgxfuksTOWWstQwN1R8UNnv7NpBIDADg8WSRnbWIysoPDwdNdTWnNn3lRURERE6hwYTD/fva+I/dzXTGE7yjKJcvzCxhdjAj3aWJnLRotI2enrpk2OxdT09P3fA0WpfLRyi0gNLSm8jOXkRO9hkEAtMxRvc3ywEKoCIiIiKnQMyx/KypnX/d1UxjJMZl+Vl8aVYpi7KC6S5N5ITE4/309r5GT29tqru5nqGhfamjLjIz51BYeDnZ2YvIzl5EKHMeLpc6/HJ0CqAiIiIiJ8Gxlsdbuvj2ziZ2DEZYnB3kP6unc2FeKN2liRwzx4nS17cl1dlMhs3+/u2AA0BGRgXZ2WdQUXEr2VlnkJW1AI8nM71Fy4SkAHqS7rrrLu644w6Ki4uHxx566CEWLlyYxqpERERktFlr+d+OXr65o5HX+gapyszgxwtncmVBNkZ7eco4Zq3DwMCu5H2bqe5mX99GHCcKgNebT3b2IorC1wx3N32+gjRXLZOFAuhJqqur484772TFihXpLkVERETGyAvd/Xx9ewPPdfdTmeHjP6or+ZviPNwKnjIODUWaUosE1dHTs57e3jri8V4A3O4gWVmnU1F+K9nZZ5CdfQYZGeX6I4qMGgXQk1RbW8vy5cvTXYaIiIiMgY19g3xzRyN/au8h7PPwjbnlvL+sAJ9Li6zI+BCLddPTW0dvTy3dPevp7akjEm0GwBgPodB8iouvIzsr2dnMzJyDMdqLVsaOAuhJ2rBhA8uXL8eV+sFz++23s3LlyjRXJSIiIqfS7sEI397ZxKPNnWR5XHx5VikrKgrJdOsXd0kfx4nQ27thePuT7p71DA7uGj4eDM4kL+8CsrMXkp19BqFQNW63VmOW9JoUAXTNz1+nbW/fKb1m4bQQF90876jn7N27l3A4TG1t7RuO9ff3c8kll3DHHXfw9re//ZTWJiIiImOjORLjX3c18XBjO15j+NvKIv62sog876T4FUommHi8j+7uV+jqWkdX94v09Lw6fN+m31dMdvYiykrfRXb2GWRlLcTrzU5zxSJvpP89T0JdXR3V1dWHPfatb32Lm2++eYwrEhERkVOhJ57gP/e0cPfeFmLW8r7SAv7vjBJK/N50lyZTSCzWSVfXi3R1vUBn1zr6+jZibQJj3GSFFlBRfis5ueck79v0l6S7XJFjMikC6Jt1KkdLbW0tVVVVbxj/05/+xGmnncbQ0FAaqhIREZETNZRw+NG+Nr6/u5nOeIJ3FuXyxVmlzAj4012aTAFDkSa6OpPdza6udfT3bwXA5fKRnX0m06d/jNycc8nJOQuPR9v8yMQ0KQJoutTV1VFTU8OqVasAMMawZs0annrqKfr7+9m4cSOBQIC3ve1tw/eIioiIyPiTsJZfNnXy7Z2N7IvEuDQviy/PLmVRVjDdpckkZa1lcHA3XV0vDL8MDu0BwO0OkZNzFiXF7yA39zyysxficumPIDI5KICehIcffviw41//+tcB+NGPfkRhYaHCp4iIyDhlreXP7T18fUcjm/uHWJQV4HtVlVyUn5Xu0mSSsdahv38rnV3rkvdwdr1INNoCgNebR27uuVRU3Epu7rmEQtW4XPo1XSYnfWePottuuy3dJYiIiMgRvNjdz52pvTxnBnzctWA614VzcWn/QzkFHCdGb+8Gurr3dzhfJB7vBsDvLyEvbwm5ueeSm3sumcHZGKOGhUwNCqAiIiIypWztH+KbOxr5fVs3YZ+Hf55XwftKC/C6FDzlxCUSQ/T0vEpn1wt0d71AV/fLOM4gAIHADIrCVw0HzoyMCoz+0CFTlAKoiIiITAmNkSjf3dnETxs7CLpdfGFmCSsrwmR6tJenHL94vJeu7peG79/s6anF2hhgCIWqKCu7kdzc88jNORe/P5zuckXGDQVQERERmdS6YnH+Y08L99a3krCwoqKQT08vodCnX4Pk2EWj7aktUdbR1fUCvX2bAAdjPGRlLWTatNvIyz2PnJxz8Hpz0l2uyLil/3lFRERkUhpMONy/r41/391MdzzBu4rz+NzMEqZrSxU5BkNDDcP7b3Z1vcDAwHYAXC4/OdlnMXPGJ8jNXUxOzlm43VotWeRYKYCKiIjIpJKwlp83dfCdnU00RGK8JT+Lv59dxoJQIN2lyTgWj/fR2fks7R1r6Ghfc9CWKLm5iyktfRd5ueeSlXU6LpcvzdWKTFwKoCIiIjIpWGt5sr2Hr29v5PWBIc7KCvLv1ZUszdOWKvJG1jr09m6go2MN7R1r6O5+GWvjuN1B8nKXUDHtA+Tlnk8oNB9jdJ+wyKmiACoiIiIT3vNdfXx9RyPruvuZHfBz3+kzeFthjlYalYNEIq3DgbOj42lisQ4AskILqKz8MPn5y8jNOUcdTpFRNGoB1BhzP/B2oMVae3pqLB94BJgB7AJuttZ2jlYNIiIiMrlt7h/kG9sbebK9h2Kfh+/Mr+A9JQV4tKWKAI4ToavrpeHQ2de3CQCvt4CC/IvJL7iI/Pxl+H2Faa5UZOoYzQ7oj4D/AB4cMfZF4C/W2n82xnwx9fYXRrEGERERmYT2DUX5zs4mft7UQabbxZdnlfLhijBBtyvdpUkaWWsZHNxFe/tq2jvW0Nn5HI4ziDFecnLOZvasz1FQcBGhUDXG6HtFJB1GLYBaa1cbY2YcMnw9cGnq8Y+Bp5jgAfSuu+7ijjvuoLi4eHjsoYceYuHChWmsSkREZHLqjMX5we5m7t/XhrWwclqYT00vJt+ru4qmqni8l47OZ+hoT3Y5h4bqAQgEplNWeiP5BReRl3s+Hk8ozZWKCIz9PaDF1trG1OMmoPhoJ08EdXV13HnnnaxYsSLdpYiIiExaAwmH++pb+fc9zfTGHW4uyedzM0uoyNC9elONtQl6ezcMdzl7el7B2gRud4i8vCVMr1xJQcFFBAKV6S5VRA4jbX8utNZaY4w90nFjzEpgJUBl5fj9D6S2tpbly5enuwwREZFJKe5YftbUwXd3NtEUjfHWgmy+PKuUam2pMqVEIs3D26N0dK4lFksuIZKVdTrTK1eSn38xOTln4XJ501ypiLyZsQ6gzcaYUmttozGmFGg50onW2ruBuwEWL158xKCabhs2bGD58uW4XMn7CG6//XZWrlyZ5qpEREQmNmstq9q6+caORrYNRFicHeSHC6azJFfTKKeCRCJCV/cLdKRCZ1//FgB8vjAFBZcmFxDKX4rPV5DmSkXkeI11AH0c+CDwz6nXj52Ki/71R3fTsnvHqbjUsKLps7jstqMHyb179xIOh6mtrT1o/KmnnuIrX/kKCxYs4N3vfjeXXnrpKa1NRERkMnu2q487tzfwUs8Ac4N+Hjh9BldrS5VJzVrLwMD2VJdzNZ1d63CcIYzxkZt7DnNKPk9+/sWEQlX6PhCZ4EZzG5afklxwqNAYUw98lWTw/LkxZgWwG7h5tJ5/LNTV1VFdXf2GcWMMoVCIoaEhKioq0lCZiIjIxLOpb5Cv72jkz+09lPq9/Ov8adxckq8tVSapWKyHjs61dLSvpqPjaYYiDQAEgzMpK7uZgvyLycs7H7c7mOZKReRUGs1VcN9zhEOXn+rnerNO5Wipra2lqqrqDeMXXXQRl1xyCc3NzXzmM5/h4YcfTkN1IiIiE8PeoSjf3tnIL5s6yfa4+YdZpayoCBPQliqTirWW3t462tqfoqN9Nd096wEHtztEfv6FTM//OAX5FxMI6I/3IpOZ1iw/CXV1ddTU1LBq1Sog2flcs2YNoVDy/pS8vDwikUg6SxQRERm32qPJLVUe2NeGy8DtlUV8srKIXG2pMmk4TpyurnW0tj1Ja+ufiESaAEN21kJmzEgGzuzsM7R4kMgUov/hT8KROpuPPvoof/zjH+nq6uITn/jEGFclIiIyvvUnEty7t43/2NNMf8Lh3aX5fHZGCWXaUmVSSCSG6Oh4mtbWP9La9r/E4124XBkU5F9EeNbfUVBwKT5ffrrLFJE0UQAdBTfccAM33HBDussQEREZV2KO5eHGdv51VxMt0ThXF2bzpVllzM/MSHdpcpJisR7a2/9KS+uTdHSsJpEYwOPJprDgLYSLrqQg/yLdyykigAKoiIiIjDLHWh5r6eJbOxvZNRhlSU4m950+k3NzMtNdmpyESKSV1rY/0dr6JJ2dz2FtDJ+viJKSvyEcvpK83PM1tVZE3kABVEREREaFtZa/dvTyjR2NvNY3yIJQBg8vmsVb8rO0lcYENTi4h5bWJ2lt/SPd3a8AlkBgOtOm3UZR+Eqys8/EGC0eJSJHpgAqIiIip9yL3f18fUcDz3b1Mz3Dx3+dNp13FuXiUvCcUKy19PVvobXlj7S2PUlf32YAQqHTmDnz0xSFryQzc57+oCAix0wBVERERE6Zzf2D/POORv7Q1kPY5+Gb8yp4X2k+Ppe6YhOFtQ7d3S/T2ppcuXZwaA9gyMk5h7lz/p5w+K0EAtPSXaaITFAKoCIiInLS9g5F+e7OJn7R1EGm28UXZ5bwkWlhMt3udJcmx8BxonR2PpcMnW1/JhptxRhvcn/O6R+lMHwFfl9hussUkUlAAVREREROWFtqL88f7WvDGPjotDCfnF5MvvbyHPcSiQHa21fT0vpH2tv/Sjzei9sdpKDgUsKFb6Ww8DI8nqx0lykik4x+OoiIiMhx64sn+OHeVv57bwuDqb08/25GCeXay3Nci8U6aW37C62tf6KjYw2OE8HrzSMcvopw+Ery85bidmtbHBEZPQqgIiIicswijsNDDe38265m2mNxrg3n8MWZpczVXp7j1tBQ4/B2KV1d67A2gd9fSlnZLRSFryInZzEul34lFJGxof9tRERE5E0lrOVXzZ18e2cj9UMxluWG+PLsUs7O1l6e41F//47U/ZxP0tOzHoBgcDbTK1cSDl9JVtZCrVwrImmhAHqS7rrrLu644w6Ki4uHxx566CEWLlyYxqpERERODWstf2rv4Rs7GtncP8SiUIB/OaOSi/NCCjDjiLWW3t7XaG39Iy2tf2JgYBsA2VmLmD3rs4TDV5KZOTvNVYqIKICetLq6Ou68805WrFiR7lJEREROqee6+vj69kZe6OlnVsDP3Qtm8PZwjvbyHEf6+rbQ1Pw4zc2/ZWhoH8a4yc05l4ry9xIOv5WMjLJ0lygichAF0JNUW1vL8uXL012GiIjIKbOxb5Cvb2/kLx09lPi8fHf+NG4pycfrUvAcD4aGGmlu/i1NzY/R17cZY9zk5y1l5sxPES68HK83L90liogc0aQIoF2/3U60of+UXtNXlknudW8+VWXDhg0sX74cV2qD7dtvv52VK1ee0lpERETGwu7BCN/e2cSjzZ1ke9z8w6xSPlQRJuh2pbu0KS8W66GldRVNTY/R1bUOsGRnn8m8uf+P4uJr8WmPThGZICZFAE2XvXv3Eg6Hqa2tPWjccRy+8pWv0NPTw+LFi/ngBz+YpgpFRETeXGs0xr/uauZ/GtrxGPhkZRG3VxaRq7080yqRiNDe/hRNzY/R1vZXrI0SCMxg5sxPU1J8HcHgjHSXKCJy3CbFT5Zj6VSOhrq6Oqqrq98w/thjj1FfX09BQQEVFRVpqExEROTN9cQT/PeeFu6qbyXiOLyvtIDPzCihxO9Nd2lTlrUOnV3P09z0OC2tq4jHe/H5Cqkofy8lJddr9VoRmfAmRQBNl9raWqqqqt4wvmXLFi688EI++tGPcuONN3L55ZenoToREZHDG0o4PLCvjR/sbqYznuCdRbl8fmYps4L+dJc2JVlr6evbTFPzYzQ3/5ZIpAm3O5Nw+K2UFL+TvLwLtE+niEwa+t/sJNTV1VFTU8OqVasAMMawZs0aKioq8Pl8ALjd7nSWKCIiMizuWH7e1MF3dzXREIlxWX4WX5pVyqKsYLpLm5IGB/fR3Pw4Tc2P0d+/FWM8FORfzJw5XyRceAVudyDdJYqInHIKoCfh4YcfPuz4DTfcwCc/+UnWrFnDxRdfPMZViYiIHMxay+/buvnnHY1sHYhwdnaQH1RXsiwvK92lTTmxWBfNLb+nuelxurpfACAn5xzmz/tHioquwefLT3OFIiKjSwF0FASDQe677750lyEiIsLTnb18fXsjr/QOMDfo5/7TZ3BNYY7uIxxDicQQbW1/oan5cdrba7A2RjA4h1mzPkNJ8TsIBKalu0QRkTGjACoiIjIJre8d4JvbG3mqs5dyv5d/q5rGTcX5eLSX55iwNkFn53M0NT1GS+sfSST68PmKmFbxAUpKricUOk1/BBCRKUkBVEREZBLZPjDEt3Y28XhLF/leN3fMLuO28kIytJfnqLPW0tu3gaamx2hu/h3RaAtud4iioqspKX4HeXlLMEZrQ4jI1KYAKiIiMgnsHYryvV1N/KypA7/Lxf+dXszHK4vI9ijwjLbBwT00NT1OU/PjDAxsxxgvhQWXUlxyPYUFl+F2Z6S7RBGRcUMBVEREZAJrjET5/u4WHm5oxwC3lRXyf2YUE/ZpL8/RFI22pxYTeozunlcAyM09j8ppyykqugavNze9BYqIjFMKoCIiIhNQazTGv+9u4ccNbSSs5b2lBXx6ejHlGb50lzZpJRKDtLb+iabmx+noWIO1cTIz5zF79ucpKb6OjIyydJcoIjLuKYCKiIhMIB2xOP+1p4X76tuIWoebivP5vzOKmR7wp7u0Sclx4nR2PkNT02O0tj1JIjGA319C5bQPUVxyPVmhqnSXKCIyoSiAioiITADdsTg/3NvKPfWt9CccbijO4+9mlDArqOA5Gvr7t9PQ+Auamn5NNNqGx5NNcfF1lBRfT27uuRijRZ1ERE6EAqiIiMg41hdPcE99Kz/c20p3PMHbwzl8dmYJVZmBdJc26cTj/bS0/J6Gxp/T3f0yxngoLLiMktK/obDgUlwuhX0RkZOlACoiIjIO9ScSPFDfxn/tbaEjluCqwmw+N6OE07OC6S5tUrHW0tPzCg0Nv6C55QkSiX6CwVnMmf0FSkpvwO8rTHeJIiKTigLoSbrrrru44447KC4uHh576KGHWLhwYRqrEhGRiWoo4fBgQxv/vqeF1micy/Kz+PzMUs7KVvA8laLRNhqbfk1Dwy8ZGNiG2x2kqOhayspuIif7bIwx6S5RRGRSUgA9SXV1ddx5552sWLEi3aWIiMgEFnUcftLYwfd3N9MYibEsN8R9C0o4LzeU7tImDceJ09GxhobGn9PW9r9YGycn+yyqq75JUdHb8Hj0uRYRGW0KoCeptraW5cuXp7sMERGZoGKO5RdNHfzr7ibqh2Kcl5PJv1dXsiwvK92lTRoDA7tpbPwFjY2PEok24/XmM63ig5SW3UQoc266yxMRmVImRQBdtWoVTU1Np/SaJSUlXHPNNW963oYNG1i+fDkuV3I1vNtvv52VK1ee0lpERGTySVjLo82d/MuuJnYNRjkzK8h35k3j0vwsTf88BRKJQVpa/0hDw8/p6noecFFQcAnzyr5KYcFluFzaL1VEJB0mRQBNl7179xIOh6mtrT1ofM2aNTz88MPE43E2btzIM888k6YKRURkvHGs5betXXx3ZxNbByKcHgrw4MKZvLUgW8HzJFlr6e2to6HxFzQ3/5Z4vJdAoJLZs/6OktIbyPCXpLtEEZEpb1IE0GPpVI6Guro6qqur3zB+0UUXcdFFF/Gb3/yGc889Nw2ViYjIeGOt5Q9t3XxnZxMb+4eYn5nBvQtm8LZwDi4Fz5MSi3XS1PQYDY2/oK9vMy6Xn6LwNZSV3URu7nnas1NEZByZFAE0XWpra6mqqjri8Z/85Cfcd999Y1iRiIiMN9Za/tLRy7d3NlLbO8isgJ//Om061xfl4lbwPGHWOnR0PkNDw89pbf0T1kbJylrI/Hn/SHHxdXi92ekuUUREDkMB9CTU1dVRU1PDqlWrADDGsGbNGkKhEHv27CEnJ4esLC0iISIyFVlrWdPZx7d2NvJSzwCVGT6+VzWNG4vz8bgUPE/U4OA+Ght/SWPjLxmKNODx5FJe/h7KSm8iK+uNs5JERGR8UQA9CQ8//PARj913331aHVdEZIp6risZPJ/t6qfc7+U78yt4d0kBXgXPE+I4EVpb/0RDwy/o6FwLQH7eUubM+QKFhW/F7fanuUIRETlWCqCj5Gtf+1q6SxARkTH2cnc/39rZRE1nL0U+D1+fW877ywrwu3QP4ono7dtMQ8PPaWp6jHi8iwx/GTNnfJLS0hsJBMrTXZ6IiJwABVAREZGTVNs7wLd3NvHn9h7yvW6+OruMD5YXEnQreB6vWKyH5ubf0tD4c3p7X8MYH+HwWykru5n8vAswxp3uEkVE5CQogIqIiJygTX2DfGdnE79v6ybX4+bLs0pZUV5Ipkch6XhYa+nqep6Ghl/Q0roKx4kQClUxb+5XKCm5Hq83L90liojIKaIAKiIicpy29g/x3V1NPN7SRcjt4rMzSlg5LUy2gudxGYo00dT4KA2Nv2BwcA9ud4jS0nelFhRaqH1RRUQmIQVQERGRY7RrMMK/7GriV02dZLhdfGp6MR+bFibPqx+nx8px4rS3/5V9DY/Q3l4DOOTmns/MmZ+mKHwVbncg3SWKiMgo0k9MERGRN7FnMML3dzfzs6YOvMbw0Wlh/raymEKffoweq6GhBvY1PEJjwy+IRJvx+YqYMf2jlJbeSDA4I93liYjIGNFPThERkSPYNjDED3Y382hzJy4Mt5UV8qnpxRT7vekubUJIdjufYl/DT1PdTigouJj5ZV+joOAyXC79GiIiMtXof34REZFDvNY7wPd3t/C71i4yXIbl5YV8fFoRZRm+dJc2IQwNNdDQ8HMaGn9BJNKU7HbOuJ2y0lu0fYqIyBSnACoiIpLyYnc/39vdzJ/be8hyu/hkZREfmRYm7FPH880c6Hb+LNXttMlu57yvUlDwFnU7RUQEUAA9aXfddRd33HEHxcXFw2MPPfQQCxcuTGNVIiJyrKy1PN3Zx/d2N7O2q498r5svzCzhQ+WF5GhxoTd1+G7nxykrvZlAoCLd5YmIyDijn6wnqa6ujjvvvJMVK1akuxQRETkO1lr+1N7D93Y383LPAMU+D3fMLuPWsgLt4/kmHCdOe0cNDft+Rlv7U4ClIP+iVLfzMlwudYxFROTwFEBPUm1tLcuXL093GSIicowS1vLbli5+sLuZjf1DTMvw8a15FdxSkk+G25Xu8sa1ZLfzFzQ0/jzV7QwzY/rHKCu7Rd1OERE5JgqgJ2nDhg0sX74clyv5S8vtt9/OypUr01yViIgcKuZYftncwX/sbmH7YIS5QT8/qK7kb4ry8LpMussbt6xN0N5ew759Px3udubnL2PevP9HYcFb1O0UEZHjMikC6Ouv/xO9fZtO6TWzQtXMm/eVo56zd+9ewuEwtbW1B43v2bOHT33qU+Tn5zNv3jy++MUvntLaRETk2A0mHH7a2M5/7mlhXyTG6aEA9yyYwbXhHFxGwfNIhoYaaWj8BQ0Nj4zodn401e2clu7yRERkgpoUATRd6urqqK6uPuz4jTfeyPvf/35uueWWNFQmIiJ98QQ/bmjnh3tbaI3GOTc7k2/Nn8bl+VkYBc/DGu52NvyMtra/MtztnPv/KCxUt1NERE7epAigb9apHC21tbVUVVW9YXzJkiXceOON3H///dx6661pqExEZOrqjMW5r76Ne+tb6YonuDgvxA9PK+bC3JCC5xEc6Hb+nEikUd1OEREZNZMigKZLXV0dNTU1rFq1CgBjDGvWrOGBBx7ga1/7GhdffDE33nijFikSERkDrdEYP9zbyo/2tdGfcLiqMJtPTy/m7OzMdJc2LiW7navZ1/DTVLfTIT//IubN/Yq6nSIiMmoUQE/Cww8/fNjxq6++mjvuuIOf/OQnzJgxY2yLEhGZYuqHovzXnhZ+0thO1LG8oyiXT08vpjoUSHdp41Ky2/nL1L2djfh8hUyf/lHKy24mEKhMd3kiIjLJKYCOgtNPP51f/vKX6S5DRGRS2zEQ4d/3NPOLpg4AbirJ55OVxcwK+tNc2fhzoNv5M9ra/hdwyM9bxry5/0Bh4eXqdoqIyJhRABURkQllU98g39/dzOMtXfhchg+UFXJ7ZREVGb50lzbuDEWaaGxI3ts5FGnA6y1g+vSVlJfdom6niIikhQKoiIhMCC/39PP93c38sa2HTLeLj1cW8bFpYcI+de9GGtntbG//K9YmyM9bxpy5XyZceDkul4K6iIikjwKoiIiMW9Zanunq4/u7m1nd2Ueux81nZ5SwoqKQPK9+hI20/97OxhHdzsrKj1BWejPB4PR0lyciIgIogIqIyDhkreUvHb18f1czL/T0E/Z5+MrsMj5YVkDI4053eeOG48Rpb3+KhoZHaGt/iuS9nUuZM/dLhAuvULdTRETGHQVQEREZNxxreaK1mx/sbqaub5Byv5dvzC3nPaUFBNyudJc3bgwO1tPQ+HMaG35JJNqMzxdm+vSPUlZ6k7qdIiIyrqUlgBpj/i/wYcACdcBya+1QOmoREZH0izmWX7d08u+7m9k6EGFWwM+/VU3jXcV5+FwKngCOE6W17S80NDxCR8fTABQUXML8sjsoKLhMK9mKiMiEMOYB1BhTDnwKOM1aO2iM+TnwbuBHY12LiIik11DC4ZGmDv5jTwt7h6KclpnBD0+bznVFubiNSXd548LAwE4aGn5OQ+OviMXa8ftLmDnjk5SV3URGRlm6yxMRETku6ZqC6wECxpgYEAQa0lSHiIikQVMkxo/3tfFQQzttsThnZwf5+txy3lqQjVHwJJGI0Nr6RxoaHqGz6zmMcVNQcBnlZe+moOBijNF9sCIiMjGNeQC11u4zxnwX2AMMAk9aa58c6zpERGRsWWt5uWeAe+tb+W1rFwkLVxRks7IizLK8kIIn0Ne/lYaGR2hs/DXxeBcZGRXMmvUZykpvxO8vTnd5IiIiJy0dU3DzgOuBmUAX8AtjzPuttf9zyHkrgZUAlZXjd7Psu+66izvuuIPi4gO/GDz00EMsXLgwjVWJiIwfEcfh8ZYu7q1vZX3vIFluFyvKwyyvKGRGwJ/u8tIukRikpeX37Gt4hO7ulzDGSzj8VsrKbiE/70KM0T2wIiIyeaRjCu4VwE5rbSuAMeZR4ELgoABqrb0buBtg8eLFdqyLPFZ1dXXceeedrFixIt2liIiMK82RGD9uaOPBfclptnODfr45r4Kbi/PI1FYq9PZuoqHhEZqaf0M83ksgMIM5s79AaekN+HyF6S5PRERkVKQjgO4BlhhjgiSn4F4OvJiGOk6J2tpali9fnu4yRETGjZe7+7l3XxuPt3QOT7NdUVHIxXlZuKb4NNt4vJ/mlt/R0PAIPT3rcbl8hMNXU152C7m552sasoiITHrpuAf0eWPML4GXgTjwCqlO50S0YcMGli9fjiu1TcDtt9/OypUr01yViMjYijgOv23p4t76Nl7tHSDL7eJD5WGWlxcyMzi1p9laa+ntrWNfw89obv4diUQ/mZlzmTv3HygteSdeb166SxQRERkzaVkF11r7VeCrp+p6X9laz2t9g6fqcgCcHgrwT3MrjnrO3r17CYfD1NbWHjS+ceNG7rjjDgoKCrj88su58cYbT2ltIiLjRXMkxoMNbTzY0E5rNM6coJ9vzC3n5pJ8QlN8mm083ktT02Psa3iEvr6NuFwZFBddS1n5LeRkn61up4iITEnp2oZlUqirq6O6uvoN46tWreKTn/wkF110Ee94xzsUQEVk0nm5p5/76tt4vKWLmLVcnp/NhysKuSR/ak+ztdbS3fMyDfseobnlCRxniFDoNObP+xrFxe/A681Od4kiIiJpNSkC6Jt1KkdLbW0tVVVVbxi/9dZb+drXvsbjjz9Oe3t7GioTETn1oo7D71q7ube+lZd7Bgi5XdxWXsDy8jCzpvg021isi8amX9PQ8Aj9/VtxuzMpKbme8rJ3k5W1UN1OERGRlEkRQNOlrq6OmpoaVq1aBYAxhjVr1lBUVMR//ud/kkgkuOGGG9JcpYjIyWmJxHiwoZ0HG9poicaZHfDz9bnl3DLFp9laa+nqWse+hp/R2voHHCdKdtYiqqq+QXHRtXg8oXSXKCIiMu4ogJ6Ehx9++LDju3bt4hvf+Ab9/f187nOfG+OqREROjVd6BrivvpXHUtNs35KfxYcrwlw6xafZRqNtNDY+SkPjzxkY2InHk0VZ6S2Uld1CVtYbb8sQERGRAxRAR8GMGTO4++4Ju7CviExhUcfhidQ025dS02w/WF7A8vJCZgcz0l1e2ljr0NH5DA0Nj9Da+iesjZGTcw6nVX+coqK34XYH0l2iiIjIhKAAKiIitEZjPLgvOc22ORpnVsDPnalptllTeJrtwMBOGhsfpanpNwxFGvB4cqmoeD9lZbcQypyb7vJERGSK6u7uJjMzE49n4sW5iVexiIicMq/2DHBvfSuPt3QRtZbL8rP414owl03habaxWA8tLU/Q2PQo3d0vAy7y85cye/bnCIevwu2e2gsuiYhIegwNDbFx40Zqa2vZtWsX7373uw+7IOp4pwAqIjLFxBzLE61d3Fvfyos9A2S6XdxaVsDyikLmTNFpto4Tp6PzaRobH6Wt7U84TpRgcA6zZ3+ekpLryfCXpLtEERGZghKJBNu2baO2tpYtW7YQj8fJz8/n0ksvpbS0NN3lnRAFUBGRKaI1GuOhhnYe3NdOUzTGzIBvyk+z7evbQmPTozQ1PUY02orHk0tZ6S2Ult6g7VNERCQtrLXs27eP2tpaXnvtNQYGBggEApx11lmcccYZlJeXT+ifTxM6gFprJ+Qn31qb7hJEZApZ35ucZvtY84Fptt+tmMZbpug022i0nebm39LY9Ci9vRswxkNBwaWUltxAYeGluFyaYisiImOvo6OD2tpaamtr6ejowO12U1VVxaJFi5gzZw5u9+T4Y/GEDaAZGRm0t7dTUFAwoUKotZb29nYyMqbmNDcRGRv7p9neV9/GCz39BN0u3ldWwIfKC5mbOfX+/3GcKG3tf6Wx8VHa25/C2jhZoQXMnfsPlBS/A5+vIN0liojIFDQwMMCGDRuora1l7969QHJHjWXLlnHaaadNyswwYQNoRUUF9fX1tLa2pruU45aRkUFFRUW6yxCRScZayys9A/yquZPHWrpoi8WZEfDxj3PKeHdpAdlTbJqttZbe3joamx6lufl3xGKd+HyFTKv4IKWl7yIUmp/uEkVEZAqKx+O8/vrr1NbW8vrrr+M4DuFwmMsvv5yFCxeSm5ub7hJH1YQNoF6vl5kzZ6a7DBGRtNvaP8SjzZ082tzJ7qEofpfhioJs3l2Sz+UF2VNumm0k0kxT029obPo1/f1bcbl8FBZeQWnJDeTnX4TLNWF/9ImIyATlOA579+5l/fr1bNy4kaGhIUKhEOeffz6LFi2ipKRkQs3qPBn6KSwiMgE1RqL8prmLXzd3Uts3iAtYlhfi/8wo5tpw7pTrdiYSQ7S2Pklj06N0dKwFHHKyz2L+/H+iuOhavN6cdJcoIiJTUGtrK7W1tdTV1dHV1YXX66W6uppFixYxc+bMSXNf5/FQABURmSC6Y3GeaO3mV82dPNPVhwXOzAryj3PKuL4oj2K/N90ljilrLd3dL9HY+CuaW35PItGH31/KjOkfo7T0BoJBzZIREZGx19fXx2uvvUZtbS0NDQ0YY5g1axaXXXYZVVVV+P1Te7E7BVARkXFsKOHwp/Yeft3cyZ/be4hay6yAn7+bUcLfFOcyewru2zk4WE9j069panqUwcE9uN1BwuGrKC25gby8JRjjSneJIiIyxUSjUbZs2cL69evZvn071lpKSkq46qqrOP3008nKykp3ieOGAqiIyDiTsJa1nX38qrmT37d20ZtwKPJ5uK28kBuK8zgjKzBl7hPZLx7vo6XlDzQ2PUpX1/MA5OUuYeaMTxAOX43Hk5nmCkVEZKpxHIedO3dSW1vLpk2biEajZGdns3TpUhYtWkRRUVG6SxyXFEBFRMYBay2v9g7yaHMHj7V00RKNE3K7uDacy7uK81iaF8I9xUKntQ6dnc/S2PgoLa1/xHEGCQSmM2vm/6Wk5G8IBMrTXaKIiExBTU1Nw/d19vb24vf7WbBgAYsWLWL69Om4XJqJczQKoCIiabR9ILmC7a+bu9gxGMFnkivY3lCcx+UF2QTcU++HWH//DpqaHqWx6TdEIo14PFmUlFxPaekN5GSfPeW6vyIikn49PT3U1dVRW1tLc3MzLpeLOXPmcPXVVzNv3jy83qm1DsPJUAAVERljzZEYj7V08qvmTtb3DmKApbkhPlFZxLXhHHK8U++/5lism+bm39HY9Gt6el4BXBQUXMTcOV+ksPAK3O6pd6+riIikVyQSYePGjdTW1rJz504AysvLedvb3saCBQvIzNTtHydi6v2WIyKSBj3xBE+0JrdNebqzDwdYFApwx+wyri/OpdTvS3eJYy6RGKKjYw1NzY/T2vpnrI2SmTmPOXO+SEnx9fj9undGRETGViKRYPv27dTW1rJ582bi8Th5eXlccsklLFq0iIKCgnSXOOEpgIqIjJKhhMP/dvTwq9QKthHHMiPg49PTi7mhOI+5mVOvq5dIDNDW/hQtLX+gvf2vJBIDeL35lJe/h9LSG8gKLdAUWxERGXNdXV28+OKLvPLKK/T39xMIBDjzzDNZtGgR06ZN08+mU0gBVETkFEpYy7NdfTza3MnvWrvoiTsUej3cWlbADUV5nJUdnHI/xOLxXtra/kpL6yra21fjOEN4vfkUF7+DovDV5OUtweXSvTMiIjK2rLXs3LmTdevWsWXLFgDmzZvHWWedxZw5c/B4FJVGgz6rIiInyVpLbd8gjzZ38lhzF03RGJluF28L5/Cu4jyW5WbhcU2t0BmLddHa9mdaW/5Ie8fTWBvF5yuirOwmisJXk5t7Lsa4012miIhMQZFIhPXr17Nu3Tra2toIBAIsXbqUxYsXk5ubm+7yJj0FUBGRE7RzIJJcwbalk20DEbzGcHlBFn9TXMaVBTlTbgXbaLSd1tY/0dL6Bzo7n8XaOBn+Mioq3k9R0dXkZJ+FMVPrcyIiIuNHW1sb69at49VXXyUajVJaWso73/lOFixYoFVsx5ACqIjIcWiOxPhtaxe/aurkld4BAC7IzeRj05Ir2OZNsRVsI5FmWlqfpLXlD3R2rQMcAoFKKqetoKjoarKyFk65KcciIjJ+OI7D1q1bef7559mxYwcul4vTTz+d8847j/Lycv2MSoOp9ZuSiMhxao/Gebarj7Vdfazt7OP1gSEATg8F+MrsMt5ZlEt5xtRawXZoqIGWlj/Q0voHurtfBizB4GxmzPg4ReFrCIWq9ANdRETSamBggFdeeYUXXniBrq4usrKyuOyyyzjnnHMIhULpLm9KUwAVERmhM5YMnM+kAuem/mTgDLpdnJ+TyU0leVxZmMP8KbaC7cDAblpb/0BLyx/o6a0FIBSqYtbMTxMuuppQ5tw0VygiIgKNjY2sW7eOuro64vE406dP561vfStVVVW43Vp7YDxQABWRKa07Fue57n7WdiZD54a+QSwQcBnOywnxzqI8luaFOCMriHeKLSTU37+dlpZVtLT+kb6+jQBkZS1k9qzPUVR0FcHgzDRXKCIiAvF4nE2bNrFu3Tr27t2L1+vljDPO4LzzzqO4uDjd5ckhjimAGmPygDJgENhlrXVGtSoRkVHSG0/wXGpK7TOdfdSlAmeGy7A4O5PPzyzhwtwQZ2UH8bmm1oI51lr6+rfQmppe29+/FYCcnLOZO+fLhMNXEQhUpLlKERGRpJ6eHl566SVefPFF+vv7yc/P56qrruLMM88kEAikuzw5giMGUGNMDvC3wHsAH9AKZADFxpjngP+y1v51TKoUETlBffEE67r7h+/hrO0dwAF8xnBOTpC/m5EMnGdnB8mYYqvWQjJ09va+Rktqeu3g4C7ARW7uucyb91XC4SvJ8Jeku0wREREg+XNrz549rFu3jk2bNuE4DnPnzuW8885j9uzZuKbYH48noqN1QH8JPAhcZK3tGnnAGHMOcKsxZpa19r5RrE9E5Lj0JxK80N3PM53JLuervQMkLHiN4ezsIJ+eXszSvBDnZGdOuW1S9rPWoafn1dRCQn9kaKgeY9zk5V5AZeUKwuEr8fsK012miIjIsGg0Sl1dHevWraO5uZmMjAzOP/98Fi9eTEFBQbrLk+NwxABqrX3rUY69BLw0KhWJiByHwYTDi6kO5zNdfbzSM0DMWjwGzsrK5BOVxSzNDbE4J5PgFA2cANYm6Op6kZbWP9Da+iSRSBPGeMnPX8rMGZ8kHL4crzcv3WWKiIgcpKOjgxdeeIFXXnmFoaEhiouLue6661i4cCE+39RahX6yONoU3G8C/2qtbT3MsW9Za78wqpWJiBzGUMLhpZ7+4Xs4X+4ZIGotbgNnZAX56LQwS3NDnJeTSaZnaq925zgxurrWpRYSepJYrB2Xy09B/sWEZ3+OwoK34PVmp7tMERGRgziOw/bt21m3bh1bt27FGMNpp53GeeedR2Vlpbb6muCONgX3duC9xpjbrbVPHHLsrYACKPDjfW0E3C6uL8rFrznnIqdcxHF4pWeAtakptS/19BNxLC5gYVaAD1eEuTAvxPk5mWRN8cAJMDTUSGfnM3R0PkNb21PE4124XAEKCy+jKHw1BQWX4vFkprtMERGRNxgcHOTVV1/lhRdeoKOjg8zMTC655BLOOeccsrP1B9PJ4mgBdAdwK/ATY8w1wN9ZayOpY/qzA8mboH/d3Mlz3f380/YGPlhWyAfLCwj7vOkuTWTCijoO63sHWdvZy9quPl7s7mfQsRjg9FCA28oLWZqbDJw5Xu0kFY2209n1PJ2dz9LR8UxqESHwevMoLLiEcNFVFORfjNut1QBFRGR8am5u5oUXXmD9+vXEYjGmTZvGZZddRnV1NR6PftZPNkf7ilpr7WvGmPOAbwMvGWPea62tHaPaxj1jDL8+aw6rO/u4p76V7+5q4ge7m7m+OJePVIRZlBVMd4ki41rEcdg5GGH7QISt/UM819XP8939DDrJnZ5Oy8zg/WUFLM3N4vzcTPIUOInHe+nqepGOzmfo7HyWvr5NALjdmeTmnkdF+fvIy7uAUGg+xmhWhoiIjE+JRIItW7awbt06du3ahdvtZuHChZx33nmUlZWluzwZRW/625y1dgj4VKoL+ltjzA9Gv6yJwxjDJflZXJKfxfaBIe6rb+NnTR38oqmTJTmZfLgizNWFOXim2Ab2IvtZa2mOxtk2MMT2gWTY3P9471CUkZsKV2Vm8J7SfJbmhbggN0S+AieJRITu7pfo7HyWzs5n6emtxdoELpePnJxzmDXrM+TnXUBW1kJcLs2+EBGR8a2vr4+XX36ZF198kZ6eHnJycrjiiis4++yzCQbVvJkKjLX28AeMecVae9YhY0XA/cA11toxu9lq8eLF9sUXXxyrpztp3bE4P23s4L59bewdilKR4eVD5WHeW5pPrn6hlklqIOGwY2CIbamQuX0wGTR3DEToSxyImQGXi9lBP7ODfmYF/MwJ+pkdzGB20K97OAHHidPbW5ecUtv5DN3dL+E4UYxxk5W1iPy8C8jLu4CcnLNxuzPSXa6IiMgxqa+vZ926dWzYsIFEIsGsWbM477zzmDdvnvbunKSMMS9Zaxe/YfwoAbTCWlt/hGNLrLXPneIaj2iiBdD9EtbyZFs3d9e38mxXPwGXi1tK8/lwRSFzgvrFUSYex1r2RWJsHxk0U93MfZHY8HkGKM/wMieQMRw256RCZqnfi0ur1w2z1qGv/3U6O5JTaju71pFI9AEQClWRl3ch+XkXkJt7Lh5PVpqrFREROXaO47B161aefvpp9u7di8/n48wzz+Tcc88lHA6nuzwZZUcKoEdrx52Xuv9TTpDbGK4J53JNOJfXege4p76NnzS086N9bVyWn8XKijCX5mdpKWkZd3riiYPC5bbU452DEQadA3+0ynK7mB3M4ILcUCpoZjAn6GdmwE9gCu+5eTTWWgYHd9GRmlLb2fkcsVgHAIHADEqKryMv7wLy8pbg82ljbRERmXgSiQR1dXWsXbuW1tZWcnJyuOaaazjzzDPx+/3pLk/S7Ggd0AdGvHkd8NsRb1tr7YdGs7CRJmoH9HBaozEeSoXQlmicuUE/H64Ic2NJHpluTT+UsRN3LHuGom+8N3MwQms0Pnye20Blhm94muycoJ/ZgWTQDPs8+gPKMRiKNNHZ8Wxqe5RniUQaAfD7isnLv4D8vAvJy7uAjAwtuiAiIhNXNBrl5Zdf5tlnn6W7u5uioiKWLVvGggULcOv33CnnuKfgHvLOb7gfdCxNpgC6X9RxeLyli3vqW1nfO0iOx837Sgv4UEUhFRm+dJcnk4C1liHH0pdIsHMgwrbBg6fM7hqMEhvx7z/f62b2QVNmkx3NGQEfPt2bcVxisU46Op8bXjhoYGAHkNwaJS93CXl5F5CffyGBwAwFeBERmfAGBgZYt24dzz//PIODg1RWVrJs2TLmzp2rn3NT2MkG0JettWePSmXHYDIG0P2stbzQ3c899W38vq0LgGsKc/hIRZjzcjL1j3aSiTmWIcdhyHEYSDgMpd4eTCTHhhKWQcdh0HEYSh0fPuY4DCZS5484dyh1bvKxTb2fc9BU2f18xjBjeOEf//C02dlBv1acPQnxeB9dXS+kFg7avzWKTW2Ncu5whzMUqtLWKCIiMml0d3fz7LPP8tJLLxGLxZg3bx7Lli2jsrIy3aXJOHAi94DKGDDGcF5uiPNyQ9QPRXlgXxsPN7Tzu9ZuFmUF+EhFmHcU5eJXB2pc6I7F2dI/xOb+IXYNRhkYGR6HH9vhQLg/KO4PjYk3/3vPYXmNIeA2ZLhcZLhcBNwuMlyGgMtFtttNsc9LhsuQ4XYRSJ2T4U4eD7pdTE+Fzgq/T1sCnQKJRISenleG9+Ls6anF2jjG+MjJOYtZM/8PefkXkJ21SFujiIjIpNPa2sratWupra3FWsvChQtZunQpxcXF6S5NJoCj3QP6W2D/wYuB1SOPW2vfMbqlHTCZO6CH059I8KumTu6pb2XrQISwz8NtZYV8oLyAsE+/zI6FvniC1/uH2DwwxJa+oeHQ2RQ9sNKr32XIHBH49ofCA48PhMCAy0XGiNCYMeLc4P5zXWbE+yXfDqYeu9UJT5t4vI/+/tfp63udvv4t9PVtoafnVRwnArjIzl6UnFKbdwE5OedoaxQREZm09u7dy9NPP82WLVvweDycc845XHDBBeTm5qa7NBmHTmQblkuOdkFrbc0pqu1NTbUAup+1lprOXu7e28r/dvTiM4Z3FufykYowC7O0Ue+pMJBw2DqQCpipoLllYJD6oQNBM+AyzM3MYH5mBlWZAeanHlf4vZoiPYk4TpSBgZ309W2hr//1VOjcwtDQgd2o3O4gmZlzyck+i7z8C8nLPU9bo4iIyKRmrWXbtm08/fTT7N69m4yMDM4//3zOO+88MjMz012ejGMndQ9ouk3VADrStoEh7qtv45GmDgYSDktyMlk5LcxVhTnqjh2DiOOwfSDC5v793cxBtvQPsXswOtzm9xnDnKCfqlCA+cEMqkLJoDktw6fP8SRirWVoaB99/VvoT4XNvr4tDAzsxNrkHx6M8RAMziQzcx6h0HxCmfMJheaRkVGhezhFRGRKSCQSbNy4kaeffprm5mays7O54IILOPvss7WVihyTE+mAXg9UWGv/M/X288D+HWM/b6395WgVeygF0AO6Y3F+0tjBfftaqR+KMS3Dx4fKC3lvaT45WkSGmGPZMRg5KGRu6U/uX7n//kuPgVmB/R3N1OtQBjMy/Lo/cpKJRjtSQXP/9NnX6e/fSiLRN3xOhr+MzND84aCZGZpHZnAmLpd+uIqIyNQTi8V49dVXWbt2LV1dXRQWFrJ06VIWLlyIx6PfNeXYnUgAXQu821q7N/X2q8DlQCbwgLX28tEr92AKoG8Udyx/bO/mnr2tPNfdT9Dt4paSfD5cUcjs4OS/By1hLbtSQXP//Zlb+pPbi+zfWsQFzAj4h0Pm/pfZQb+2FZlkEolB+vu3Dt+nuT9wRqOtw+d4PLnJkBmaN6KzOU9TaEVERIDBwUFefPFFnnvuOfr7+ykvL2fZsmXMnz8fl35vkhNwIqvg+vaHz5SnrbXtQLsxRhO+08zjMlwbzuXacC51vQPcU9/Kww3tPLCvjcvzs/nItEIuycua8PcoOtaydyj6hqC5bWCIoRHbjFRm+JifmcFbC7KHO5uzgxkE3PoPczJxnDiDg7sP6WpuYXBwD/vXTHO5/GRmzqUg/6JkZzM1fdbnK5rw/x5EREROtZ6eHp577jlefPFFotEoc+bMYdmyZUyfPl0/N2VUHK0Dus1aO+cIx7Zba2ePamUjqAN6bFqjMX68r50fN7TRGo0zN+jnIxVhbizJJ5iGIOZYS8SxRByHqGOJWEvUcVJjIx87REec2xlLDE+h3ToQYSDhDF+zzO8d7mQmO5sB5gX9ZHrcY/7xyeix1hKJNA0vBLR/+uzAwDYcJ5o6y0UwOJ3MzPkH3acZCFRijL4fREREjqa9vZ21a9eyfv16HMdhwYIFLF26lNLS0nSXJpPEiUzBfRh4ylp7zyHjHwUutda+Z1QqPQwF0OMTcRweb+ninr2t1PYNkutx876yAq4uzCFhbTIMpsJfMvg5hwTC1OMR50adQ8Pk/vc5+HjUHgiV8ZNY36rI5zkoZFZlZjAvM4NsBc1JwXHixOJdxKLtRGMdxKIdRKNt9A9sH+5sxuM9w+f7fcVkhg5Mm80MzSczOEdbnoiIiBynhoYGnn76aTZu3Ijb7eass87iwgsvJD8/P92lySRzIgG0CPgNEAFeTg2fA/iBd1prm0en1DdSAD0x1lrWdfdzd30rq1q7cd78XYZ5DPhdLvwug8+48LkMfpfB7xrxeHg8dd7I48bgS40nj7kOvL859FoHv3+W20WuFlSaUBwneiBIDr9uP/B2rINo9MDreLybA9sMH+B2hw4Kmfu7ml5v7ph/TCIiIpOFtZYdO3awdu1aduzYgd/v59xzz2XJkiWEQqF0lyeT1HHfA2qtbQEuNMa8BViQGn7CWvu/o1SjHANrLY4TIZEYOPqLM0gi3k+BM8jnff28P2zYGcvG5/YScHvJcPvIcGeQ4fET8PgJuDPI8AQI+oJkeIL43Jl4PEHc7iDG+HQPwBSTSAwcCIxvCJYjA2U70WjHQavKHsyF15uHz5eP15tPKHM+3rx8fN58vL7Ua28+Pl8BXl8BPm+BvtdEREROEcdx2LRpE08//TSNjY2EQiGuuOIKFi9eTEaGZhFJehwxgBpjQtbavlTgPGzo3H/OqFU3gVnrkEgMDgfBhDNIItGfHBt+/SYhMjFw2PM5jl6mMV7c7iBed4D5uIbr2H8f3VDqpfOo1/DgdgcPeclMvQ4MP/YMjwdGHD9kzBPE487E5Qrgco1ul9Nai7UJrI2nXhKHvE4+dvaPObEjnmNtHGf/mJMaI4HBldoX0pW879AYjHEffhx3csy4hh8fOOfg8QOPTep+xkPPOWQ89TwHPzbDn4dEoo9otP0NnchkwGx/Q8B0nKEjfC94DwqPgUBFMkAOjxUMH/P58vF4crRvpoiIyBiLx+OsX7+etWvX0tHRQX5+Ptdddx2LFi3C6/WmuzyZ4o6WAB5Lbb3yGPCStbYfwBgzC7gMuBm4Bxiz/UDHo81bvkpv7wacxADxEcHRcQaP6zouV8aIwBYYDm1eb17ybVcAtycz+fqgkBc4TDg8cB2Xy3fY53OcOI4zSDzRTyI+kAq5h4bf5Fj8MGPJDlnLiGCcHLc2cRwfs++wQdXl8r8xCDqHCYIHBcTDj011+xfjOdLnwuXKOChQZmbOSYbIVIA8+HUBbndIHUoREZFxamhoiJdeeolnn32Wvr4+SktLuemmm6iurtZWKjJuHG0K7uXGmLcBHwWWGmPygRiwBXgC+KC1tmlsyhy/DAaPOxO3P4zbFcTtCR4hJB4tLAbGfNVOl8uDy5WV3APRf2qumZweHMVxBogfFGr7D+nm7g+1hw+98XgPxnhTXTwPLlcGLrcHYzzDY8a4Ma5Dxzy4ht8+MGaMB+Ma+bZ7xHneg69p3BjXiOc2B7+fOej9DMl7qJ1UwNvfcXWwOGAPHU9gsXC0c3Cw9sD4gXOc4eexqXM55BoHrn3wOWDxeHMOnu6aCpZud/DUfPFFREQkbfr6+nj++edZt24dkUiEmTNn8jd/8zfMmjVLfziWceeocyCttb8Hfj9GtUxI8+ffke4Sxg1jDG63H7fbj9ebl+5yRERERCa1zs5OnnnmGV555RXi8TjV1dUsW7aM8vLydJcmckRaalREREREZALp6OhgzZo1rF+/HoAzzzyTCy+8kMLCwjRXJvLmFEBFRERERCaA9vZ2Vq9eTW1tLS6Xi8WLF7Ns2TKys7PTXZrIMVMAFREREREZx9ra2li9ejV1dXW43W7OP/98li5dSlZWVrpLEzlubxpAjTH/Atxvrd0wBvWIiIiIiAjQ0tLC6tWree211/B6vSxZsoQLL7xQwVMmtGPpgG4C7jbGeIAHgJ9aa7tP5kmNMbnAvcDpgAU+ZK199mSuKSIiIiIyGTQ3N7N69Wo2bNiA1+tl6dKlXHDBBYRCoXSXJnLS3jSAWmvvBe41xswHlgO1xpi1wD3W2r+e4PN+H/iDtfZGY4wP0F4QIiIiIjKlNTU1UVNTw6ZNm/D5fFx00UUsWbKEzMzMdJcmcsoc0z2gJrlJZVXqpQ1YD3zGGPNRa+27j+cJjTE5wMXAbQDW2igQPZ5riIiIiIhMFg0NDaxevZrNmzfj9/u5+OKLWbJkCcGgejQy+RzLPaD/BlwH/AX4hrV2XerQt4wxW07gOWcCrcADxpgzgJeAT1tr+0/gWiIiIiIiE9K+ffuoqanh9ddfJyMjg0svvZTzzz+fQCCQ7tJERs2xdEBrgX84QkA87wSf82zgk9ba540x3we+CHxl5EnGmJXASoDKysoTeBoRERERkfGnvr6empoatm7dSkZGBpdddhnnn38+GRkZ6S5NZNQdSwBdD8w3xowc6wZ2n+BiRPVAvbX2+dTbvyQZQA9irb0buBtg8eLF9gSeR0RERERk3NizZw81NTVs376dQCDA5ZdfzrnnnqvgKVPKsQTQ/yLZsawFDMmVazcAOcaYj1trnzyeJ7TWNhlj9hpj5ltrtwCXAxuPs24RERERkQlh9+7d1NTUsGPHDoLBIFdccQXnnnsufr8/3aWJjLljCaANwIr9+4AaY04D/hH4PPAocFwBNOWTwMOpFXB3kFxdV0RERERk0ti5cyc1NTXs2rWLzMxMrrzyShYvXozP50t3aSJpcywBdN7+8Algrd1ojKmy1u44ZFruMbPWvgosPqF3FhEREREZp6y1w8Fz9+7dhEIhrrrqKs455xwFTxGOLYBuNMb8N/Cz1Nu3pMb8QGzUKhMRERERmSCstWzfvp2amhr27t1LVlYW11xzDWeffTZerzfd5YmMG8cSQD8I3A78n9Tba4HPkgyfl41OWSIiIiIi45+1lm3btlFTU0N9fT3Z2dm87W1v46yzzlLwFDmMowZQY4wb+L219jLgXw5zSt+oVCUiIiIiMo5Za3n99depqamhoaGBnJwc3v72t3PmmWfi8RxLj0dkajrqvw5rbcIY4xhjck5wyxURERERkUnDWsuWLVuoqamhsbGR3NxcrrvuOs444wwFT5FjcCz/SvqAOmPMn4D+/YPW2k+NWlUiIiIiIuOI4zhs3ryZmpoampubycvL4/rrr2fRokW43e50lycyYRxLAH009SIiIiIiMqU4jsOmTZuoqamhpaWF/Px83vnOd7Jw4UIFT5ET8KYB1Fr7Y2NMAKi01m4Zg5pERERERNLKcRw2bNjA6tWraW1tpaCggBtuuIEFCxYoeIqchDcNoMaY64DvAj5gpjHmTOAfrbXvGOXaRERERETGlOM4vPbaa6xevZq2tjbC4TDvete7WLBgAS6XK93liUx4xzIF9w7gPOApAGvtq8aYWaNYk4iIiIjImNofPGtqamhvb6eoqIibbrqJ6upqBU+RU+hYAmjMWtttjBk55oxSPSIiIiIiY0bBU2RsHUsA3WCMeS/gNsbMBT4FPDO6ZYmIiIiIjB4FT5H0OJYA+kng74EI8FPgj8A/jWZRIiIiIiKjYf/iQjU1NbS1tSl4ioyxY1kFd4BkAP370S9HREREROTUU/AUGR+OZRXcecBngRkjz7fWvmX0yhIREREROXkKniLjy7FMwf0F8EPgXiAxuuWIiIiIiJw8BU+R8elYAmjcWvvfo16JiIiIiMhJOjR4hsNhBU+RceRYAuhvjTG3A78muRARANbajlGrSkRERETkOCh4ikwMxxJAP5h6/bkRYxaYderLERERERE5dgqeIhPLsayCO3MsChEREREROVYKniIT0xEDqDHm89bab6ce32St/cWIY9+w1n55LAoUEREREdlPwVNkYjtaB/TdwLdTj79EcjXc/a4GFEBFREREZEwoeIpMDkcLoOYIjw/3toiIiIjIKXe44HnjjTdy2mmnKXiKTEBHC6D2CI8P97aIiIiIyCmj4CkyOR0tgJ5hjOkh2e0MpB6Tejtj1CsTERERkSnHcRw2btxITU0Nra2tCp4ik8wRA6i11j2WhYiIiIjI1KXgKTI1HMs+oCIiIiIio0LBU2RqUQAVERERkTGn4CkyNSmAioiIiMiYUfAUmdoUQEVERERk1Cl4ipwa1rEkuiO4gl5c/om3bI8CqIiIiIiMmkQiwWuvvcaaNWtoa2ujsLBQwVPkGFjHEu8YIt4yQKxlgHhz6nXrADbqUHDraQQWFKS7zOOmACoiIiIip1wikWD9+vWsWbOGzs5OiouLuemmm6iurlbwFBnBxh3i7YMHh8yWQWJtAxC3w+e5c3x4ioJknluCpyiItzwzjVWfOAVQERERETll4vE4r776Kk8//TRdXV2UlpZyyy23MH/+fAVPmdKcaIJ46yDx1gFiw0FzgHj7IDipkwy48zLwFgXxz8vDWxTEUxTAWxTElTE5otvk+ChEREREJK1isRgvv/wya9eupaenh/Lyct72trcxd+5cjDHpLk9kzDhD8QNdzFTIjLUMkOgcgv0NTRd4CgJ4ioIETi/EWxzEEw7iCQdw+SbefZ3HQwH0JG3duhWAuXPnprkSERERkbEXjUZ56aWXWLt2LX19fVRWVnL99dcza9YsBU+Z1BL9sQP3Z454neiOHjjJbfCGA/gqQnjPLkpOnS0O4ikIYDxTc0aAAuhJcByHv/71r7S1tfGhD32IkpKSdJckIiIiMiYikQgvvPACzzzzDAMDA8ycOZN3vetdzJgxQ8FTJg1rLU5vjFhL/3BHM9acXAjI6YsNn2e8LjxFQfyzcvEUB/GGg3iKg3jyMjBu/XsYyVhr3/ysNFu8eLF98cUX013GYfX09HDPPfdgjOHDH/4w2dnZ6S5JREREZNQMDQ3x/PPP89xzzzE4OMjs2bO55JJLqKysTHdpIicl0R8jVt97IGS2DBBrGcQOxYfPMRnu1H2ZqU5mURBvURB3jh/jUtAcyRjzkrV28RvGFUBPXmNjI/fffz+FhYUsX74cn8+X7pJERERETqmBgQGee+45nn/+eSKRCPPmzePiiy+moqIi3aWJHDdrLfG2QaK7eojs7iG6u4d46+DwcVemdzhkHlgIKBNXllcd/mN0pACqKbinQGlpKTfddBM//elP+dWvfsUtt9yiVd5ERERkUujv7+fZZ59l3bp1RKNRqqurufjiiyktLU13aSLHzMYcovt6iexKhs3onh6c/mRn0wQ8+KdnEzy7GF9lFt6STNyZ3jRXPHkpgJ4i8+bN4+qrr2bVqlU8+eSTXH311ekuSUREROSE9fb28swzz/Diiy8Si8VYsGABF198McXFxekuTeRNJXqjRHcf6G5G9/VBIjnz01MYIKOqAP/0bHwzsvEUBjR9dgwpgJ5C559/Pu3t7Tz33HMUFBRw7rnnprskERERkePS09PD2rVreemll0gkEixcuJCLLrqIcDic7tJEDss6lnjLwHDYjOzuIdE+lDzoMfjKswgtK8dfmY1vehbukG6XSycF0FPs6quvpquri9///vfk5uZqexYRERGZELq6unj66ad55ZVXsNZyxhlnsGzZMgoKCtJdmshBnGiC6N5eoruSU2kju3uHFwpyZXrxTc8mdH4pvunZ+MpDk3K7k3gshjEGt2fixTktQjQKIpEIDzzwAB0dHdqeRURERMa1jo4O1qxZw/r16wE466yzWLZsGXl5eWmuTCQp0R1Jdjd39RDZ00OsoQ+c5DFPcTA5lXZ6Nv7p2bgLMiblIkGDfb00bNnEvi0b2bd5I807tnL9Z/+BmWeek+7SjkiLEI0hv9/Pe97zHu69915+8pOf8JGPfISsrKx0lyUiIiIyrK2tjTVr1lBbW4vL5WLx4sUsXbqUnJycdJcmU5h1LLHG/mRnM7VgUKIrAiT32vRNyyLrkmnJwFmZhSs4+RYLstbS3dLMvs0bhkNne/0eAFxuN1mFleRXXEAiEUxzpSdGAXSU5OTk8N73vpf777+fn/zkJ9qeRURERMaFlpYWVq9ezYYNG3C73SxZsoQLL7xQfyyXtHCG4kT39B5YLGhPLzaaAMCV7Ut2N5eV45+ejbcsE+OefNNpnUSCll07aEh1N/dt2Uh/VycAXn+AUMFM8qddwWB/IY4TJhL1Yrxe3N6JeV+2puCOsi1btvCzn/2M+fPnc/PNN2t7FhEREUmLxsZGVq9ezaZNm/D5fJx77rlccMEFhEKhdJcmU4S1lkRn5KDVaWNN/WABA96SzGRnc0ZySq071z8pp9NGBgZo3LqZfVs20bBlA41bXycWSS6alJFVQEaokkSimMhQGOMqxOV2UVgRonhmNiUzsymelUNOODDuPzeagpsm8+fP56qrruIPf/gDf/rTn7jqqqvSXZKIiIhMIfv27WP16tVs2bIFv9/PxRdfzJIlSwgGJ+b0PZlY4p1DDL3eSWRbF5HdPTg9UQCM342vMoust1QmA+e0LFwZkzOa9La3Dd+72bBlE627d2KtA8aQmVNOIPcMXENhoBRcWRifj4qZ2ZTMyqFkVjbhymy8fne6P4xTZnJ+lceZJUuW0NHRwbPPPkt+fr62ZxEREZFRt3fvXmpqati2bRsZGRlceumlnH/++QQCgXSXJpOYjTlEdnUztKWTodc7iLcMAuDO8eOflTO8YJC3JHNS7r1pHYe2+j2psJmcTtvT2gKA2+MnI3sagdwLicWKcXlKsR4/uWVZlMzKpmRmDsUzs8mapAsp7acAOkauuuoqOjs7+f3vf09eXh5z5sxJd0kiIiIyCe3atYvVq1ezY8cOgsEgl19+Oeeeey4ZGRnpLk0mqXj7IEOvdzK0pZPI9i5szAGPwT8zh8xzS8mYn4dnAkwZPRGxaISmba8nFwvavIGG1zcTGegHwJuRjTdQgS9zAbjKMO4wgdwAxTOTnc2SWTkUTgvh8U6e7uax0D2gYygSiXD//ffT2dnJihUrKC4uTndJIiIiMglYa9m5cyc1NTXs3r2bzMxMli5dyuLFi7UIopxyNpZgaEc3kS2dDL3eSbwt1eUsyCBjXh4Z8/Pxz8rB5Zt8wWqgp/vAdNrNG2neuR0nkdyD1J9ZDK5SnEQJxlOGx59H8fTkPZslM7MpnplDKM+f5o9g7BzpHlAF0DHW3d3Nvffei8vl4sMf/rBWnBMREZET5jgOr7/+Ok8//TT19fVkZWWxbNkyzj77bLzeybc9haSHtZZ422BqWm0nkR3dEHcwXhf+WTnDodNTOLmmd1tr6WxsYN+WDcP3b3Y27gPAuDz4AmUkEiUYdxkuTyk5RXnD3c3imTkUVoRwe6buAqQKoONIQ0MDDzzwAOFwmNtuu01/mRQREZHjEo/Hee2111i7di2tra3k5uaydOlSzjrrLDwe3WElJ8+JJohs60pOrX29k0RHcpVWTzhwoMs5MxsziaaPJuJxmndsY9+W1P2bmzcx2NsNgNsTxOUtw1KKy1OON1BCycz8gwJnMFu/04+kADrObN68mZ/97GdUVVVpexYRERE5JpFIhJdffplnn32Wnp4eiouLWbp0KQsWLMDtnjxBQMaetZZ4y8CBLufObkhYjM+Ff3YuGfPzyJiXjyd/8txLHItGaNq6hfpNG6jf9BoNr28mHo0A4PHlYynFeMpwecrJKy2ndFYOxbOSCwUVlGXimoR7kp5K2oZlnKmqquKqq67ij3/8I3/+85+58sor012SiIiIjFP9/f2sW7eO559/nqGhIaZPn851113HnDlzJuXCLjI2nKH4wV3OrlT4Kg4SWlpGxrx8/DOyMZNkGml0cICGLZuo35wMnI3bXseJxwGDx1+ENafhzSzHn1lJ6ZxSilOr0pbMzCEjpCntp4oCaBrt357lmWeeIT8/n8WL3/AHAhEREZnCurq6eOaZZ3j55ZeJx+NUVVWxdOlSpk2blu7SZAKy1hJrGmBoSwdDWzqJ7u4Bx2L8bjLm5OJ/y7RklzN3ciyUM9jXy77NG6nf9Br7Nr1G887tWMcB48IfLMPlOQt3Rjm+jArKq0qYVp1PRVU++WWZuCbhFjHjhQJoGhljuPrqq+ns7OSJJ54gNzdX27OIiIgIzc3NrF27lrq6OowxLFq0iKVLlxIOh9NdmkwwzmCcoW2dw1NrnZ4oAN7STLIuLidjXh6+6dmYSTCdtL+rc3g67b5Nr9G6dzdYi8vtISM0DW/wfCxluLylFFUWMK06n2mn5VM6Kwe3d+J//BOF7gEdB/Zvz9LV1cWHPvQhbc8iIiIyBVlr2bNnD08//TRbt27F6/WyePFilixZQk5OTrrLkwnCOpZYY3+yy/l6J9E9PeCAyfCQMXf/vZx5uLMnfpezp61lOHDWb3xteIVat9dPMHc6iUQJ8WgJxlNCVkEmldX5VFTnU1GVRyCkBYNGmxYhGue6u7u55557cLvd2p5FRERkCtm/lcratWvZu3cvwWCQ888/n3PPPZdgMJju8mQCSPTHiIzscvbFAPCWh4YDp29aNsY9caeVWmvpamo4EDg3vUZPawsA3owgofyZWEoZ6AtjXEX4Az7K5+clu5zV+eQUBXS/9BhTAJ0AtD2LiIjI1HG4rVQuvPBCzjzzTP0OIG8q1jLA4IY2hjZ1EN3bCxZcQQ/+uXkHupwTuMtnHYf2+j0HAufmDfR3dgCQEcomOzwbTBm93YU4iTxcbjfFM7KZVp0MnUUzs3FPgmnFE5kC6ASxf3uW6upqbrrpJm3PIiIiMsloKxU5EdZaYvv6GNzQzuCGNuItgwB4p2URmJ+Hf14evooszARdPMdJJGjdvZP6Ta+xd+Nr7Nu8gaG+XgAyc/PJKZmLy11OX2cBgwMhjDHkFAWGO5zl8/PwB7S8zXiibVgmiJHbs/zlL3/hrW99a7pLEhERkVNAW6nI8bKOJbq7h8HX2hjc0J7cJsUF/lm5hC4oI3BaAe6ciXkvZyIeo2n7tuHptA1bNhIdTIbqnKISSuacidtbQV93IV0tHjqaDf5MD9NOSwbOiuo8sgsCaf4o5EQogI5DS5Ysob29nbVr15Kfn88555yT7pJERETkBGkrFTkeNu4Q2dGdDJ0b25P3c3oMGXPzyL5iOhnV+bgzJ96elLHIEI1bX6d+Ux31mzbQuHUL8Why39GC8mnMOGMpnoxpDPQU0rrX0rTbweUxlM7OoXppMnQWTsua0tujOAMDxJqaiDU0EmtsIHThhXjLy9Nd1nFTAB2HjDFcc801dHV18bvf/Y7c3Fxmz56d7rJERETkOGgrFTlWTjRB5PXOZOjc3IEdSmB8bjKq8gicXkjG/Dxc/on1a3tvRxuNr2+m4fVNNGzZTPPO7TiJOBhD0fRZVC29Am+wkqG+Ahp3xNizJblwUn5ZBqdfkgycZXNz8fqnxrR06zjE29qINzYSa2xMhcxk0Iw3NBJraCDR1XXQ+5T/679MyACqe0DHsaGhIe6//366u7tZsWIFRUVF6S5JREREjkJbqcixcgbjDG7uYPC1NiKvd2JjDq6gh4zTCpKhc3YuZoLsTZmIx2ndvZOG/YHz9U30trUC4PH6KJ49h+JZ88nImsFgfyGN2wbpah4AIJjtS93HmUdFdT6ZE3RK8ZsZ7l7uayDW2ECssTEZLPcHzqYmiMUOeh9XZibesjI8ZaV4S0vxlpbhHX5ciqeoCOMdv91wLUI0QXV1dXHvvffidrv5yEc+QigUSndJIiIicghtpSLHItEbZXBjO4Mb2ols6wLH4s72kbEgGTr9M3ImxFYpAz3dNG7dTMOWTTRs3UzTtq3D02lDBYWUzaumfF4VBRVz6O3MYsf6DvZt7sRxLB6vi7J5ucOLB+WXZU74e6Ct4xBvbSOeCpaxkcEy1cE8tHuJy4WnuHg4THrLSvGUluItKxsOmu4Jvi3juAugxhg38CKwz1r79qOdO5UDKMC+fft44IEHKC4u5rbbbsM7jv/SISIiMpVoKxV5M/GOoeGVa6O7e8CCpyCDjNMLCSwoGPcr1+7fDmVkd7OzsQEAl9tN0YxZlM2rpmx+NaVzq/Bl5LLj1Va2vdxC/eZOrGPJDgeYfVaYytPyKZ2di3uCdHb3c/r7D7r3Mtm9bDgQNJub39i9DIVSYbI01cEsGw6aw91Lz/FPq3asw9bOraxrWsdbp7+VksySU/VhnnLjcRXcTwObgOw01jAhlJeX8653vYtHHnmEX//619x4443ankVERCSNDt1KpaioiBtuuEFbqQiQ2qMztXJtbF8fAN6STLIvryRweiGe4uC47fpFBvpp3LplOHA2bt1CdDA5XTaQnUPZvGpOv+xKyuZVUTx7Ll6fn6G+GDtebeWpn+yjfvNrw6HzrLdWMuecIgqnhcbtxwvJqfPxllYiWzYT2bqNWEPDcAcz3tBAorv74Hdwu/EUF+EtLSNw5plkj+xgjkL3cm/vXp5vfJ7nG59nXdM6OoaS+6HmZ+Rz7axrT9nzjJW0BFBjTAVwLfB14DPpqGGiqa6u5sorr+TJJ5/U9iwiIiJpoq1U5HAO2qPztTbircntRHyVWeS8bSaBBQV4xuGWIdZaupoakmEzNZ22be9usBaMITxtOtXLLqFsXjWl86rILS4d/j4f6ouxdd0bO53jPXTaaJTIjh0Mbd5MZPMWhrYkXyc6O4fPcWVlDU+NDZx5xkHTYr2lpXjC4RPqXh6rtsE21jWu4/mmZOjc17cPgHAgzIVlF3J+6fksKV0yrrufR5OuDuj3gM8DE3ti8xi74IIL6Ojo0PYsIiIiY+zQrVTmz5/PsmXLtJXKFGYdS3RXD4MbDrNH54Xjc4/OWGSI5u3b2JeaStv4+mYGe3sA8AczKZ07n3nnL6VsXjUlc+bhP+T+5cG+KDtfbWPbS83Ub+ka96Ez3tlJZPNmhjZvIbJ5U/L1jh3D02WN349/7lxCl7+FjPlVZFTNxz9vHu4xXjCsN9rLi00vDgfObV3bAMjyZXFeyXl8cMEHOb/kfGbmzBxXn98TNeYB1BjzdqDFWvuSMebSo5y3ElgJUFlZOTbFjXP7t2fp7OzkiSeeIC8vj1mzZqW7LBERkUlLW6nISDbuENnelbqnsx2nf/zu0Wmtpbe99cC9m1s207p7B04iAUBeWQWzzjmPsnlVlM2rpqB8GuYwt3hNhNBpEwmiu3a9oasZb2kZPscTDuOvqiJ08UX4U2HTN2PGqHYyjySSiPBqy6vD02o3tG8gYRNkuDM4q+gs3j7r7SwpXUJVfhVu1+Sb0j/mixAZY74J3ArEgQyS94A+aq19/5HeZ6ovQnQobc8iIiIyehzHYdu2bTz33HPs2LEDr9fLOeecwwUXXKCtVKagg/bo3NSBjaT26KzOJ7CgYNzs0ZmIx2jZuSO1UFAydPZ1tAPg8fspnT2PsvnVyem0c+cTyDryMixHCp1zzi5Ke+hM9PYS2bKFoU2bh4NmZOtWbCS5Ci8eD/7Zs5PdzP1dzaoqPPn5aakXIOEk2Ni+keebnue5xud4teVVIokIbuPm9MLTh6fUnhE+A5978ixeNu5WwQVIdUA/q1Vwj9/+7Vk8Hg8f/vCHtT2LiPx/9v4zuq00PdNGL+QM5pxzkMQsSlWqoMqxc7fd1d22x5/D8YzHy/PNzK/z/6yzzlqfJxx7xv7G4zB9urvc7poOrq7UlYNUCsyUKOacQJAEkePe+/zYIEhKqipJxaz3Wgtrg8AG9ssE4N7389yPQCD4kkSjUfr6+rh8+TLr6+s4HA5Onz5NR0eHGKVynyGHE4RvrBG+tkZ07HDO6AxueFhMjkJZGhtmeWIMKVla6szJSzqbqruZU1aB9gvCsQ6b6FRkmfj8/DZXc4To8DDxhYXUPrr0dEz19ZjrVJFprq/DWFWF9oATqBVFYWJjIlVS27XchT/uB6A2o5bO/E7OFpylPa8du/H4foYXAvQYIsazCAQCgUDw5fF4PFy5coWenh6i0ShFRUWcPXuWxsZGkWh7HyFHEuqMzoFVImMekA7PjE5Zllibn1ODgkZvsDhygw3XEgA6vZ7cymp1FEptPYU19dgzs+7oeT9TdLbnUt22f6JTDoWIjo0RGR4hMnxDdTVHR5GDQXUHrRZjefmtrmZu7oGX/26yGFjk8pLqcF5ZvsJqeBWAYntxyuE8nX+aLMud/W6OA4dSgN4ph1mA+t6dRWPSYT9XeCD/ADdu3OCnP/0pjY2NYjyLQCAQCAR3iKIozMzMcOnSJUZGRtBoNDQ2NnLmzBkRLHQfIUcTRG6sExpYJTKyrorONBOWpmwsp7IPbEZnLBxiaWyUxdEbLIwM7RiFYk1LT83dLKxtIK+iCv1dOH7hQIzJXjcTPSv7LjoVRSGxvKy6miMjyXCgYWIzyeRd1PmZprq6pKtZh7mhAVN1NVrL4UoRXo+sc2X5SqqPc84/B0CWOYvOAtXhPFNwhiJ70QGv9OA4jHNAjzyKrBBfChC+tkZ8OUjG16vR6PdXADY0NPDUU0/x9ttv89577/Hkk0/u6/EFAoFAIDhKJBIJrl27xqVLl1heXsZisXDu3DlOnz4t+jvvE+SoRGR4ndCAWxWdCdXptJ8twNKUg7Fkf0Wnoij43C4WR26wkHQ4V2dnUBT5llEohbUNpOXl37VA/CzR2fp06Z6KTsnvJ9zTQ6irm/DAANHh4R0zNQ0lJZjr63C++GLK1TQUFR0aV3M7wXiQbld3SnCOeEYAsBvsdOR18L3673Gm4AzV6WIk0xchBOiXQKPVkPm9BnzvzuJ/d5aEO0zWDxrQOfa37vzBBx9kfX2dTz75hKysLFpbW/f1+AKBQCAQHHb8fj9dXV10dXURDAbJycnhK1/5CqdOncJ4wP1igr1HjklERtbV8trhdbWn02HA3lmApSkbY6lz30RnIh5nZWqCxZGhVFhQcEOdQWm0WCioqefst86mwoJMVts9HecgRGd8ZYVwdzehrm5C3d1ER0ZUZ1Ovx1xfj+Ppp7dczdpadIc4wyQmxeh396cE57XVaySUBEatkZbcFv6s9c84U3CGE1kn0GuFpLobRAnuLhEacOP52Shaq4Gs323EWLS//1CSJPGTn/yEqakpfvCDH4jxLAKBQCAQAIuLi1y+fJnBwUFkWaampoazZ89SWVkpXIpjjhKXiIx4VKfzRlJ02g1YTmZjbcrGWJ62L6Iz5N1Q526OqOm0rsmtsKC0vPyUs1lU10BWSSnaLzF243aiMy3HQtUelNcqikJ8ZobQNsEZn50FQGOxYGlpxtregbWjHUtTE9pDHuSVkBMMrw+nymp7XD1EpAhajZYTWSc4U3CGMwVnaMlpwaw3H/RyjwSiB3QfiC0EWPvhEHIoTsZ3arE27e+MsEgkwt/93d/h8/n4wz/8QzGjTCAQCAT3JZIkMTIywqVLl5idncVgMNDa2kpnZyfZ2dkHvTzBHqIkZCKjSdE5tI4Sk9Da9FhOZmNpysFUsbei85awoNEbbCzfGhZUlOzhtKVnfOlj7pfoVCSJ6MhISmyGerqR3GrQji49HUt7O9b2dqwd7ZgbGtAc8nBMSZYY9gxzdekqV11X6XH1EIgHAKhKq0oJzo78DpzGzx5ZI/hshADdJyR/jLUf3SA248PxRCnOJ0r3tY9gY2ODv/3bv8VgMIjxLAKBQCC4rwiHw/T29nL58mW8Xi/p6el0dnbS2tqK5ZAFmAh2DyUhExnfINzvJjy0hhKV0Fr1WE5kY2nKxlSZvmfptdvDgjbnb+4MC6pPBgY13nVY0OceN5Jgqn+V0cvLzA179kR0ytEokcHBlOAM9/YiB1SBpi8sUN3NpOA0VlaiOeRBmJIsMeoZ5cryFbqWu+h2dadGo5Q7yzmdf5rT+afpyOsgxypMnN1ACNB9REnIeH4xTqjbhflEFpm/VYfWtH8x7vPz8/zjP/4j+fn5/N7v/Z4YzyIQCASCY83q6iqXL1+mr6+PeDxOWVkZZ8+epa6uTqTDH1MUSSY6vkFoYJXw9TWUSAKNWY/lRBbWpmxM1elodLv7u98RFpTs3VydmU6FBWWXlFFYW09RXeM9hwV9HpIkMze0zugVF1P9bhIxGUemmZrTebsyp1Py+wn39qYEZ2RwECUWA8BYXZUqp7W2t2MoLNytb2vPkBWZUc8oV5evcnX5Kl2uLvwxVXCWOcvoyOugM7+TjvwOcq25B7za44kQoPuMoigELizifW0SQ56NrN9tRJ+5f/XiQ0ND/PM//zMnTpzgW9/6lngDFggEAsGxQlEUJiYmuHz5MmNjY+h0Ok6ePMnZs2cpKCg46OUJ9gBFUohObhDqdxMZWkMOJdCYdFhOZGFpysFcnb6r0whSYUGp/s2tsCCD2UJBTV2qd/PLhAV9Hoqi4JryMXp5mbHuFSKBOCabnur2PGo78yiovPeS4oTbvaN/MzoyArKsBgY1NqbcTUtbG/qML18qvNfIisyYZ4wuVxdXlq7Q5erCF/MBUOIo2eFw5tvyD3i19wdCgB4QkVEPaz8ZRqODrO83Yqrcv4j3Cxcu8Pbbb/Pwww/zxBNP7NtxBQKBQCDYK2KxGAMDA1y+fBm3243NZuP06dN0dHSItpNjiCIpRKe8hAfchK+vIgcTaIw6LI2Zquiszdg10RnyeVNCc2Hkxs6woNy8VCltYW092aVlXyos6IvYcIUYubLM6BUXPncYnUFLRVM2tZ15lJ7IQneX37OiKMRnZ7f6N7u7iM9sCwxqbt4SnM3Nhz4wCFTBObExkSqp7XJ1sRHdAKDIXkRnfmdKdArBeTAIAXqAxN0h1n44RGItQvrXq7B37s+ZWUVRePXVV+np6eFrX/uaGM8iEAgEgiOL1+vl6tWrdHd3Ew6Hyc/P5+zZs5w8eRK9XoxAOE4oskJs2quW115bRQ7E0Ri1mBuysJ7KxlyXgcbw5cSfIsusLy6wMDKUEp2epQUAtDo9eZVVSXezkYLaeuwZmbvxrX0uIV+MsasuRq8sszLjBw0U12VQ25lPVWsORsud/50rkkR0dHSH4EwFBqWl7QwMamw89IFBkKx62JjgqitZUrvchSeqOtKFtsKU2Dydf5pC++EvEb4f+CwBKl6x9wFDjpXcf9PC2svDbPx8nPhSkPQXK3e9N+FmNBoNL7zwAhsbG7z66qukp6dTUVGxp8cUCAQCgWC3UBSF+fl5Ll26xNDQEAD19fWcPXuW0tJSMUblGKHICrFZH6F+tyo6/XE0Bi3m+qTTWZeB1njvojMejbA8MbYtnXaYSEDtBzQ7nBTW1nPysacorGsgr7Iag9G0W9/a5xKLJJjqczN6xcXcjXUUBbJL7Jz7djU1HXnY0u9sHXIsti0wqItwbx+yX/3+9AUF2M6cTfVvGquqDn1gEKj//1PeKa4uX1VdTlcX65F1APJt+Txc/HBKcBbZiw54tYK7QTig+4giK3jfmCLw8QKmqjQyv9eAzrb3Z5w2x7NsbGzwW7/1W9TU1Oz5MQUCgUAguFcSiQRDQ0NcvnyZhYUFTCYTbW1tdHZ2knEEetEEd4YiK8Tm/IQH3IQGV5F9MdBrsdRlYGnOwVyfec+iM7C+liqlXRwZYmV6ElmSAMgsLFZLaevUwKCMgqJ9PZmxI0yoz00iLuPIMlPbmUdtZz6ZBV/cS6okEoQHBgleuEDw8iUiA9sCg6qqUu6mtb0dQ9HREGeKojDtm06FBl1dvspaZA2APGvejpLaIvv+/s4E94YowT1EBLtdeH4+hi7dRPbvNmLI2/2m9Zvx+/38+Mc/xuVy8cILL9DRccvfgkAgEAgEB0owGKS7u5urV6/i9/vJzMzk7NmzNDc3YzLtjyMl2FsURSE+H1CdzsFVJG8UdBrMdZlYm7IxN2SiNd1dgZ4sS6zOzuzo3/S5XQDoDUbyq2vVcSjJ/k2LY/9nOn5WmFBNMkwovyrtCwVVbH6e4CcXVNF56ZLqcGq1amBQh5pQa2lvPxKBQaD+TGZ8MztKat1hNwC5llxOF5zmdN5pOvM7KXYUC8F5BBEC9JARnfWx9sMhlLhM5nfrsDRk7f0xo1F+9rOfMT4+zsMPP8zjjz8u/pkFAoFAcOC4XC4uX77MwMAAiUSCyspKzp49S3V1tUhxPwYoikJ8IaD2dA66kTxJ0VmjOp2Whky05jsXnbFwiMWxkZTgXBobJhYOA2BLz6CwriE1CiW3ohKd/uD6Gz3LQUavuBi9elOY0Jl8ShszPzdMSAoECV25nBKdsZkZQC2ptT90Dtu5h7CdPYMuPX2fvpsvh6IozPnntkpql7tYCa8AkGPJoSO/I+VyljpEif1xQAjQQ0jCG2Xth0PEFwM4nynH8ejen92RJInXXnuNnp4eTp06xde+9jUR3iAQCASCfUeWZcbGxrh06RJTU1Po9Xqam5s5c+YMubliJt9RR1EU4ktBtbx2YBVpPQJaDeaadCyncrCcyEJ7B6E6iqLgX3WzMDKkltPeNHszp6QsWU6rjkNx5uQduHAJeqOMd62kwoQ0Giiqy6DuTD6VLZ8dJqRIEpGhIdXh/OQCob4+SCTQWCzYOjuxnTuH7aGHMFaUH/j3eCcoisKUb4puVzfdrm66lrtwhVRnOsuclZrB2ZnfSZmz7Eh8T4K7QwjQQ4ock/D87zHC/W4sLTlkfqvmSye7fRGKovDJJ5/w7rvvUlZWxne/+10sFsueHlMgEAgEAlDLbPv6+uju7mZ9fR2n08np06dpb2/HegRGPwg+G0VRSLhCqfLaxGoYtGCqSsfalBSd1s93I6VEAvf05I7+zYBHDZ4xmMzq7M26xj2dvXkvbIYJjVxxMZ8ME8opdVDbmfe5YULx5WVVcF64QPDip0gbGwCYGxtTgtPS2oLWaNzH7+bekGSJsY2xlODsdnWnQoOyLdm05bapDmfBaSqcFUJw3gcIAXqIURQF/wdz+N6awVBsJ/t3GtGl7X2vy8DAAL/85S/JzMzkBz/4AelHpIRDIBAIBEcLRVGYnp6mq6uLGzduIMsyJSUlnDlzhoaGBnS6vT3xKthb4q6gWl474CbhDoNGFZ2WU9lYTmZ/buBiJBBgcewGiyM3WBgZYnl8jEQsCoAjO0ctpa1roLC2gZzScrSH6G/lXsKE5HCYUFcXwU8+IXDhArHxCQD0OTmq4Dx3DtuDD6DP2vvWrC9LXIpzfe16Smz2rfThj6vJu0X2Itrz2lMXUVJ7fyIE6BEgfH2N9Z+OoDHpyP7dRowljj0/5tTUFD/96U/R6/V873vfo7BQzE0SCAQCwe4QCATo7+9PuZ1ms5nm5mba29tFme0RJ+4OER5YJTTgJuEKqaKzIg1LU1J02m917BRFYWN5MVVKuzhyg7X5WQA0Wi255VWpZNrC2gYcWdn7/W19IXcbJqQoCtGREYIXLhD45BPCXd0o8TgakwlrR0dKdJpqaw69QAsnwgy6B1OCs9/dT0SKAFCRVrElOHPbKbDvz8x7weFGCNAjQnw5yOoPh5B8UTK+VYutde/foFdWVvjxj39MKBTiO9/5DrW1tXt+TIFAIBAcTxRFYWpqiu7u7pTbWVpaSnt7O42NjRiOwMB7we2Jr4YJD7gJD6wSXw6CBoxlTrW89lQ2OsdO0ZmIx1mZGk+V0i6ODhPybgBgstkorKlPldPmV9ViMJsP4Lu6M1JhQleW8a1G1DCh5mxqO28NE0qsrhK8eFEVnRcuIq2uAmCqqcH20EPYzp3D2tGO9hB/vwD+mJ++lb6U4Ly2do2EnECDhrrMupTgbMttI8ty+B1bwf4jBOgRQgrGWf/xDaKTXuyPFpP2TDka7d6eFfP7/fzkJz9heXlZjGkRCAQCwV0j3M7jSWItTGhQLa+NLwYBVXRaTmVjPZW9o2UoHPCrybQjQ2o57cQYUjwOQHpewVY6bV0DWUUlaA55wvHtwoSK6zOo7dwZJiRHo4R7epIu5wWiw8MA6DIytpXVPogh73D/H3giHnpcPXS5uuh2dTPiGUFWZPQaPY3ZjbTntdOR10FLbgtO4/6PshEcPYQAPWIokszGq5MELy1hrs8k87t1dxVRfi9Eo1FeeeUVxsbGeOihh3j88cdF/L1AIBAIPhNZlpmenhZu5zEj4Ymo5bWDbuLzAQCMJQ61vPZUDvp0085y2mRC7frCHABanY68iuodgtOWfjRmU8YiCSb73IzeLkzodB62NPV7j01MJB3OC4SuXEWJRMBgwNramnQ5H8Tc0HCoRbYr6NoRGDThVftRTToTTTlNKYezKbsJq0EEhAnuHiFAjyiBS4ts/Msk+mwz2b97An323qbVSpLE66+/Tnd3NydPnuTrX/+6GNMiEAgEgh0EAgH6+vro6elJuZ0tLS20tbUJt/OIktiIEh5Uy2tjc2qQjKHYjvWUWl6rcepwTU6k3M1bymlrt8RmflUNBtPhLi/dTipM6PIyU/2rJOIyzmwzNafzqDuTT0a+jYTHQ+jTTwlcuEDwwkUSy8sAGCsqkmm157CdPo3WdjhSeW9GURTm/fMpd7Pb1c18YB4Am8FGa25rSnCeyDqBUXf4U3cFhx8hQI8wkYkN1n98A0WBrO/XY67e27OIiqJw4cIF3nnnHcrKyvjt3/5tEY0vEAgE9zmbbmdXVxfDw8Mpt7Ojo4OGhgbhdh5BJF9UTa8dXCU24wPAUGjD0pSDtsqCa2Uy5W66JsZIxGPA0SynvZnbhQmZbQaq23OpPZNPXomFSH9/SnBGrl0DRUHrdGJ74AFsD53D/uCDGIqKDvpbuS2yIjO5MbnD4VwJrwCQbkrfkVBbm1GLXivMBsHuIwToESexFmb1h0Mk3CHSX6jE9mDhnqelDQ4O8stf/pKMjAy+//3vk5FxNMpnBAKBQLB7bLqd3d3deDweLBZLqrczJyfnoJcnuEskf4zwoJpeG5vxgQL6fCuaChNrehfz89ePTTnt7fi8MKHCfAhf/ITABx8S/OQT5EAAdDoszc3Yzj2I/aGHMJ88ieYQjYLZJCEnGPGM0L2sis2elR42ohsA5Fpyac9X+zfb89qpSKtAqzlaJwwERxMhQI8BcjTB+j+NELmxju10Pulfq0Kj39sXkOnpaf7pn/4JnU7H9773PYoO6Zk+gUAgEOwesiynkmw33c6ysjLa29uF23kEkQIxwtdWCQ+sEp3yggKk6/A7fcz4hpia7Dk25bS347PChGpO51Fk9RD79CMCH3xIeGAAFAV9Tg72849ie+QRbGfPonPs/Vi8uyWSiDC4Oqim1K6oMziDcTUkqsRRssPhLLYXH/oRL4I7QIqD6xrMd8FCt7r9yn+B8ocOemWfiRCgxwRFVvC9PYP//TmM5U6yftBw21lbu4nb7ebHP/4xwWCQb3/729TV1e3p8QQCgUBwMNzO7dzs7RRu59FCCsZV0Tm4SnRiAxSImWIsJ6YZXriEJ7wEHI9y2tsRiySY6nMzclOYUE1rJoXyDPLlDwl8+CEJlwsAc1MT9vOPYn/0UcyNjYdOsHkiHnpXeuld6aVnpYehtSEScgKAqrQqOvI7UiNR8mx5B7xawZdGUcA7DwtdqtCc74KlPkioc1ex5UBRBzz876Gk80CX+nkIAXrMCPWvsP6zMXR2A1m/24ix0L6nx9s+puX555/n9OnTe3o8gUAgEOwPwu08PsihOKHrq/ivLpCYC6FRNIQUP1PeQeYCN/DLHnIrqiiqazwW5bQ3kwoTuuJiqs9NIi7jyDJT3WCjMDKM9sq7hC5dRonF0Nps2M6dw37+PPZHHkafnX3Qy0+hKApz/jl6VnpSonPKOwWAQWvgZPZJWnNbacttoyW3hTRT2gGvWPClifphsXdLbC50QUA9OYLOBAXNUNwBRe1QfBrSS+GQnSS5HUKAHkNi837WfjiEHE6Q8Vt1WE/t7YtnLBbjlVdeYXR0lHPnzvHEE0+IMS0CgUBwRPH7/akkW+F2Hk2UuExszo/3+gKB68sYNnRo0BKIe5gNDuOSZ7BV5FBUf3zKaW/m9mFCespLtRT4r2G6/DqxsTEADGWlOM6fx37+PNb2djTGw5H0GpfjjK6PpgRnj6uHtcgaAE6jk9bcVlpyW2jLbeNE9glMOtMXPKPgUCNL4B7eEprzXerXiqzen1mpisyiDihuh7xToD8cf6t3ixCgxxTJF2PtR0PEZv04nyzF8XgpGu3enRGRJIk33niDrq4uTpw4wde//nVxdlwgEAiOCJtuZ1dXFyMjIym3s6Ojg/r6evF6fsiRwwmiMz6iU15Co26k5QgaRX3P98ZWWdcskyjWkHWynML641NOeztSYUJXXfjcYXR6DcW5cfLX+7Ff+iXKxjro9Vg7OlKltaaKioNeNgDBeJB+d7/qbrp6GVgdIJwIA1BkL6I1tzXlcFamV4rAoKOOf3mn2FzshZg6Xxdz+paruelwWjMPdLm7yWcJUJG5fMTROY3k/FETnl+M4XtnlrgrRMZ3atEa9yahTafT8cILL5CRkcHbb7+N3+/nu9/9rhjTIhAIBIeYTbezu7ubjY0NLBYLZ86cob29nexDVHoo2InkjRKd9hKd8hGd9pJYDgHqiI316BKrkXmkLMhur6Lq3AOcyMs/4BXvLbcLE8q1h6iIdJHW/Sr6eAhdZib2849gP38e27kHD0WA0EpoRXU3XWo57YhnBFmR0Wq01GXU8Y3qb9Ca10prTqvo3zzqxMOw1A/zV7fCgrxqojRaPeSdhObvbjmcWVVHopR2txEO6DFBURQCHy/gfWMKQ76NrN9rRJ++t2U2165d4xe/+AXp6el8//vfJzPz+JyxEQgEgqOOLMtMTk7S3d2dcjvLy8tTvZ16vTgHfZhQFIWEO0x02kssKTglTxQAWSOzFl9i2T/JanQBa1UWVWfOUt1xBntm1gGvfG+5XZhQuiFA3uKnZI+9hynmw9TYgP3RR3GcP4/51KkDdX1lRWbKO5USnD0rPSwEFgCw6C00ZTelymmbcpqwG/c2w0Owh8gyrE8k+zavqg6n6zokw6FIK1VLaIs6VMFZ0AQGy8GueZ8RJbh7xOilK9izMimsqT7opQAQHlln/SfDaPRasn6nAVP53jamz8zM8PLLL4sxLQKBQHBIuNnttFqtqd5O4XYeHhRJJr4YTDmcsRkvclD94KqYwK/bYNZ9ncWNcQKKh9LmVmo6H6CyvROL/eBdvb1ke5jQZN8KUlzBSpDchU/JW7iIXfFhe+CBVGmtIe/gXMOYFOP62nV6XD30rfTR6+7FG/UCkGnOpC23TS2nzWujLrMOg1aUuR9ZQus7S2kXuiCi/q4xOqCoNSk2O9StQ7jZQoDuAbIk81d/8IfEw26an36RR773OxgtB1+KGl8JsfbDIRKeCBlfr8Z2em9LcjbHtAQCAb797W9TX1+/p8cTCAQCwU5isRijo6MMDAwwPj4u3M5DiByTiM36kmJTvShxNXREm2EiZo+y5JtgePwi64FFjBYLlW2d1HQ+QHlLO0bz8XZONsOERi4vMX55iUhEwSCHyV26Sr7rClmOGI5HH8X+2HmsnZ1oTQcTxOONeul399PjUgODrq1eIybHACh3ltOW15bq4Sx1lB66cS6COyQRg+XBnWJzfVK9T6OF3MZk72ZSbObUgXZv2t+OMkKA7hE3Pp3iN3/zP0lE+rGlZ/HEH/w/qD79wIG/4MihOGsvDxMd28B+rpC05yvR6PZuTYFAgJ/85CcsLS3x3HPP0dl5eGcSCQQCwXFgM1BoYGCAGzduEIvFcDgcNDU10draKtzOA0YKxolt9m/O+IgvBEBWQAOGfBu6IgvriWXGZq4yPniJRDyGxeGk+vRZajofpORkM/r7IBRqwxVi+JNZRi8u4A9q0Mpxslf7yXf3UFRmJO38I9gffRRjdfW+f7ZSFIXF4GJKbPau9DK+MQ6AXqOnMbuR1pxWtX8zt5VMs2hFOpLIMqyNw2IPLPSo26UBkNQSeOz5qtDcFJuFrWASpdN3ghCge8ji2Ab/8l/eIOL9DVLcTWXbaR7//T8hLfdgrXdFUvC+PkngwiKmmnSyXqpHa927N7PtY1oeeOABnnrqKTGmRSAQCHYRRVFYWlpiYGCAa9euEQgEMJlMNDY20tTURFlZmXjdPQAURUHyqIFBsWk1pTbhVlNN0WswFjswlachZ2uYXbnOWO+nzF0fQJYk7FnZ1HQ+QE3ngxTVNaLVHX8XJeSLceOtIUYvLbEeNIEik+EZodB/jfIT6WScfwj7Q+fQpafv67ricpyR9RH6Vvroc/fRu9LLSmgFALvBTnNuc6qk9mT2SSz64+1KH0sUBTZmtoTmYp96ifnV+w1Wdebm9mRaZ9F9GRS0GwgBusesLQZ49f/bS2D1MlL0UwDOfuu7dLz4dXT6gz2DGby6jOeX4+icRjK+XYu5Kn3PjiXLMm+88QZXr16lsbGRb3zjGyLWXyAQCL4kHo+HwcFBBgYGWF1dRavVUltbS1NTEzU1NeJ1dp9RZIXESojolJfotI/YlBfJp5Zhasw6TGVOjBVpmMqdhAxBJnouMXblUxbHhkFRyCgooubMg9R0Pkhe5f47e/uNoih4lkNMvHud6a5FVsJ20Ghx+Gcpkqaobs0i58lzWJqb0exjufhGZIN+dz997j76Vvq4tnqNiBQBoMBWQEtOS6qktjq9Gp0osTx6+JbUsScpd7MXwuvqfTqjmkpb1Ka6moVtopR2lxECdB8IeCK8+pf9rC8uk5HdzdJYD1nFpTz5h/+G4oaTB7q26IwPzz+PkFiLYDtbQNpz5WhNe/MirygKn376Kb/5zW8oKSnhpZdeEmNaBAKB4C4JhUJcv36dgYEB5ubUGP/S0lKamppobGwUr6v7iJKQic37VbE57SM67UOJqIFBWqcRU7kTU0UaxjIn+jwr6wuzjF35lLGrn+KeVvvGcsurVKfzzINkFpUce9EZj0ksjHiYujjFzLU1gnEjALbgEoWWdWo6cyl+7iEM+xReKCsy097plNjsXell2jcNqOW09Zn1tOS20JLbQnNOM/m24z3S5lgSWk8Kzd4t0elfUu/T6CC3AQpbVKFZ1Aa5J0BvPNAlH3eEAN0nIsE4r//1AEvjXuo6I0z1vILPvcKJ80/yyPd/H6tzb1NpPw85JuH7zQyBCwvo0kxkfKsGc03Gnh3v+vXr/PznPyctLY0f/OAHYkyLQCAQfAHxeJyRkREGBwcZGxtDlmVycnJoamri1KlTpO9zSeL9ihyKE531q2JzxktsLgAJNTBIn2PBVJ6GMSk6dRkmUBSWJ8cYu/Ip41cu4llaBI2GoroGajofpPr0WdJyj7+g8brDzFxbY7p7gcUJP5KiRStFyfSMUpAWpPJ8PQVffQJd2t5/FgrFQ1xfu07vSi99K330u/vxxXwApJvSaclpoTm3mZacFk5knxDltEeNqD9ZPrvN3dyY2bo/q3pLaBa2Qf4pMIqTdvuNEKD7SCIu8fbfDzHZ66bpsTyUxBW6X/slRquNR7//+5x49IkDnVEVnfHh+dkoidUwts580p6vQGveGzd0dnaWl19+GY1Gw/e+9z2Ki4v35DgCgUBwVJFlmenpaQYGBhgaGkqFCZ08eZKmpiby8/OPvVt2kKT6N2d8amjQtI+EK6TeqdVgKLRhKlfLaY3lTnR21TGRJYn5G9cZv6o6nYG1VbQ6HSUnmlKi05a+dyd5DwNSXGZxbEMVnQMreFfV0BZryEXW2nXy00JUPN1C+vPPYsjN3dO1LAeXU2Kzz93HyPoIkiIBUJVWlXI2W3JbKHeWi/+po0Q8DMvXdpbRro4CSQ2TVqqOQNksoy1sAfPBGT6CLYQA3WdkWeHjn45y7cMFajvzaHrMyvv/+NcsDA9RVH+CJ//w35BdUnZg61PiEt63Zwl8PI/OmXRDa/fmjXJ1dZUf//jH+P1+MaZFIBAIUEXP8vJyKkzI7/djNBpTYULl5eUiTGiPUCSF+FIgKTjVhFp5s3/TpMNY5lR7OMudGEscaI1b/WCJeJzZwT7GrlxkvOsyEb8PvdFEeXObOqOzrROz/XinY/rXI8xcW2Pm2hrzw+skYjJaJUG6Z5SstWvk2wMUPvcQzuefx1hauidruDksqG+lD1fIBYBFb+FU9qmU2GzOaSbNJMTIkUGKw8rQltBc7IGVGyCrJe/YcrdczaI2KGgBe86BLlnw2QgBegAoikL3mzNc/tUkJQ0ZPPNHJxi9/AEf/egfiIVDtL/4DR745ncxmM0HtsborA/PK6MkVsJY2/NIf7ESrWX33dBAIMDLL7/MwsICzz33HGfOnNn1YwgEAsFhZ2NjIxUm5Ha70Wq11NTU0NTURG1trQgT2gPkaILYbLJ/c8ZHbNaHElPLaXXpJlVwljsxljkx5NvQaHc6Y7FwiKm+bsaufMpU71Vi4TBGi5Wq9k5qOh+kvLntQN/H9xpJklke96qi8/oa64tBAKyaEJlLPWSuDJBr8ZPx/DM4X3wBU23trruL28OCeld6ub56/ZawoOZcVXDWZdSh14q5t0cCWYLVsZ1ltMuDW+NPzOmqq7k9JMhZKBJpjxBCgB4gNy4u8v6PRsgutvPiv20Gwnz8k3/k2vtv48zJ5fHf/xOq2g9ubqYSl/G9O4v/ozm0diMZ36zBUr/7/ZqxWIyf//znDA8PizEtAoHgviEUCjE0NMTAwACzs7MAlJSU0NTUxIkTJ0SY0C4jeaMpsRmd9hJfCqqVesn5m8byTcGZhj7ddNvn8K+vMtl9lYnuy8xe60eKx7GmpVPVcYaazgcpPdl04An3e0lwI8rM9TVmr60xd2OdWERCq4Us7TrpUxfJXOrBYY6T9uyzOF98EUtry66Jzu1hQZsltSIs6BigKOCZ3lZG2wdLfRALqPcbbMmAoNYt0ZlRIcTmEUcI0ANmenCVt/72Glanka/8WQvpeVbmb1zjnf/531mbn6X69AM89q/+GGf2wZURxOb9rP9slIQrhLUtV3VDd3luqCzLvPnmm1y5coWGhga++c1vijP+AoHg2BGPxxkdHWVgYCAVJpSdnZ0KE8rION69gftFahzK5vzNaR/ShuqeaAxajKWOpMOZhrHU8Zl5B4qi4J6ZYqL7MhNdV3BNjgGQlpdPVfsZajofoLCuAe0xHc8gSzKuKV/K5VydU0WBzaYllyWcQ++SNtuF0WLA8eSTOF98EdvZM7syMiUUD3Ft9VqqlHZ7WFCaKY2WHFVsirCgI4Qsw/qkKjCX+mCpX71EvOr9OqMaClTYtiU2s2vF+JNjiBCghwDXlI9f/7d+AF78t83klTuREnG6X/sVn76iBvU8+Fvfp+25rx7YIGolIeN7bxb/B3NobQYyvlGDpTFrd4+hKFy6dIm33nqL4uJiXnrpJWw2264eQyAQCPYbWZaZmZlJhQlFo1HsdjunTp3i1KlTFBQUiOCTL4kck4jPb5XTRmd8KBE1aEbrMKhCM1lSayiwodF9dpWNlIgzN3SNia7LTHRfxr/qBo2Ggpo6qtrPUN1x5liPSwn5YswOqb2cc0PrREMJNFoNeYUGciLTOHpexzTZi9ZoxH7+PM4XX8D+6KNoTbd3je8ERVFYDi6nxObNYUGVaZW05raKsKCjhJSAtbEtkbnYB8sDW86mzgh5J6CgWb0UtkFuoxh/cp8gBOghYcMV4tW/7CPki/HsH5+i7KQq7rwrLt77h79hsucqOWUVPPmHf0ph7cGF9cQWAnheGSW+FMTSkkP6V6rQ2XbXqdw+puX73/8+WVm7K3QFAoFgr1EUBZfLxcDAAIODg6kwoYaGBpqamqioqBCtBl8CKRBLOZuxGR+xhQDI6ucWfa411btpKneiyzR/oVgJB/xM93Yx3n2F6b5uYuEQeqOJsqZWqjo6qWw9fWyTa2VZYWXGx2wyQGhl1g8KWJ1GiivMZHtHsF78JfLoNdDpsD3wAM4XX8Dx5JPo7jFYKSbFGFobot/dr15W+lkJrwAiLOhIIsXVQKBNsbnUr/ZsJsLq/XqL6mxuis2CZsipF2LzPkYI0ENE0Bvl13/Vz9pCkMd/p576BwoA9YPM+NVPee8f/m8CnnWanniGh1/6VweWqKckZPwfzOF7bw6tVU/G16uxnMze1WNsH9Py0ksvUVJSsqvPLxAIBHvBZpjQ4OAgKysraLVaqqurU2FCRqP4wHW3KIpCwh1O9m6qgjOxuvnBVoOx2LElOMucd9wisrG8lCytvcz88HUUWVb7Ods7qeo4S+mpZgzGe3f1DjORQJzZG6rgnL2+TiQQR6OBvAonJRUWMt2D6D78JZF+tTrL0taG88UXcD7zDPp7OCm8ElpJCc0+dx9Da0PE5TgARfYimnKaUoJThAUdcuIRNY12ewmt6zpIamI0RjvkN6l9m5tiM6sGdOJ3KthCCNBDRiyc4I3/e5D5YQ9nv15J2zNlqTO3sXCIiz/7CT1v/AsWh5NHf+cPaHjo/IGVocQWk27oYhBLUzbpX61KzUHbDdbW1vjRj36E3+/nm9/8Jo2Njbv23AKBQLBbhMPhVJjQzIw68LykpIRTp05x4sQJ0UpwlygJmdhCIOlweonN+pCD6qgFrVW/1btZ7sRYZEejvzMnWZFllsZHkqW1V1ibV4OfskvKqOo4Q1X7GfKrag50HvdeocgKq/OB1JgU15QXRQGz3UDpiUxKKq1kLPYSffvXBC9dBlnGVF+P84XnSXv+eQxFRXd8rLgcZ3R9lD53H/0rqsO5GFwEwKg10pjVmHI2m3OaybGKURmHllgIXNe2SmiX+sG9bfSJOS0pMlu2tpmVcAz/hwS7ixCghxApIfPu/7rB2FUXp84X89Bv1aDdFv++Mj3JO3/731gaH6HkRBNP/uG/IbOw+EDWqkgy/g/m8b03i9asJ/1rVVibdu/NJBgM8vLLLzM/P89TTz3FAw88IMrWBALBgeP3+xkdHWV4eJjJyUkkSSIrKysVJpSZufuJ4ccVORQnOuvfEpzzfkgky2mzLVvjUMqd6LMtd3XSNR6NMDPYz0TXZSZ7rhDybqDRailpPElV+xkq28+Qnnc801KD3igLIx7mbqwze32dUHKmaW6Zg9KTWZTW2LFMduN//TWCH36EEo9jKC1VRecLL2Cqrr6j46yF11KltH0rqru5OQol15qrjkJJupv1mfUYdaIK4FAS8alls6ky2j5YHQVFHU2ENWtLaG66m+llIo1WcE8IAXpIUWSFi7+YoO/tWaracnjy9xvRG3Tb7pcZePctPn75H0lEo5z+2rfp/Pp3DqxcKL4cZP2VUeLzASwns0j/WjU6x+68ycTjcX7+859z48YNcnNzeeqpp6iurhYBBAKBYN9QFAW3283w8DAjIyMsLCwAkJ6eTn19PadOnaKwsFC8Ln0BiqIgbURTYjM67SPhCql3ajUYi+w75m/ey/tIcMPDRPcVdVTKQB+JeAyjxUpFawdVHWeoaG4/sBaWvSQWSbA4tsH8DQ9zw+upuZwmq56SxkzKTmZRUuNEudaF97XXCLzzLnIohD4nB+fzz+F88UXMJ09+7t9wQk4wvjGeKqXtd/cz558DQK/V05DZoDqbuc205LSIUSiHlbBnZ7/mUj+sjW/d7yjY2a9Z0CLmbAp2FSFADzl978xy4ZVxCmvSef5fn8J0U29LcMPDhz/6e258/D7peQU88X/8CeUt7QeyVkVS8H88j+/tGbQmHelfrcLSnLMrH8gUReH69eu8++67eDweysvLeeqppyi6i7IggUAguBskSWJ2dpaRkRFGRkbweDwAFBYWUldXR319Pbm5uUJ0fg6KrBBfDm71b057kbyqE6cx6VJ9m8ZyJ8YSB1rj3Se9K4rC2tyMKjq7LrM0PgKAMyc3VVpb3HDi2M3nlJIjUuZvrDM/4sE16UOWFXQGLQVVaZQ0ZFJcn0FWkY1obw/e117D/+ZbSBsbaJ1OnM88jfOFF7Ge7kDzGQn73qg35WwOuAcYXB0klFBPGGSZs3YEBTVmNWLWm/fzRyC4E4Krqpu5WUK71A8bM1v3p5VCQdO2MtpmcOQd0GIF9wtCgB4Bxq66eOcfh0jPs/KVP2vGnnHrC/zstX7e+Z//Hc/SAnUPPMz53/sj7BkHUwIWdwXxvDJGbM6PuTGLjG/snhuaSCTo7u7mww8/JBQKcfLkSR5//HFR7iYQCHaFaDTK+Pg4IyMjjI6OEolE0Ol0VFRUUF9fT21tLU6n86CXeWiRYxKxuWQ57YwaGKRE1VEaOqcRY/lW/6Yh34ZGe2/iXUokWBi+nhqV4l1xAZBfVUNVx1mqOs6QXVJ2rE4OKIrC+mKQ+WHV4Vwc3SAelUADuaUOihsyKanPIL8qDa0iEbp8Gf977xF4730SLhcaiwXHY4/hfPEFbA89hPamQCxZkZnYmNhRTjvtmwZAp9FRm1G7w90sshcdq5/vkUdRwDOtltGmLgPgW9jaJ6NiZzhQfjPYxKQBwf4jBOgRYW54nTf+ZhCTRc9X/qyFzMJbQy0S8ThX/+UVLv/in9HpDTz03d+h+ennD2RAtiIrBD5ZwPubaTQGHelfqcTauntOQSQS4cKFC3z66afIsszp06d55JFHRNiHQCC4a3w+X8rlnJqaQpIkLBYLNTU11NfXU1VVhelLzDg8zkiB2DZ386ZxKHnqOJRNwalLN32p94BIMMB0XzcT3VeY6u0iGgqiMxgoO9Wi9nO2ncaeebw+TPvXI8wPrzN3w8P8iIdwso8zPc9KcV0GxQ0ZFNVmYLYZSHg8BD78kMB77xP85BPkUAiN1Yr93IM4nn4Gx+OPod32HumP+Rl0D6pi093HoHsQf9yvPr8pPRUS1JLbwomsE1gN1gP5GQhuQyIK7uGbxOYgRH3q/RotZNcmR5+0JMXmKbCkH+SqBYIUQoAeIdxzfn79l/1ICZkX/k0TBdXpt93Ps7zIu3/318wM9JJXWc1Tf/Rvyau8szCB3SbuDqlu6IwPc32m6oam7d4HOZ/PxwcffEBvby9Go5GHHnqIM2fOiFEHAoHgM9mc0bkpOhcX1YTOjIwM6uvrqauro6SkBN1nlCXeryiKQmItshUWNOMj4U6OQ9FpMJYkx6GUp2EqddzxOJTPw7uynCqtnb9xDVmSsDjTqGw7TVXHGcpPtWIwH5+yz0gwzuLoBnPD68wPe9hI9sdaHAaK6zMpaciguD4TR6b6Pcemp/G/9z6B994j1NMDsow+Jwf744/jePwxrGfPojWZUBSFad80fSt9KYdzYmMCBQUNGqozqlNhQc05zZQ5j5d7fKQJratJtNuFpnt4K4nWYIP8k6rA3LzkNoLBcrDrFgg+ByFAjxi+1TCv/mU//vUIT//BCSpbbp84qygKI59+zAf/628Jeb20PPMC5377B5is++8QKrJC4OIivremQach/cUqrO272ze1srLCO++8w+joKA6Hg8cee4yWlhaRmCsQCAC1n3NmZiYlOjc2NgAoKipKic6cnN3pWT8uKJJMfDGY6t2MzviQA+rsRo1Fn3Q31bAgY5EDjeHLv94qsszy5BgTXWqI0OrsNACZRSWpfs6CmtoDqezZCxJxieUJL3PDHuZvrOOe9aMooDfpKKpNp6Re7ePMLLSh0WhQJIlwfz+B997D/977xCYnATDV1+N4/DHsjz2O+UQjEjIj6yNcXb5Kl6uLPncf3qgXAIfBQVNuU0psNmU3YTcev1CmI4eiqL2ZN7ua3rmtfRwFO4VmfpNaVis+6wiOGEKAHkHCgRiv/bcBVqZ9PPJSHScf+ewgnmgoyCf/9P+j7zevYUvP4LHf+yNqzz50IB+yEqth1l8ZJTbtw1yXQfo3atCn725Z2/T0NG+//TYLCwvk5OTw1FNPUVNTIz5UCgT3IZFIJNXPOTY2RiQSQa/XU1lZSV1dHbW1tTgcjoNe5qFBjiaIzfpTgjM260eJqyMYdJnmVFiQqdyJPsd6z/2bNxPc8DDd38N0fw8zA72E/T40Gi1FDY1UtZ+hqr2TjILjETgnywqrc37mhz3MD6+zOO5FistotBryK5wU12dQ3JBJXrkTXXK+qRwKEbx4Ef+77xH44AMkjwf0emydp7E//gSOx86jKchLCc6rrqv0uHoIxAMAlDnLaMttS4UFVaRVoNUIwXKg3E0J7eYl7xTYxcxUwfFACNAjSjwq8db/vMbM4Bodz5fT+ZWKzxVZyxNjvP23f8XK1ATlzW088X/8a9LzC/ZxxSqKrBD8dBHvm9Og1ZD+QiXW03m7KhAVRWFoaIh3332X9fV1ysrKePrpp0VirkBwH7CxsZGazzk9PY0sy1itVmpra6mrq6OqqkqU6CeRfNFU72Z02kt8KQgKoAFDoX1LcJY5d7V1QkrEWRi+wfSAKjrd06qLZ01Lp6yplfLmNipa2rE4jn7Yk6Io+FbDag/nsJpWGw2qpZOZhTbV4WzIoLAmHaNZn3pc3LVC4IMPCLz3HsFPP0WJxdA6ndgfeQTH449hOvcAY/EFVXAuX6VnpYdgXB27Uu4s53T+aU7nn6Yjr4McqxAtB8qdlNDmnVCTaDfFZk4DGEXPreD4IgToEUaWZD748Qg3Li7RcK6A89+rQ6v77LOasizR99brXPjpD5ESCc5+47fp+Oq30Bv2P5o+sRbG87/HiE56MdWkk/HNGvS3Sff9MkiSRHd3Nx988AGhUIgTJ07wxBNPiMRcgeAYoSgKy8vLqfmcy8vLAGRmZu7o57zfy/EVWSHhDm0Jzhkf0noEAI1Bi7HUofZuljsxljrQmvRf8Ix3x8byElP93Uz39zB3fZB4JIxWp6OwroHypjbKW9rJLatAcwx+TyFfjIURT6qP07+m/pztGSaKGzLV8KD6DGzbRL2iKERHxwi89y7+994nMjgIgKG4GMcTj2M5/yizFVaurvbeIjgr0iroyOsQgvOguZMSWnv+rSW0mRVwTErKBYI7RQjQI46iKFx5dYqu16cpP5XF0390EsMXzFELrK/x/g//J6OffkxGYTGP/94fUdbctu9lqoqsELyyhPf1aQDSXqjA1pm/6+uIRCJcvHiRTz/9FEmS6Ojo4NFHHxWJuQLBESWRSDAzM5MSnT6fWrZWUlJCXV1dqp/zfkZJyMQWA8SmtgKD5JDquGjthqS7qQpOQ6ENzeecvLwXYpEwc9cHmOrrYaa/hw3XEgBpuXmUN7dT3txGyYkmTNaj7/LEoxKL4xvM31hnbtjD2rxa+mq06FNis6Qhk7Rcy473NyUeJ9TVlQoRii+o4zLMzU3Yzp/H1VbKVesyV11d9K707hCcp/OSDmd+B9mW7P3/pu93bltCew2SfbZotJBVc5PYPAX23INdt0BwSBAC9Jhw7aMFPnp5hNxyJy/8aRMW+xeXmE33dfPO3/81XtcyueVVdHzlG9SefQidfnfPfH8RifUInp+PER3fwFSVRsa3atFn7n6qod/v54MPPqCnpweDwcBDDz3E2bNnRTmeQHAECIfDjI+PMzw8zPj4ONFoFL1eT1VVVaqf026/f4NU5KhEbNZHdMqrjkOZ2+rf1GdbMJY5MVWoolOfZd71E32KouCemUr1ci4MDyFLCfQmE6UnmihraqOipY30/MIj35MfiyRYmfaxNOFlftjD8qQXWVLQ6jUUVKWnkmpzSh1ob+qTlXw+Ah99TOC99wh8/DGy34/GZML64AP4TtfRW6PlYvQGPa4eQgk1AbcyrTLlbgrBuc8oCgRcagmt67p6Wb4GqyPbSmitkHdyp6uZK0poBYLPQwjQY8Rkr5vf/N11HFlmvvJnzTizvziCOxGLMfTx+3T/+hesL87jyMqh7bmvcOqJZ/f1zLSiKASvLON9fQoUhbTnKrCdKdi1kIvtuN1u3nnnHUZGRnA4HJw/f56WlhYxckEgOGR4PJ5Uau3MzAyyLGOz2VL9nJWVlfftCSQpEEv2bib7NxcDILOzf7NCncGpc+zNzyjk8zIz2Md0XzczA70ENzwA5JSWU9bcRnlzG0X1Jw6kzWO3UHs4IyxPelOXtfkASrJXNqfEoTqc9ZnkV6fdtgIpNj9P4L338b/3HqGuLkgk0GVmEH+ghZETabyXv8pVz8CtgjO/g448ITj3jXhYdTU3heam6Aytbe3jLFL7NfNOqEJTlNAKBPeEEKDHjMXxDV7/7wPo9Fpe/LNmckruLOFRkWUme7vo/vUvmBsaxGix0vTks7Q++xWc2ftXypbYiOD5+TjRUQ/GijQyv12DPmtvZlnNzMzw9ttvMz8/T05ODk8++SS1tbVH/uy8QHBU8fl8zMzMMD09zczMDKurqwBkZ2dTV1dHfX09RUVF910/p6IoSOuRHYFBqfmbem1q/qapIk3t3zTvTRWLLEksjg0z09/DVF8PrqlxUBTMdkcqPKi8qRV7ZtaeHH8/SMQl3DN+lia9uCZ9LE16CftiABjMOvLKneRXpVFQmUZehRPTbWadKrJM5No1/O+9R+C994mOjqq3lxez0FLIhcoYb1omCMrq77AqrYqOfLWHsz2vXQjOvUZRwDu/TWQmhebaOChq1QB6C+Q1JsXmSXWb2whWkSEhEOwGQoAeQ9YXg7z6l31Ewwme/5NTFNff3Qvm8sQYXb/+BaOXPkGj0VD3wMO0v/gN8iqq9mjFO1EUhVCXi43XJkFScD5Tjv3Bwj1xQxVF4caNG7z77rusra1RWlrK008/TXFx8a4fSyAQbKEoChsbGzsEp8ejOmhGo5HS0tLUuJSsrKMraO4FRVaILwdTYjM67UNOiiCNWZ2/adwUnEV2NPq9E+Q+98rWiJTBPmLhEBqNloKaOlVwtrSRV1l9ZOdyBjeiLE1suZvuWT+ypH7+ScuxkF+ZRn5VGvmVaWQW2m4pqd1EjkQIfvqp6nR+8D6SexVFq8FXX0R/nZFXC13MOKMAVKdX057XLgTnfhANwMqNnSW0rutbvZoA6WVbInNTcApXUyDYU4QAPaYEPBFe/ct+NlwhnvxXjdSczrvr5/C5V+h541cMvPsb4pEwpSeb6XjxG5S3tO+LSyh5o3h+MU5keB1jmZOMb9dgyNmbsmBJkujp6eGDDz4gGAzS2NjIE088cd998BUI9gpFUVhbW2NmZiYlOjfDg8xmM2VlZZSVlVFeXk5eXt59VRKvJGRi88n5m1NeojM+lIgEgM5pxFiRlnI49bm7N3/zdsSjEeZvXGe6T02sXV+cB8CelU1Fsqy29GQL5iPYbytJMmvzAVVsTnhZnvThTyYB6wxacsscquBMXqzOzy9dTqytEfjgQ/zvv0fwwgWUcATJbGCiIZ33S/1cLo8TsGqoTq9OpdS257WTZRHvK7uOLMPG9LY+zUF165na2sfo2CYyk0IztwHMR3/cj0Bw1BAC9BgTDcV5/a8HWRzb4Ny3q2l5svSenicSDDDwzpv0vvkqgfU1sopL6XjxG9Q/dH7Pe3sURSHUs8LGq5MocQlrSy6OR4sx5O6NEI1Go1y8eJGLFy8iSRLt7e08+uij93W4iUBwL8iyzOrqasrdnJmZIRBQ00FtNltKcJaVlZGbm3tfldXKkQTRmWQ57ZSX2LwfEup7rj7Hojqb5cn+zQzTnp7wUxSFtfnZlMs5f+MaUjyOzmCguOEkFS1qYm1mUcmRa08IB2KpMtrlCS8rMz4SMbXE0pZuoqBqS2xml9jRfYGTHF9ZIdzVRairi+CVq8TGxwHwZZi4UiVzqUpiqFRDeXZNKjRICM49ILwBK0M7+zRdQ5BMCQYNZFXtLJ/NOwnppXDE/oYFguOKEKDHnERc4p2/H2Ki103LU6U8+I2qez57LiXijFz8mK5Xf457dhpbegatz36Fpqeew2K/s17Te0XyxfB/MEfw6jJKXMbcmIXj0WJMZXtz5tLv9/Phhx/S3d2NwWDg3LlzPPDAA/dt4IlA8EXIsozL5dpRUhsOqz1uDoeD8vLylODMzs4+cmLmyyD5YuoolKTgjC8HQQG0ycCg8jQ1obbMie4OEsy/LJFAQA0P6u9heqCHwJraa5tZVEJ5cxsVzW0UNZ7EYDR9wTMdHhRZYX05mHQ2VXdzw6WG+mi1GrJL7KlS2vzKNBxfkLSuKArxhUVCXVcJdXURunqV+MwsAHGTjpFiLYPFEr2VGvR11Zwu6Ew5nJlm0Se4K0gJWJ+8tXzWO7u1jzldTZ7d7mzmiARageCwc2gEqEajKQF+COShvjX/D0VR/uvnPUYI0DtDlhU++ekogx8uUNuZx+O/2/CFZ3o/D0VRmBnso+vVnzMz0IveZOLUY0/T9vzXSM/L38WV34oUjBO4uEjw00XkUAJjuRPH+RLMdRl78oF2dXWVd955h+HhYex2O+fPn6e1tfW+Kg8UCG6HJEksLS2l3M2ZmRmiUbXHLT09PVVOW1ZWRkbG3vx/HkYURSGxGt6RUCutqWWeGoMWY6lDnb9Z4cRY4kRr2vvXkkQ8zvLEKLOD/UwP9LA8NoqiyJisNkpPNau9nM1tOLOPzozCWDiBa9q3VU475SMWVsdiWBwG8irSUg5nTpnjC+djK4pCbGpaFZxXVZczsaTOLo3bzExXmLmU52eoGDZKM3iw9GEeKX6EzoJOITh3g4B7m6uZdDbdw5BQ/3fQ6CC7dmf5bP5JcBQIV1MgOIIcJgFaABQoitKj0WgcQDfwdUVRhj7rMUKA3jmKotDz1gyXfjlJcX0Gz/3JKYy7kJTonpmi+7VfcuOTD1FkmZozD9Lx4jcoqKnbhVV/NnJUInh1mcDHC0jeKPo8K45Hi7E25+z6QHWA2dlZ3n77bebm5sjOzubJJ5+krq7uvvlQLRAkEgkWFhZSYnN2dpZ4PA5AVlbWDsGZlpZ2wKvdPxRJDQxS528mA4MC6s9Fa9WrYjMZGmQssu/J69PNJGIxlsZHmB+6xtzQIEujwyTiMdBoyK+sprylnfKmNgpq6tAegZNpiqLgdYdxTXpZmvSxPOFlbTGgnqrWQFahnfxKZ8rhTMuxfOFrsyLLRMfGVLF5VXU5pTV13Iac4WSxOp1LeX4+zfMxnwN1WQ08UvwIjxQ/wsmsk+hEQM29EfXDyrAqNjcvriEIrW7tY8vdKTTzTkBOHeiPjiMvEAg+n0MjQG9ZgEbzK+CvFEV5+7P2EQL07rlxcYn3fzRMdrGdF/60CVva7rygB9bX6H3zVfrffoNoKEhRfSMdL36TqvZONHvY26VIMqF+N/4P50m4QujSTdgfLsJ2Oh/tF5zxvutjKQojIyO8/fbbrK2tUVJSwtNPP01JScmuHkcgOAzE43Hm5+dT5bTz8/MkEqrDlJubu6OH0+HY2xL8w4SSkIktBFTBOaUKTiWaDAxKN23r33Siz9nbwKBN4rEoS6MjzN8YVAXn2AhSPA4aDTllFZQ0nKT4xCmK609gcRz+wJVETGJlxr9j9mbYr4p6o1lHfmUaeZVbo1CMli8+maokEkRu3NgSnD09yF41CVWTl8t6fT69RVHeTJtjOi2KxWDlbMFZHil+hIeLHibPdvdBfvc1iRisjqoJtNvF5sa28lmDDXLr1fEmuY1qIFDeCbAfHSdeIBDcG4dSgGo0mnLgI+Ckoii+z9pPCNB7Y+baGm/+j0GsTiNf+bMW0vN2r1ciFg5x7f236X79V/jcK2QUFNH+wtdpfPTxPe0nUmSFyMg6/g/niU370Fr12B4oxP5gITrb7gYlSZJEb28vH3zwAYFAgIaGBp544gmys0WUvuDoEo1GmZubS/VwLiwsIMsyGo2G/Pz8lNgsLS3FZrMd9HL3DSUuEZvzE51UxWZsxocSV4Ns9LlqYJAqOtPQp++PQxOPRlgcHWZ+aJC5oWssj48gJRJoNFpyyisoaTxJcWMTxfUnDn1abTwqsTofwD3rxz3nZ3XOz/pCEFlWP4Ok51lVdzPZu5lZYLsjUS/HYkQGB1WxebWLcG8vckjtCTWUlRE+WcFQiYa3Mua4yjQAxfbilMvZkd+BSSccty8klT47lBSb19Xt2jjI6gkrtHq1fDa3YUts5jVCWincR+FjAoFgi0MnQDUajR34EPh/KYry89vc/8fAHwOUlpa2z8zM7PMKjweuKR+//m/9ALzwp03kV+xuyZwsSYxducjVf/k5rskxLA4nLc+8QMvTL2BNS9/VY91MdNqL/8N5IjfW0Ri02E7nY3+4CH3G54dO3C2xWIxPP/2UCxcuEI/HaW9v5/z58yIxV3AkCIfDzM7OpgTn0tISiqKg0WgoLCxMldOWlpZiNu/u/85hRo5KxGbUsKDolJfYnB8kBTRgyLepYrNC7eHcj8AggHgkwsLojW2CcxRZUgVnbkUVJSdOUdxwkqL6Rsy2w/v6Ew3FWZ0L4J7zq4Jz1o/HFVJLaVF7N3NKHeSUOMirTCO/0onlDn/GcihEuL9/S3D296PE1NmpppoadG1NTFVY+CBzhXdC3XijXvQaPa15rTxS9AiPlDxChbNCtFV8FooCAddWyeym2HSPQDy0tV9G+ZabuSk2s6pBLwL8BALBFodKgGo0GgPwa+AtRVH+0xftf5gd0Ov//f+DXWsh7/zTmA5pr+CGK8Srf9mHfy1C3dl8Tr9YgTPLsqvHUBSFhRvXufrrnzPZfQW9wUjjI4/T/uLXySws3tVj3UzcFcT/4TyhPjegYG1OjnDJ3133JhAIpBJz9Xo9Z8+epba2loKCAhFWJDgUhMNhVlZWWFlZweVyMT8/z/LyMgA6nY6ioqJUD2dxcTEm0/3j/MjhBNFpL9GpZELtgh9kthJqK9PUlNpyJ1rr3o6d2iQWDrEwsik4B3FNjiNLEhqtlrzKakoaT1HceJKiuhOYrIcz7TPsj6VcTXUbwOcOp+63Z5jILnGogjMpOm3pxjt+r5T8fkLd3epYlKtdhK9fh0QCtFrMDQ1YTnfgbSji05wN3vNepd/dj6zIZJozeajoIR4pfoQHCx/EYbx/ysfvmPCGGgDkSrqZm2Iz7Nnax5arupi52y45dWA6vCdABALB4eHQCFCN+q7zv4B1RVH+3Z085rAKUEVRePWrHdSMJSPgs7KwP/ggtnMPYnvwQQy5h6e/IRKI0/XmNNc+WEBB4eTDRbQ/V/6FA7jvhbWFOXpe+xXXP3oXKR6nquMMHS9+g6L6E3sq0BMbUQKfLBC8soQSkzHXZeA4X4Kx3Lmrx11bW+Pdd99laEjNzTIYDBQXF1NaWkppael998FesP/E43HcbndKbG4KTr/fn9rHZDJRWFiYKqktLi7GsMfzfA8TUiCWGocSndw2EkWnwVji2CqpLXOgNX35oLY7IRoKsTByPRUa5JocR5FltDodeVU1lDScpKTxFIV1DRgth0twKopCcCO2w9VcnfMT8ERT+zhzLOSUOMgptZNT4iC7xHHX7zGJ9XV1HEryEr0xrLpyBgOWkyexnj6Nru0U1/MTfOi5ykcLH7EcVE+yNGRuCxDKPolWI8o+AYhHYHVEFZgpsTkEvoWtfUzOpJvZsLNX0yZaTgQCwb1zmAToQ8DHwCDq+WeA/6eiKK9/1mMOqwAFmPPN8T/e/X/j+eRDOmeNtM7q0HvVIcmmmhpsDz6I7aFzWDs60Fp213W8F/zrEbpem+LGp8voDFpaniih5alSTHcQ7nC3hLwb9L71Gn2/eY2I30d+dS0dL36Dms4H9zSRUQ7FCXy6RODiAnIwgbHUgePREswNmbsaFOLz+Zibm0uVN7pcrlRpY35+fkqQlpaW3lfhLYLdQ5IkPB4PLpdrh9hcX19n87Vbp9ORk5NDbm5u6pKXl4fTubsnXg47ki+aEpvRKR+JFfXE4OZIlFRJbakDjWF/KhYiwQALw0PM37jG3PVBVqYmUBQZrU5PfnVtsofzFIW19RjNB//+sImiKPhWIzv6Nd2z/lRAEBrIyLPucDWzS+yY7sE5jrtcyXEoakJtbHxCPYTZjKWlBWtHB9aODjaqc/h49QofzX/EleUrRKUoFr2FBwoeUAOEih8m13p4TvoeCLKkztNcGdopNtcnQEl+3NIZIbsu6WpuE5tpxWLMiUAg2HUOjQC9Fw6zAN2k393PX3T9BX2uHs4Fi/j9cDt515cJd3ejxGJoDAYsbW3Yzp3D9uCDmBsb9jQ19ovwLAe58uoU490rmGx62p4po+l8MfpdTpQFNUhj6KP36H7tl3iWFnHm5NH+wtc4+dhTe/qhS45JhLpd+D+aR/JE0edacDxSjLUlF82XmI/6WUQiEebn55mdnWV2dnZHmmhmZuYOQZqVlXVfiQPB56MoCj6fb4ebubKygtvtRpKk1H6ZmZnk5eXtEJuZmZn3ZQl4Yj2y1b855SWxOYPTqFPTaSvSMFWmqSNR9uD//XZEAgHmh68zPzTA3NA13NNTKIqMTq8nv7puh+A0mA5Hv60sK3hXQilXUxWcAaIh9bVLq9WQUWhLCc2cUgdZRbZ7Gu+lKArx+fnU/M1QVxfxWTUtVWuzYWlvw9pxGmtHB4bGega8Q3w0/xEfzX/E+MY4ACWOEtXlLFIDhIy6+7DnUJbAM62KS/ewelkZVtNopU1HWgOZlVuJs7kNkHtCvU23P46/QCAQCAG6DyiKwnuz7/Gfe/4zM74ZOvI6+I8n/4yy6TDBCxcIXrxIdGQEAF1GBrYHzqYEqaGg4EDW7J71c+mXE8wOrWNLM9LxQgUN5wrQ7cEMO1mWmOi+Qvevf8HC8BAmm43mp56n9dmvYM/YuwHfiqQQHnTj/2Ce+HIQndOojnDpzN/T0rtEIsHy8nJqluLs7CzhsNobZbVaU2K0rKyM/Pz8+1JE3I+EQqFbSmdXVlaIRrdKGR0OR8rJ3BSaOTk591UJ7XYURSGxGk6KTbWsVtpQf14aix5TuVPt4axIw1BgR6Pbn5M7Yb9PFZzXB5m7cQ33zBQoCjqDgYKaOrWHs+EUBbV1e5oOfqdIkoxnKYh7Vg0IWp31454PkNgcL6PXklVsT4pNdZtZaEN/j46xoijEJidTgUGhri4SLpd6rLQ0LB0dWE93YO04jbm+jo2En08WPuHj+Y+5sHgBX8yHXqOnLa8tVVpb7iy/f07ebQpN93BSbI6A+wasjkEisrVfWgnk1G8bddKgupzGw1XGLRAI7j+EAN1H4nKcV0Zf4W/6/4b1yDrPVTzHn7f9OUX2IhJuN8FPPyV44QKBixeR3OpQZmNlpVque+5BrKc70dn3d/zBwqiHS7+cYHnSR1qOhc6vVlDTnrdns+0WR4fp/vUvGLvyKRqtloaHztPx4tfJLi3fk+OB+mEoOurB/+E80UkvGrMe+wMF2M8V7kvKpaIorK6upsTo7OwsHo8a9iD6SI8fsVjslj7NlZWVHX2aZrP5ltLZnJwcrIc0cGa/UGSFxEoo5XBGp7zIyfJPrd2w1b9ZkYYhb39mcAKEfF7mb1xjfuga80ODuGenAdAbjBTU1qdCgwqq69AbD9aZS8Ql1haCW67mrJ+1hSBSIjlaxqRTRea2gKD0fOuXOvmoSBLRkRHV3UwKTin5GqfPycF6+nRScHZgrKoCjYZRz2jK5RxYHUgFCD1c9DCPFD/CA4UPHP8AIVmCjRnVxXTf2NreVmjWJcVmA+Q0QE4tmI75z0cgEBxZhAA9AAKxAH9/7e/54dAPkRWZ79V/jz9q+iPSTOooFFUQjRG8eJHgxYuErl5FiURAr8fS0ox9s1z35Ek0++COKYrCzOAal341wdpCkKxiO2e/VknZyb0rF91YXqL79V9x7YO3SUSjlDe30fbcVyk52Yx+D92e6KxPHeEytAY6LbaOPBwPF6Hf5XTgL8Ln8+0QpDf3kW6OxygtLRVjXw4pkiSxvr5+2z7NTfR6/W37NB0Ox/3j5nwOiqwQXwom+ze9xKa9yMkSUF2acdtIlDT0OZZ9+ZklYjHcM1MsjY+yPDHK8vgoniU1tEVvNFFY10BJw0mKT5wiv6p2T1+vPg9FUfCvR1hfDLK+GGRtMcDafJD1pSBKcsamyarflkSris60XCvaLynclViM8PXrqXLacHcPciAAgKG4WO3fTApOQ2kpGo0GV9DFleUrXF66zKWlS7hCqiPamNWYKq09kX3ieAYIbc7SXBneVjq7KTS3koNxFqtuZk79NrFZJ4SmQCA4cggBeoAsB5f5q96/4l8m/gWH0cEfN/0xL9W/dEvvihyNEu7tVct1L1wkkkxZ1aalYTtzRi3XPfcgxuK9HWuiyAqjV11ceXUS32qEguo0zn6tisKa9D07ZjjgZ+DtN+h5418IeTcwmMyUnmqhsrWD8pZ2nNk5e3LcuDukjnDpXQFZwdKUg+PRYoyFByP2RB/p4SQejxMIBFKXtbW1lOBcXV1N9WlqNJrP7NPUikHsKRRJIb4YUAXn5AbRaR/KZhlopjnlcJoq09BlmPb871yWJdYX5lkeH2V5YozliVHcM9PIkvq/Z0vPIL+6loLqOoobT5FfVY1Ov/+CM+SLsb4YYC0pNjevxyNbfcL2DBOZhbYdzqYjy7wrP0M5HCbcP7AlOPv61JOmgLGqKhUYZO1oT7WVbEQ2uOq6yuWly1xeusy0bxoAp9FJZ34nDxc/zMNFD5Nj3ZvX+ANBllVH8+bSWffoTUKzaJvA3BScdWB2HtzaBQKBYBcRAvQQMLI+wn/q/k9cXLxIkb2IP2/7c54tf/YzPxgk1tfVct2LFwleuEgiOc/PUFqaGvViO3sW3R4lrEqSzI0LS1x9bYqQN0bZySzOfK2SnJK9OwubiMeZGehhqrebqb4ufO4VALJLyqho7aCitYPC2gZ0+t3t3ZS8UfwXFgheXkaJSphq0nE8WoKpKu1ARV4ikWBpaWmHS7rZR2qz2XYIUtFHenckEgkCgQDBYHCHuLzd19v7MzdxOp239GlmZ2fft32an8eW4NxQRec2wanPsWwFBlWkoU/b29JzRVHwr7lZHh9laXwU18QYy5PjxCPq/5XRYiG/qob8qlr1Ul2LPXN/T/bEwgnWl4KsLQSSrqYqNlMptIDJpier0E5WkZ3MQhtZhTYyC233lET7WUiBAOHe3lQ5bXhwEOJx0Ggw1den3E1rezv6rCwAQvEQXa4urixd4cryFYbXh1FQsOgttOe1c7bgLJ35ndRl1h19lzMlNEd2ls7eVmjWqSWzufXJ0lkhNAUCwfFHCNBDxMWFi/xF918w6hnlZNZJ/kPHf6Aj/5bfzQ4URSE2NUXwEzXMKHTlCnIoBDodllOnUu6o5dQpNLv8ATgekxh8f56et2aIhhLUdOTS+ZVK0vP2tk9NURTWF+aY6u1iqq+L+RtDyFICo8VKWVOLKkib27FnZu3aMeVwgsClJQIXFpADcQzFdhyPlmA5kbVvfWafh+gj/XwkSbojQRkIBIhEIrd9DrPZjM1mw263py7bv7bZbGRmZmI5BGOVDiuKJBNbUB3O2JQ6FkWJJQVn7qbgTFcdTsfe9kqGA35c46MsJctolyfGCHk3ANDq9OSWV5BfXZsSnJmFRfuWUJ6IS3iWQzvczPWFIP71rb9NvUlHZoEqMDfFZmahDavTuOuiOOHxEO7uTgnOyI0bqsjS67GcOIH1dIcaHNTWhs6piqeoFGXAPZByOK+tXiOhJDBoDbTkttCZ38nZgrOcyD6BQXtET87IMnhntwnM5EzN1VGIh7b2cxTevnTWnHZwaxcIBIIDRAjQQ4YkS7w6+Sp/2fuXrIRWOF9ynv+z/f+kMq3yjh6vxGKE+/sJJN3RyLVrIMto7XasZ85ge/AB7OfOYSgr27UPKdFQnN63Z+l/dw4podBwroDTz1dgz9gfkRMNhZi91sdUXzdTvV0E1tcAyC2voqK1nYqWDgpq6nZlxqgSlwh2r+D/eB5pLYI+24L9kSJsbXn7NtLhTvm8PtKCggKKi4sxm83odDr0ej06nS51uduvt9+2X46QJEmEQqEvFJSBQCDlDt+M0Wj8TEG5/WubzSYczHtgu+CMTnqJTd8kOJNi01Sxt4IzHouyMjWZFJqq4NxwLaXuzywsVsVmdS0FVbVkl1XsS+/m5qiT7W7m+mKQjZVwqk9Tq9OQkW8ls9BOVpFN3RbacGSa9+zkV9y1kpq/Ge7qIjqmjjrRmExYmptTPZyW5ma0yWCshJxgaG0o1cfZu9JLVIqi1Wg5mXWSzoJOOvM7ac1txaw/HKNm7hgpAZ6pZH/miCow3cNqj+YOoVlw+9JZS/qBLV0gEAgOI0KAHlLCiTA/GvoRf3ft74gkInyr5lv865Z/TbYl+66eR9rYIHjpcrJc9wLxBTUsw1BYmHJHbQ88gC7ty5+JDXqjdL8xw/WPF9BoNZw6X0z7M2WY7fv3wV1RFFZnp5ns7WK6r5uFkSEUWcZss1PW3EZFSzsVLe1Y09K/3HFkhfC1VfwfzhNfCKB1GHE8VIjtTAHae5iDtx/c3Ee6uLhILBbb9eNotdpdFbVarZZwOHyLqAyFQrc9vsFg+EJBuXndeMCJpMeNWwWnFyWWTFfNtapic48FpyxJrM3Pqj2bSYdzdXYaRVbXYc/KJr+yJtm7WUteZTUm696miyuKQsATTZXOboYCeZZCqfRZNJCWbVHLZlPls3bS8ix7Mv5q+9riCwuErly9dQan1YqlvT0lOM0nT6JN/s/Iisz4xjiXly5zZekKXa4uAnE1aKgmo4Yz+Wc4U3CG9rz2o5NWGw/D2niydHYEVpPbtQmQt8qccRarKbPZddtKZ2vBknFwaxcIBIIjhBCgh5y18Bp/0/83vDL6Ckadkd8/+fv8buPvYjXcfZmroijEZ2cJXrxI4MIFQpcuq8mEej32c+dwvvgC9sce/9KjXnyrYa78eoqRy8sYTTpaniql+YmSexpQ/mWJBAPMDPSlynVD3g3QaMivrFZLdVs6yKuqRqu993l20fENdYTL+AYakw7bmXws9VkYSx2HzhW9GUVRkGUZSZJIJBJIkpS6HIavN1+H9Hr9FwrKza/vt/Lig0SRZGLzW6FBsRnfluDMu0lw7sFII0VR8LldyURaVXC6psZJJHtzTTbbVs9mVQ35VTW7Wpp/O8KBGGsLO0tn1xcDxLYFAtnSTTvczMxCGxkFNgzG/Uk1V2dwdqUE52aOQGoGZ0cH1tPqDE5Nsq9eURTm/HNcXlZLaq8uX2U9oiY6lzpK6Szo5Ez+GU7nnybLsrc/4y9NxKv2Y24KzE2x6ZkBkp99NFrIqFAdzOzapJtZq14XqbMCgUDwpRAC9Igw7Z3mv/b8V96ZfYdcSy5/2vqnfK3qa+juUTgBKIkE4YFB/O++g+/1N0gsLaExm7GfP4/z+eewP/oo2i/xYX5tMcDlX00y1b+KxWGg/dlyTj5ShM5wMKJMkWVWpieTYrSbpbERFEXG4nBS3tJORWsH5U2tWBz3FgARm/fj/3Ce8LVVUEBj0GIsd2KqSsdcnY6h0H4o+kWPEpviWK/Xi2TfQ4CS2HQ4N7ZKauP7JzhDPm+qhHZTcIb9PgB0BgO55ZWpMtq8qloy8gv2pG9TURSCG1E2XCE2VsJ4loOpMtqwb6uqwGTVk1WUFJmbfZoFNsy2fawKicWI3LhBqLeXcHfPjhmcupxsbKdPp0Snqbp6x89r+2iUK8tXWAqqZcu5llzOFJxJldUW2gv37fu5YxQFgqvJUtkRVXC6h9XyWf9W+TU6I2TVqOIypz4pNusgswoMR6xUWCAQCI4IQoAeMXpXevm/uv4vBtwDVKdX8+/b/z0PFT30pT+cK7JMuK8P369fw/fWW0hra2htNhxPPonzxRewnT17zyFGy1NeLv1ykoURD/ZME50vVlB3Jh/tHpaV3Qlhv4/pgV6mkuW6Yb8PjUZLfk0tlS1qsm5ueeVdf4CVwwnVEZrYIDKxQcKllopqzDpMlemYq9IwVaejz7UKUSU41CgJmdi8f6ukdmZLcBryrZgq05NzOJ27LjijoRDumclkGe0YrolRvCvqbEg0GrKKSlJltPlVtWSXlu36CJRIIM7GSkgVmkmxubESwrsSIpF0egH0Rq0aCLStdDazaG8Cgb4IaWODUF8f4Z5ewj09hK9dS41EMRQVYT19+pYZnJt81miUNFManfmqw9lZ0Em5s/zwvHYpCnjnd5bMbl4Pe7b2M9q3xGVOnVo+m1MH6WWgO5xtEwKBQHBcEQL0CKIoCm/PvM1/6fkvzPnnOFNwhv/Q/h9oyGrYnedPJAhevozvtdfxv/02st+PLiMDxzNP43z+eawdHffkKszdWOfSLydYmfGTkW/lzFcrqWzNORQfZGRZwjU5rrqjvV0sT46DomBNS6ciKUbLmlow2+5+DqjkjxGd2CA64SUysYGUTLLU2g2qO1qVjqkqDX2WSE8VHCyfLzhtKYfTWJGGbpdcvJDPy/r8HGsLc6wtzLK+MM/a/GwqTAzAmZOb6tvMr64lr6IKo2V30rZjkQRed5gNlyosN1yqyNxYCRENJlL7abQanNlm0vOspOdaSc+zkpZrIT3Xij3ddCDVDYqiEJ+ZIdTbR7inh1BvD7HxCfVOvR5zQwPWtlYsra1YWtsw5OXueHwwHqTb1X3LaBSr3kp7XjtnCtQ+ztqM2oMfjSIlwDN9G0dzDOLBrf2sWVviMlU+W6eOPDkE7zUCgUAgEAL0SBOX4vzz6D/zN/1/gzfq5cXKF/mz1j+jwF6wa8eQYzGCn3yC79ev4X//fZRwGH1eHs5nn8X54guYT568KwGpKAqTfW4u/2oSz3KI3DIHZ79WRXFDxqEQopuEvBtM9/cw2dvFTH8PkWAAjVZLYW0DFa0dVLZ2kF16by5AYj2SFKSqQyonZ/jpMkzbBGk6OqcIyBHsLSnBOeElOnWT4Cyw7ZjD+WUEpzpjc5X1hTnWF+ZYSwrO9YW5VAktgMFkJrOomKyiEjKLSsguLSe/qgZb+pcLd5ESMr7V8E4XM+lqBr07g7jsGSbSkgIzPdeSEpyObPOehgHdCXIsRuT6dcI9vYR6ewj39iGtqUJd63RiaWnG2taGpbUNy6mTqYTaTTZHo1xausSVpSs7RqO05raqLmfBmYMdjbI9CGh1dMvRXJ8Aadvvyll0U29mUnDa7i6oTyAQCAT7jxCgxwBfzMffDf4dPxr6EQA/aPwBf3jqD3c9eVAOhfC//z6+198g+NFHKPE4htJSnM8/h/P55zHX1t75c8kKI5eWufLrSQLrUYrq0jn79SryKw7fXDRZklgaH025oyvTqsNgz8xSU3VbOyg71XJPjoyiKCTcYVWMjqsuqRJRXRd9rmVLkFamod3FQfKC+xM5FCe2GCQ241P7OGf8kJBBc5PDWX5vglOWJbwrLtbm57aJzVnWF+eJbRuFY7bZySwuJau4JCU2s4pLcGRm33PPpiIr+D0RvJsO5jax6V8Ns/0tzWw3JF1Miyo2tzma+xEEdKckPB7Cvb2Ee3sJ9fQSGRxESSZXG0pLsbYm3c221lv6NwFWw6v0u/vVy0o/19eu7xiNstnH2ZLTsr+jUTb7M1dHk5exresbs+wMAiq/ydGsg+waMN9br75AIBAIDh4hQI8RS4El/rL3L/n15K9JM6XxJ81/wm/V/hYG3e4LF8nnw//2O/hee43gpUsgy5hqanC+8DzO55/HWFp6Z88Tl7n28QLdb0wT9sepaM7mzFcrySq6+1LX/SLgWWc6OXN0eqCXWDiEVqenqL4xFWSUUVh8T3MEFVkhvhQkOq66o7Epr+pIacBQaE8KUlUgaE2H54Oy4HChKArSRpT4YoDYYpD4UpD4YgBpQ02H3Sk40zFVOO/qBEciHmdjaYG1ZLns+oLqaHqWFpDiW+Mq7BmZZKYEZilZRcVkFpVgTUu/p+oBRVEI+7f6MreXzHpXwlsjTQC9SbfDwUzPtZCWvL6fIUB3iqIoxKamCff2EOrpIdzTS2xqSr3TYMDc2IC1tQ1LWyvW1lb0OTk7Hh+X44yuj9Ln7qPf3c+Ae4CFgDp2S6/V05jZSHNuM535nfs3GmWzbPZ2QjOysbWf3qKKyuxkymx2tSo0s6pFEJBAIBAcQ4QAPYbcWLvBX3T/BZeXLlPqKOXP2/6cp8qe2rMS18TqKr633sL3+huEu7sBMJ86hfP553E+/xyGvLwvfI5YJMHAe3P0/maWWFSirjOfzq9U4Mw+3H2RUiLB0ugwk32qO7o6Ow2ARqPFkZ1DRkEh6fmFZBYUkl5QSEZ+Ic6cPHT6Owu9SJVIbgrSWT9ICmg1GEsdKYf0KIx8EewNiiSTcIeJLQRSQjO2FEQJJ/sXNaDPtmAotGMstKnbIvsdCc5YJMz6wnzKyVxLXt9wLaXmaqLRkJaTS1ZxaVJsFpNVVEpmUfE99UzLskLIGyPgiahlsyvb+zNDO8aZaHUa0nIsty2ZtabtfwDQ3SBHo8ly2h5CParLuZlOq01Lw9rSgqWtDWtbK+ZTp9Cadwqx1fAq/Sv9KYdz090EyLXm0pzTnLo0ZDVg0u3heKKIF1bHtwnNpNhcn9w5P9Oef5PQTF53FsEepBULBAKB4HAiBOgxRVEUPln4hP/U/Z8Y3xinOaeZ/9jxH2nJbdnT48YXF/G98Sa+114jMjQEGg3Wjg6cLzyP4+mn0Wdmfu7jI4E4PW/NMPDBPIqscOKhQtqfL8eWdjRmO/pW3SzcuMb60iIby4t4kttoaCskQ6PVkpabR0b+lihVrxfhzM5Bq/tsZ1OOSWr5ZFKQxhcCt458qUrHUCRGvhxH5GhCFZlLwS3B6QpCIvl6rddiKLCpQrPAjqHQhiHfhvYLykrDAX/Kydzeo+lfdaf20ep0pOcX3lQ2W0pGQSEG0525VIqiEA0m8HsiBNYjBDxRAp4I/nV1G1iPEtyIIsvb3n804Mg0q+Iy16q6mJt9mZmmA0/TvlMS6+tbYrOnh8j16yhJt9hYVoalLelutrVhrKjYUU4bl+KMeEZSpbT97n4Wg4sAGLQGGrIaaM5ppimniZacFvJt+bv/Dcgy+BZudTJXxyCwvLWfVq+OMNkhNJOupvnwtVgIBAKBYP8RAvSYI8kSv5r4FX/V+1e4w26eLH2Sf9f+7yhzlu35saNTU/hefx3fa68Tm5wEnQ7bgw/ifP55HE8+gc7x2SVgAU+UrtenGLqwhE6voenxEtqeLsV0BPsg1bJBX0qMepYW8SwvspHcxiNbvXFanZ60vHwy8guS7mmRKlALCnFk3dof90UjX0xVaZir0tHniZEvRw3JFyO2FCC+qLqa8aUgibVwqj1Oa9VjKLTvcDb1WRY0utv/nqVEAv+qmw3XEuuLC8myWTV1NuTdSO2nN5rILCxWnczi0pTYTM8v+ELnPhZJpERlwBPFvykyt20TcXnHY7Q6DfYME/YMM/ZMdevIMGHPNOPINJOWa0FvOFrl5oosE5uaSpXShnt6iM3MAKAxGDCfOJFyNy2treizsnY83h1yb/VuuvsZWhtKuZt51ryU2GzOaaYxqxGjbhcDy+JhWJu4VWiujUM8tLWfOS3Zj1m7U2xmlMEetH0IBAKB4PggBOh9Qige4odDP+Qfrv0DMSnGd+q+w580/wmZ5s93JHcDRVGIjozge+11fK+/TnxhAY3RiP3RR3C+8AL2Rx9Fa7l9qe3GSogrr04xdtWFVq8hu9hBXpmD3HInuWVOMvKtR9rpUxSFkHcDz9LCDlGqbpdIxKKpfXUGA+l5BaQnBWlGfmHquj0jE41Wq458mdwgOn77kS+bglSXaRaC9JCgyAqJtbAqNJeSPZuLAeTAVumiLtOMscCWFJzqVnebGZORYACva5kN1zLelWU2XEt4k9d9q+6tslnAZLWRmXQzs4pKUted2bm3DQKSEjLBjVsdy+1fR0OJnQ/SgNVpVEVlUlzaM0w4Ms0pwWl1GI/0/zCAHIkQGRxMuZvhvj4krxcAXXr6lthsa8N84gRa01ZFR1yKM7w+nOrb/Cx3c/OyK+7mnYYAoYH00ltLZrNr1bRZ8RoiEAgEgntACND7jNXwKn/d99f877H/jVlv5g9O/gE/aPwBFv3+9FoqikKkvx/va6/je/MNJPcqWqsV+xNP4Hz+OeznzqEx3no2f3Xez+hlFyszPlZm/MSjah+Ywawjt9RBbpkzKUodOLKOh7hSFIWAZ00Vo0lhuumibriWdoS96I0m0vMLbinrdViz0bkVYhNeIhNeZL+aoKlLN2GqTEOXbkJnM6C1G9HaDOjsBrQ2A1qr4TOdNMG9o8Rl4svBnc7mchAllhSGOg2GXGtKaBqTZbRas+o8yrKEf3V1h7jcWHHhTV6PBAM7jmdxppGem09aXj7pefmk5earJzEKCrGlb40+UmSFkD+mOpbrWw5mYD2CP+lohnyxLV2SxGTVq07lzQ5mcmtLN6E7Zr3JiqIQm54mMjBAeGCQ8MAAkeFh2CynrazE0tqSGodirNg5rmkltJIqpR1YHbitu9mc00xzbjMNmQ1fzt1MRGF9CtbGVJG5Nr4lNreHABmsauDPzUIzqwoMh7sPXyAQCARHDyFA71MmvZP85+7/zAdzH5BpzuQ7td/hO7XfIc/2xYFBu4UiSYSuXlWd0d/8BtnrRZuWhvPpp3C+8ALW06fR3KYfUpYVNpZDqhid9uGa8bM670dO9sFZHAZVkG5zSq3HbKamIsv411a3ynmXF5LXVSEiS1tOlMFsUcVpXiG5mWVkaPKwhmxoVmWUUOIWUQGABrQWvSpGbYakSL35ulEI1s9BCsZToUDxpSCxxQAJdwg2s3tMuh0i01Box5BrJR6PqA6ma5mNleTWtaS6mO4VZGl7CI8OZ05uSlhuF5ppufkYzRYioThhX5ywP0bIHyPsj6eczM0y2eBGFFna+YegN2ixZ6qOZUpkZu50MA33QRJzYn1dFZmbgnNwEDnpbmqsViwnTmBpaVZnb7a2oM/Ymlkal+LcWL+xw91cCi4BqrvZmNWYEpxNOU335m4qCgRcSYE5poYBbQrOjRlQtpU8ixAggUAgEBwChAC9z+l2dfMP1/6Bj+Y/QqvR8kTpE7xU/xLtee376iIqsRiBixfxvfY6/nffRQmF0OVk43z2OZzPP4elpeVz1yMlZNYWAilBujLtw7MUTM3+s2eayEuK0dxyJ7mlDoyWO0uiPWrIkoRv1c1Gsqx3e2mvd8W1owxTgwarJR2HNRO7NQOLyYnV4MCst2HUWjBqzBhkAzpZjzauRRPT8Fm/Ba31iwSrAV3SaT0qglWRFBRJVkfhJGSU1EVRt3EZRZIhrl6Pr4ZVwbkYRPJuK592GrfKZ/OtxG0JfJFVvCuupJu5JTTDft+ONZhtdtLy8knLKyA9Nw97Zh5mexYGSyYarZ1oUE4KS1VchpPXQ/44kUAcRb71tVyr1WBLN93iWKYEZoYZk01/LCoJ7gY5GiUyNKSKzf4BwoODxOfm1Du1Wkw1NViaTmFuasLS1IypumrHSTJX0LVDbA6tDRGT1aqDfFv+DrF51+5mLKQ6mNtF5tq4ej3m39pPb0m6mdWQVaOKzKxq9SJmZwoEAoHgECAEqACAOf8c/zzyz/x87Of4Yj6q06t5qf4lXqx8EavBuq9rkcNhAh9+iO+11wl8+CFKLIahsBDn88/heOZZzCdP3NEH41gkwepcANe0L+WW+lbVnkg0kJFn3RKk5Q6yi+1HLuzkbpESCXxulypGkyWb0WCQaChELBQkEgoSCwWJhtTbosEAUmLLTdWgwag1Y9JZ1YvWillvw2ZOx2K0Y9HbMemsqnBVjOhkPZ8pWU1aVZQ6jOjs29zUm11Wmx4Ubi/+EjcLw53331Y0bj4m+XhFUrau3/R8yLdf+meiAX2OBX2ehYRdIqQPshFbweNZSglN38ryzp+pRos9MxtbZi4WRxYmazZ6UwZaXRoyTuIRPWHflri8OcRnE4NZh8VhxOowYHEYkxcDFrsRi9OQvE+93Ww3oD3ifZdfFkWWiU3PEB7oTwnOyMgIJH83+vx8LE1NWJqbMJ86heXECbQ2m/pYRWE1vMqIZ4RRzyhDa0P0u/tZDqppsDe7m805zXdWXSLL4JvfWS67KTh989t21EBaiVoim12TFJpJwSncTIFAIBAccoQAFewgnAjz5tSb/GT4JwyvD+MwOPha9df4bv139yU592Ykvx//u+/ie/11ghcugiRhKCrC8cwzOJ99BvOpU3fl0kQC8WQfqQ/XtOqUhnyqQ6HVasgqtqdKd/PK1ZCjozLmYa9IxGJJQRpMitXgTV+HiIYCKcGqfr15fwhNVN4pWDevJ7826SzbhKsJjWb3ft6yRkbRKMmLen3rNhlZo6Agp26TNTIK8rb7JOTt17fvu/k1MgoSEhIbPhce9wLBDc+OdegMZsz2bAzmDHSGDDTaNGTJTixmJx61otHceuJDq9OkRKR1u6Dcdt3qTF63G9B/waiV+53E2hrhgQG1nLZ/gPC1a8g+1W3WWq2qyEwJziYMebkARKUoExsTjHpGGVkfYcwzxqhnFE9063dcYCtIpdI25zRTn1n/+e7m5tzMVG9mUmSuT0AisrWfyZl0M28SmaI3UyAQCARHGCFABbdFURT63f38ZPgnvD39Ngklwbmic3yv/nucKzyHTrv/H3YTHg+B997H99abBD+9BPE4+sICnE89jeOZZ7C0NN82vfPzUBSF4EaUlWk/rqRLujLjJxZOuiBGLTmpkCN1m5Zjue9KE78MiiwTi4S3xGswSDQcvOnrpHgNhpCCMZSwBGEZTQy0CR2Kogo8RZGRlAQyMhIJZEVOCkEJmQSSogpIiQQKsprSmfxdaQA0mtTvTnOb+9BoVMdWw7bfsUbd7ab7FAVkSUFKyEhxdasoFhScaDTpaHRpaLRpaLTpoFGDscw2ww4RaXUYsDh3iktr8rrRcv+VwO4WciRCZGhoq3ezf4D4woJ6p06XLKVVxaalqQljZSVotbhCLkY9o+plfZQRzwgzvhkkRe27NevMVKdXU5tZS23G1iXNdJv5llJC7cFMCcxtrmZwZWs/jU4dXbK9XHZTcNpzRdKsQCAQCI4dQoAKvhB3yM0rY6/ws5Gf4Q67KbYX89t1v803ar5x+w9e+4Dk9eJ//338b75F8MIFlHgcfV4ejqefxvnM01ja2u5ajG6iyAped3hb6a4f95wfKVn6aLLpt0KOylSn1JZu+oJnFRxlFEX9m9j8e1iZ8eGeC5C4KY05Lceys/x1Ryms4b530/eCzZmbas+m6m5GRke3SmkLC7CcatpyNxsbiRo1O1zNTdHpi2313xbaCm8RmqWO0p0n3xQFQmu3F5meKZC3jaWxZiXdy5v6MzMqQH+8QtIEAoFAIPg8hAAV3DFxOc67s+/y8o2X6VnpwaQz8ULlC7xU/xL1mfUHti7J7yfwwQf43nyL4Mcfo8Ri6HNycDz1FI5nnsHa0X7bNN27QZZk1peCuKZUh3RlxsfaQjAV8GJLMyZ7SVVhmllgw5ZuEg7WEeRmV9ydHP2zOeNSZ9CSU2Inp8yZmkmbnnu059EeJRKrq2opbf8AkcEBwoPXkP1qCI/Wbsd86qQqOJubMJ88xYotzuj66Jaz6RllxjeDkox/tugt1GTUUJtRS11GHbUZtdRk1OAwOrYOGgvC+mRSYE4kw4CSJbQR79Z+OiNkVt5UNpsUnda9n7ksEAgEAsFRQAjQvSIWAuP+hvfsJyPrI/zTyD/x64lfE5EitOa28lL9SzxZ+iQGneHA1iUFggQ+/AD/m28R+OgjlGgUXVYWjqeexPnMM+poF/3upN8mYhKr88mQo2Tp7oYrlLrfYNaRkWclI99GRkFym28lLccinLBDRDgQS7maKzO39gVnFtl2jPXJLLShE7+/fUEOh9VS2m3uZnxxUb1Tp8NUV6s6m6ea4EQtMxlxRjbUHs3NXs1AfGs2aomjZIejWZdRR5GjCK1Gq5bMemeTvZk3XXwLOxfmLFL7MLO2JcxmV0N6GRxAe4JAIBAIBEcJIUD3ih99GwLLcPJb6iW99KBXtCd4o15+Nf4r/mnkn5jzz5FtyeY7td/h27XfJteae6Brk4NBAh9/jO/Nt9Q03XAYXUYGjiefxPHMM9jOdKIx7K5YjobirM4F8CwHWV8O4VkKsuEKEfBsjeTQ6jSk5VjIKFAFaUa+jcwCG+l51vtiruJBEgsnWJn1p04YrMz48K/dLhlZLa/OLraLcJ99QJFl4gsLRMfGiI6OJbejRCcnITn31FBYiLm5CXPTKQJVBUzmwUh4OpVEO+efSz2fzWDbITQ3XU2b3gpB91ap7Np40tEcg/UpkONbizKn7RSYm4mzmZVgtO33j0ggEAgEgmODEKB7xZW/hYGfwvxV9eviTjj1bWj8OjjuII7/iCErMhcWLvDy8Mt8svAJOo2OJ8ue5KX6l2jNbT3wUlQ5HCbw8ceqM/rBB8ihELq0NOxPPoHz2WexnTmDxrh3fVixSALPcgjPchDPUnK7HMLrDu+Y02jPNJGZb7vFNbU4RI/Y3bLdoXYnxabHFSJZeYkz20xOqSo288qc5Bzj2bCHBUVRSLjdqsDcvIyOER0fRwmHU/sZioow1dSgranEXZHBeCEMKYspZzOUUCsNNGgoc5btLKHNrKVQ70SzPrFNYG7OzZyA6LY5qzojZFYl3czqbaWz1WrPpiihFwgEAoFg1xECdK/xTMO1/w3Xfg6ua6DRQvnDqiva+FWwZBz0CnedWd8sPx35Kb8Y/wX+mJ/ajFpeqn+J5yue3/eZordDjkQIXrigOqPvvYccDKJ1OnE8/jiOZ5/B9uCDaPdQjG5HSsh4V8JJQRpkfSnEhksVqInY1rxHs82wQ5Bubh2ZZtF7CEiSzPpCcKuMdsbH+kIQOSnurU5jqj93c2uxC1G/l0g+306RmbwubWyk9tFlZ2OqriZRUYinwM5crpaRtBDj8QVmfDOpuZoADqMj1aNZm1FLbVolVYoBq3f+1pJZ/9K2lWybmbm9XDarWr1dlMwKBAKBQLCvCAG6n6wMJ8XoK2qghdYA1U/AyW9D3XNgsh/0CneVUDzE61Ov8/Lwy4x6RnEYHXyj+ht8t+67lDhLDnp5AMixGMELF/C/+Rb+995D9vvR2u3YH39MdUbPnUNr2v+EW0VW8Hsiqmu6FMTjSm6XQ0QCW2WCeqOW9LybhGmBlfRcKzr98exTVGQFjyu0I5F2dT6wlVJs1acSilWx6cSWbjxwF/64IkciRCcmdojM6NgYieUt8ai129FXVxIuzWGtwMZsNtxIDzCsLDHrmyUqbZWo2w12yp3llKeVU5lWQZ05l1pJQ15gbZurOa6e3NueMmvJvFVgZlWrJbNiZqZAIBAIBIcGIUAPAkWBpT4YfAWu/0INuNBboO5ZVYxWPwkG80GvctdQFIXelV5eHn6Zd2beQVIkHip6iJfqX+Jc0Tk1AOQQoMRiBC9dwvfmW/jffRfZ60VrtWJ/7DEczz6D/eGH0ZoP/vcSDsR2lPFulvX617cG2Gu0ap9pep6VzJRzqorUw1JmqigKsqygyAqypKAooEjbbktuE3GZtYVAqox2ZdZPPKL2BepNOnJK7OSWO8lL9m46s8Wc1r1AiceJzc6qvZnbnM3Y7Kz6mgZqGXt5MaHSbNz5VqazJa45fQxoF1mPelLPpdPoKHYUq0LTWU65JZdyRUd5NEyWd1kVmusTaslsbCtECL15q2Q2e3t/pkiZFQgEAoHgqCAE6EEjyzB3SRWjQ79UZ8qZnNDwFTj5Tag4D7rDIRh2g5XQCq+MvsLPRn/GaniVEkcJ3637Ll+r/tqBzRS9HUo8TvDSZfy/eQv/2+8gbWygsVqxP/oIzmeexf7Iw2itB19OvJ14VGLDFWI9GXzkWVKDkLwrIWRp6//ZlmYko8BGWq4VrVZzi+BTxaBykxhUg2LUr0nts2Mr3yQeJQU5KSpvt8/dvsRo9Rqyi+wpVzO33EFGvg2tKEHeVRRZJr64RHRsdIerGZucRIkn3XetFrkoj0BJJsv5JiYz4ww6vfQbXcQ0Uuq5Ms2ZKTez3FZIOUbK4nFKgusY1me23Mzw+tYCNFo1tC2rWhWb2TVbibPOIrjH+b4CgUAgEAgOB0KAHiakBEx9oPaL3nhVDcuwZkPj19QAo5Kzx+bDV1yK887sO7w8/DK9K72YdebUTNG6zLqDXt4OlESC0JUr+N76Df6330ZaX0djNmN/5BGczz6D/dFH0doObyqmJMn43OEttzRZ1utdDYOiuqVarWZrq9v+9W3u12rQ6jS3uZ1bnue2j918vIbU83zmMTTqNiPfSlaR/diWFR8EiqIgra2lBGYk6WzGxsaRQ1vjhBK5GfiK0lnM1TOeFaPPvs5YWoi4XhX+Rq2RUmcpFWkVlNtLKNNZKU/IlEeCpG3MJUOAJsC/uHMBjsKksKzaEptZ1ZBRDnrRnysQCAQCwXFFCNDDSjwC4++o/aIjb0IirJ79P/ENVYwWtBybhMYbazf4p5F/4rXJ14hKUdpy23ip4SWeKH0Cg/bgZoreDkWSCF3twv+bt/D95m2k1VU0JhO2hx/C+cwz2B97DJ39ePXyCo4OciyG7PMh+XxIXi+y34/k9SH5fcnb/Ug+L/G5eaKjo0ierbLYhNOKp8jJfK6W0fQIg04vc9kQNquvM3nWPNXJdJRRbkyjXNZSHglT4FtB55lUncyNWVC2wrOwZm0Jy6zKnX2ZYpSJQCAQCAT3JUKAHgWiARh5Qw0wGn9HnVWXWbU1YzS3/qBXuCt4o15+Of5LXh5+mYXAAjmWHL5T9x2+U/sdsi3ZB728W1AkiXBPj+qM/uY3JFZW0BgMWE+fRpeVhdZmRWu1obVa0dqSW6t163ab9Zb7NPrjU24tuHsURUEOBpG9XlVEJgWj7PMj+XzIfp8qKH2+LaHp9yF7fUh+P0ok8rnPL5sMxK1GvOkGZnM0DKeHmMyKM5ujwWfTYNVbVZHpLKfclEW5xkB5LEZZYAOrJ1ky65kCKbb1pEb7rS5mVpUqMkVfpkAgEAgEgpsQAvSoEVqH4V+rPaPTH6tuQ97JpBj9plq+dsSRZIkLixf4yfBPuLBwAb1Wz1OlT/Ht2m/TmtuKQXe4XFFQ++bCff3433qT4JWryH4/ciiEHAp9oSjYjsZk2iZUv1i0aqxWdDYbmlses7WvZg/KthVFAUlCicdREgl1G4+jxBMo8Rhsvy11fftt6pZbHnvT8yXUfdBo0eh1oNOj0elAr0Oj16PR6W+9PXmbRq9Xb9frQKfbtq8Ojd6g7qPT7dxHrz6PRq+H5PXtt2/eptF99ugOJRZD8vt3ikTfTgdyU1DuEJc+VUQiy5/53Gg0aB0OdE4nOqcTbWrrQOdMA7sVn1HCpQuwgJdpxc14YonRxBI+U4KEXoMGDUX2IlVoWguo0JopT0iUhwPkeObRrE+qJbPx4NZxdSZVUN6uZNaee2yqMQQCgUAgEOw9QoAeZfwuNbho8BWYv6LeVnxaFaMnvgGO/ANd3m4w7Z3mpyM/5Vfjv8If92PRW2jJaaGzoJPT+adpzGo8dGW6N6MkEsjhsCpIg0HkYGjreiiEHNq8LZgSrZv3KaEQUjCIEgqp+2zeHo9/8YGTaCyW2whaG1qzGUWWtwRj7CbBeBsRSUos3vnx7wm9XhV9BoMq9hQFRZJQJEldayLBXacY7SYazU4xmrwuh8Mo4fDnP9RkSglGncOBNs2JzrFTSOrSnEmhmYbO6UC7ubXb0Wi1JOQEs/5ZJjYmGN8YZ2JjgomNCaZ90ySSo0k0aCh2FFPlKKXakE4VBqpjMcr9a5g908nwH8+2hem2wn82XcysKlVophWLeZkCgUAgEAh2BSFAjwueGbj+c7VMd3kQ0ED5Q2q/aMNXj3wpXCge4uLiRa4sX+Hq8lXGN8YBsOqttOW1cTr/NJ35ndRn1qPXHv8yViUW2xKroZsF7WcJ3Zuuh0NJVzAp9AwGNAY9bF7Xb2633a/XozGq19m8fXO/m+7ffBw7Hm+45f7tz8/m13fg2iqyrIrR7cJUklASEiTiW9elxK3X44lttydUNzchoUjJ6/HE1vXtt29eTyS2XZeSa0igNVuSgtG55VI6nFuCMi3trubKJuQEc/65lMCc2Jhg3DvOtHeauKyeBNCgociWT5U5myqtleqEQlXYT8XGMpb1aYh6tz2jRu0lz6zYOcIkqwrSy0T4j0AgEAgEgj1HCNDjiHtETdK99orqcmj1UPWE6ozWPw8mx0Gv8EuzFl6jy9XF1eWrXFm+wpR3ClCH2LfntXM6/zSn809Tl1GHTjg3gkOOJEvMB+ZTbubmdto7TUze6rcsMmVSZUijStFRHY1S5V+jYn0Wa2wrtTblZGZWJi8VW9fTy47VjGGBQCAQCARHDyFAjzOKAkv9qit67efgm1cHudc+Aye/DTVPH5sPo+6Qmy5XV8ohnfHNAOA0OmnPa6czXy3ZrcmoQasRozwEB4MkSywEFm4RmlPeqR1Cs1DvoEprpjouURnyUe1dpjISxrr5uqwzqf3eO0RmUmimlcAh7JMWCAQCgUAgACFA7x9kWe0THXxF7RsNusHogIYXof5FKO44Fj2jm7iCLq4sX1FF6dIV5gPzAKSb0unI60iV7FalV6ERASqCXUZWZBb8SaHp3SqfnfROEpWiqf3ytSaqZC3VkTBVgXWqozEq43FsigIG200O5jYn01F4bGYCCwQCgUAg+P+3d68xcp13Hce//715d72z3nV2bcc7ieM4KcUNJRfjtmoRVEWoqdRGAgStVNFWpX1VKLQgFRWpF14BAqSilhIgoiBBKUUCFwqRgKIiRBq7adUmvSSu4zS7viSx9+q9zMzOw4sz3pvX9njtnOOd/X6ko3N5zs7+x3o8u799nnPO1mIA3YoWa3Dyq/Dtf4Tvfmn5GrH+MozcDyMPZMvee1tiui7A6ZnTPH7m8aUR0tMXTgOws3snh3YfykZIb/0J9vfvN5CqKSklxhfGGZseY2xmjNGZUU5MnOD4+NM8O/ks8ytGNHendu6qVjkwN8NdlSoHqlXurFTp6x6Awf3rT5fdPuzdZSVJUssxgG51tQU49U0Y+/ryMv5sozFg+JVQfmA5lO462BLT+0anR5euH338zOO8MPsCAMM9wxzac2hpyu7tpdsNpFvYbHU2C5fTo4zNNILm1HOMTp5kbPYscytCJsCuxToHKgscqFSXguaBrkFKA2tD5v4seG7ym4NJkiRdKwOoLnXhHJx6YnUonT2XtXV0w60/vhxIRx7IrkXbxCEtpcTz08+vGiF9ae4lAHb17uLwnsNLgbRcKhdcrW6kar3KmZkzjM40Aub0KGOTzzI6+Rxjs2c4X7uw6vyeemKkVqVcrVGu1RipLTJSh5HuIcqlMr2Da0YyB/fDtr6C3p0kSdLNxwCqq0sJJp7LguhoI5Ce/ibU5rP2np2r/WGHFgAADU9JREFUA+nI/bB9qNCSr0dKiZNTJ5dGSI+eOcr5+fMA7N2+d2mE9PCew9zad2vB1epKUkq8NPfS0hTZsekxRsefYWzyOcZmT3OmMkWd5c+6jpTYU2uEy+pitk7tjPQMUe4rMzhwBzG4L7vRz8Dt2bpvt9djSpIkNckAqo1ZrMIL3109SvrCd+HiL/MD+7IwWj6Urfe8Grp6Cy15o1JK/GDiBxw9e5SjZ7JlYmECgHJfmcO3Hl66jnT39t3FFrsFTVemG6OXY4xO/ZDR8acZmzzJ2IUznKqMM58WV50/VGsEy1qNkWqNcnRR7hlipK/MroE76VgKmLfBjtuzabKbeIRfkiTpZmIA1Y2zMJ099mUplD4Bk89nbdEOuw+uHikdfiVswmd01lOdZ8afWQqjx84eY6oyBcC+/n3cO3wvw73DDGwbYMe2HQxsG1i13d/V77NJr8HC4gKnZ05no5iTJxk7973GNZinGV0YZ2rNdZh99TrlaiNg1mqMtPVQ7r6FcqnM3oEDdA/uXxEwb4Pu/oLemSRJ0tZjANXLa/rs6lHSsSeW77rbuR323rf6zrs7yptutGmxvsjT409nj305c4wnzz3JxPwEtVRb9/wgKHWVGOweXDegXm67u2PzPbM1pcRsbZbpyvTSMlOdYaoyxUxlZvn4whTTcy8xM3+e6YVJpqozzNTmmF5cYIH6qtfsTImRpYC5yEh7L+XuIUZKI5QH7qR/8AAxcHs2Cr9jBDp7Cnr3kiRJWssAqnzV63D+RCOMHsvWZ74Ni41RrO27lsNo+YEsoPYMFlvzBqSUuFC9wMTCxKplcmEy255fsb3i+Gxt9rKv2d3evSqYDnRfPbiWukq0xcavT6zVa8tBsTq9KkheDJPTlenlQFmdZqaSBczpSrZdXxMg1+pMif7FOqV6tvSlOqXFOqWUKEUHpY5e9nTvZKRvhJEdd7Lrlh+h7eI02f69LXFXZkmSpK3CAKri1Rbg7JPZ6OjY12H0GJx7Zrn9lruyQLr7nuzmRj07ofeW7Nq8nkHoHmiZm8BUFiuXhtWL2/PrH5+sTFJP64e8tmhjR9eOdUNqqavEXG1uaUTyYmBcGTbnanNXrbmvrYu+aKeUglI9UVqsUqou0FeZo1RfXAqWy6Gyk77uQUq9w5S272ZbaU92I5++XdkfIC5u9+1y9FKSJKnFGEB1c5qbgFPfWJ62O3YMZs6uf260ZUG0Z2cjlF4MqOsd27l8rEVGzuqpznRlet1R1pX7K4PrxMIEC4sLdEQHpa4Spc7tlNq76YsO+qONvjqUFmv01Sr0V+YoLVygb26K0tw4pVplKVRuryfaAdo6VwfHvkaQ3L5i++Lxrr5NN81akiRJN8blAmhHEcVIS3oG4MAbswWyR8HMT8LceZgdb6zPwez5xnZjf+48TI7CmW9l+xcfFbOebf1ZcL1cQF25fbG9iDv51uvZ+6jNQ3VuxfY81OZoq86zozbHjuo8+2pzS8dXr2tQbYdaL1TbYLGHauUCHRdeJGaezs5bK9oaAXIY+vbC0H2wfXhN0Gxsdw8YKiVJkrRhBlDdXCKyUNozADuv4esqs5cG1NnzMDd+aYA9dzw7vjB1+dfr6L5yQO3dCdtK2bTilYHxkvV6IfEy68WFjf+7tXVm01g7uqGzGzp6ltad2/ph54FLRygvjlz27tyUdymWJEnS5mMAVWvo6s2WHeXmv2axun5AXQqwK0Zgzz6Vbc+Nw2Wuw1wWK8LgOuveoUtCYtPrjm3rv6YBUpIkSZuAAVRbV3vn8mhgs+p1mJ9YHkHt6L40DLZ3OU1VkiRJWocBVLoWbW3L03IlSZIkXZPWeKaFJEmSJOmmZwCVJEmSJOXCACpJkiRJyoUBVJIkSZKUCwOoJEmSJCkXBlBJkiRJUi4KCaAR8eaI+H5EHI+IjxRRgyRJkiQpX7kH0IhoBz4NPAgcBN4REQfzrkOSJEmSlK8iRkAPA8dTSidSShXg88BDBdQhSZIkScpRRwHfcwR4fsX+KPCaAuq4IT7xpaf4zqmposuQJEmStIUc3NvPx976qqLLuGY37U2IIuL9EXEsIo69+OKLRZcjSZIkSbpORYyAjgG3rdgvN46tklJ6GHgY4NChQymf0q7dZvyrgyRJkiQVoYgR0KPA3RGxPyK6gLcDRwqoQ5IkSZKUo9xHQFNKtYj4APAo0A48klJ6Ku86JEmSJEn5KmIKLimlLwNfLuJ7S5IkSZKKcdPehEiSJEmS1FoMoJIkSZKkXBhAJUmSJEm5MIBKkiRJknJhAJUkSZIk5cIAKkmSJEnKhQFUkiRJkpQLA6gkSZIkKRcGUEmSJElSLgygkiRJkqRcGEAlSZIkSbkwgEqSJEmScmEAlSRJkiTlwgAqSZIkScqFAVSSJEmSlAsDqCRJkiQpFwZQSZIkSVIuIqVUdA1XFREvAs8VXccVDAEvFV2Etiz7n4pk/1OR7H8qkv1PRbvZ++C+lNLw2oObIoDe7CLiWErpUNF1aGuy/6lI9j8Vyf6nItn/VLTN2gedgitJkiRJyoUBVJIkSZKUCwPojfFw0QVoS7P/qUj2PxXJ/qci2f9UtE3ZB70GVJIkSZKUC0dAJUmSJEm5MIBeg4h4c0R8PyKOR8RH1mnfFhF/32j/WkTcUUCZalFN9L8PRcR3IuJbEfGfEbGviDrVmq7W/1ac9/MRkSJi092VTzevZvpfRPxi4zPwqYj427xrVOtq4ufv7RHxlYj4RuNn8FuKqFOtKSIeiYgXIuLJy7RHRHyq0T+/FRH3513jtTKANiki2oFPAw8CB4F3RMTBNae9FxhPKd0F/DHwe/lWqVbVZP/7BnAopfRq4IvA7+dbpVpVk/2PiCgBHwS+lm+FamXN9L+IuBv4beD1KaVXAb+ed51qTU1+/v0O8IWU0n3A24HP5FulWtxfAW++QvuDwN2N5f3An+ZQ03UxgDbvMHA8pXQipVQBPg88tOach4DPNba/CLwpIiLHGtW6rtr/UkpfSSnNNnYfA8o516jW1cznH8Dvkv3hbT7P4tTymul/7wM+nVIaB0gpvZBzjWpdzfS/BPQ3tncAp3KsTy0upfRV4PwVTnkI+OuUeQwYiIhb86luYwygzRsBnl+xP9o4tu45KaUaMAnckkt1anXN9L+V3gv828takbaSq/a/xpSf21JK/5pnYdoSmvn8ewXwioj434h4LCKuNFogXYtm+t/HgXdGxCjwZeBX8ylNAq79d8TCdRRdgKQbKyLeCRwCfqroWrQ1REQb8EfAuwsuRVtXB9n0s58mm/3x1Yj4sZTSRJFFact4B/BXKaU/jIjXAX8TEfeklOpFFybdjBwBbd4YcNuK/XLj2LrnREQH2TSMc7lUp1bXTP8jIn4G+CjwtpTSQk61qfVdrf+VgHuA/46Ik8BrgSPeiEg3SDOff6PAkZRSNaX0LPA0WSCVrlcz/e+9wBcAUkr/B3QDQ7lUJzX5O+LNxADavKPA3RGxPyK6yC4yP7LmnCPAuxrbvwD8V/JBq7oxrtr/IuI+4M/IwqfXP+lGumL/SylNppSGUkp3pJTuILsG+W0ppWPFlKsW08zP338iG/0kIobIpuSeyLFGta5m+t8PgTcBRMSPkgXQF3OtUlvZEeCXG3fDfS0wmVI6XXRRV+IU3CallGoR8QHgUaAdeCSl9FREfBI4llI6Avwl2bSL42QXC7+9uIrVSprsf38A9AH/0Lj31Q9TSm8rrGi1jCb7n/SyaLL/PQr8bER8B1gEfiul5AwkXbcm+9+HgT+PiN8guyHRux2A0I0SEX9H9ge2ocZ1xh8DOgFSSp8lu+74LcBxYBZ4TzGVNi/8/yFJkiRJyoNTcCVJkiRJuTCASpIkSZJyYQCVJEmSJOXCACpJkiRJyoUBVJIkSZKUCwOoJEmSJCkXBlBJkiRJUi4MoJIkFSwiyhHxS2uOfTYiXr9emyRJm5UBVJKk4r0JuH/NsdcCj12mTZKkTSlSSkXXIEnSphUR7wJ+DegEplJKb7jGr38D8M/ABDAN/BywDfgE8Km1bSmlEzeqdkmS8mYAlSRpgyKiBHwNuDelVImIgZTSxIr2/wFK63zpb6aU/mPFef/eOPZkY/9DwERK6ZG1bZIkbWYGUEmSNigieoGngH8BPpdSOrbB13kWuDulVGvsPwq8J6V0am2bJEmbWUfRBUiStFmllGYj4h7grcDDEfEXKaXPXGxvZgQ0IoaAyRXhsxcYaITPVW2N9o8Dg8C5lNInX673JknSy8EAKknSBkXE3SmlZ4DPR8RBoHtle0rpJ5t4mTuAUyv23wh8Zb22iBgh+9k9Abx+o3VLklQUA6gkSRv30Yh4HXCBbCru+zbwGt8DhiLiSeD9wIPAFy/T9ivAB4Fh4LbrrF2SpNx5DagkSTeRiHgCeE1KqbpO24eBfuAW4PsppT/Juz5Jkq6HAVSSJEmSlIu2oguQJEmSJG0NBlBJkiRJUi4MoJIkSZKkXBhAJUmSJEm5MIBKkiRJknJhAJUkSZIk5cIAKkmSJEnKhQFUkiRJkpQLA6gkSZIkKRf/D+V4G5GUPRNrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.clf();\n", + "fig = plt.figure(num=1);\n", + "fig.set_size_inches((13, 8))\n", + "\n", + "for i in range(1):\n", + " ax1 = plt.subplot(1, 1, i+1)\n", + " \n", + " plt.plot(s, spectrum_test[:,0]/2/np.pi, label=r\"$E_0$\", color=\"C0\")\n", + " plt.plot(s, spectrum_test[:,1]/2/np.pi, label=r\"$E_1$\", color=\"C1\")\n", + " plt.plot(s, spectrum_test[:,2]/2/np.pi, label=r\"$E_2$\", color=\"C2\")\n", + " plt.plot(s, spectrum_test[:,3]/2/np.pi, label=r\"$E_3$\", color=\"C3\")\n", + " plt.plot(s, spectrum_test[:,4]/2/np.pi, label=r\"$E_4$\", color=\"C4\")\n", + " plt.plot(s, spectrum_test[:,5]/2/np.pi, label=r\"$E_5$\", color=\"C5\")\n", + " plt.plot(s, spectrum_test[:,6]/2/np.pi, label=r\"$E_6$\", color=\"C6\")\n", + " plt.plot(s, spectrum_test[:,7]/2/np.pi, label=r\"$E_7$\", color=\"C7\")\n", + " plt.plot(s, spectrum_test[:,8]/2/np.pi, label=r\"$E_8$\", color=\"C8\")\n", + " plt.plot(s, spectrum_test[:,9]/2/np.pi, label=r\"$E_9$\", color=\"C9\")\n", + " \n", + " plt.xlabel(r\"$s=t/t_a$\"); plt.ylabel(r\"Energy (GHZ)\")\n", + " plt.legend()\n", + " plt.title(\"With CSFQ coupling the two CSFQs\")\n", + "\n", + " \n", + "plt.suptitle(\"\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## get_ising_sw gives individual qubit ising coefficients $X_i$, $Z_i$ and $Z_{i}Z_{i+1}$, $X_{i}X_{i+1}$ and $Y_{i}Y_{i+1}$" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16min 41s, sys: 1min 27s, total: 18min 8s\n", + "Wall time: 5min 7s\n" + ] + } + ], + "source": [ + "%%time\n", + "ising_sw_dict = circuit.get_ising_sw(phi_dict, verbose=True, XX_YY=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['points', 'x_0', 'z_0', 'x_1', 'z_1', 'x_2', 'z_2', 'zz_0,1', 'xx_0,1', 'yy_0,1', 'zz_1,2', 'xx_1,2', 'yy_1,2'])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ising_sw_dict.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calculating qubit isings for qubit 1 of 3\n", + "calculating qubit isings for qubit 2 of 3\n", + "calculating qubit isings for qubit 3 of 3\n", + "calculating coupling strength for coupler 1 of 2\n", + "calculating coupling strength for coupler 2 of 2\n", + "CPU times: user 7min 23s, sys: 3min 15s, total: 10min 38s\n", + "Wall time: 3min 59s\n" + ] + } + ], + "source": [ + "%%time\n", + "ising_pwsw_dict = circuit.get_ising_pwsw(phi_dict, verbose=True, XX_YY=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['x_0', 'z_0', 'x_1', 'z_1', 'x_2', 'z_2', 'zz_0,1', 'xx_0,1', 'yy_0,1', 'zz_1,2', 'xx_1,2', 'yy_1,2', 'points'])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ising_pwsw_dict.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAANYCAYAAADZuhuBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3yb1fX48c+RvB07dhxnOs7eexOSMMoKI+wR9iy70Jb+ChRaZgvfUlr2CCPsDYVAGAXCzt6b7OHsOPGIt6Xz++ORbTlxYsmWLY/zfr2M/SzpPDi+Orq691xRVYwxxhhjjDEOV7gDMMYYY4wxpiGxBNkYY4wxxhg/liAbY4wxxhjjxxJkY4wxxhhj/FiCbIwxxhhjjB9LkI0xxhhjjPFT5wmyiLwsIrtEZNkhjouIPCEia0VkiYgM8zt2uYis8X1dXtexGmOMMcYYI3VdB1lEjgL2A6+p6oAqjp8C/A44BRgNPK6qo0WkFTAPGAEoMB8Yrqr7Dvd8rVu31i5duoT2JowxJsTmz5+/R1VT6+v5RORl4DRg1yHaYgEex2mL84ErVHWB79jlwN2+Ux9U1Verez5ri40xjcGh2uKIQC4WkTRgEjAe6AAUAMuAacAXquo91LWq+qOIdDnMw5+BkzwrMEtEkkSkPXAM8LWq7vXF8DUwAXj7cLF26dKFefPmBXJbxhgTNiKyqQbX1LgtBl4BngJeO8Txk4Gevq/RwLNAWWfFPfh1VojI1Oo6K6wtNsY0Bodqi6sdYiEiU4CXgWLg/4ALgRuBb3AS1p99vcQ11RHY4red4dt3qP1VxXitiMwTkXm7d++uRSjGGNMw1bYtVtUfgb2HeYryzgpVnQWUdVachK+zwpcUl3VWGGNMkxVID/KjqlrV+OFlwEciEgWkhzas4KjqZGAywIgRI2ztbGNMU1TXbXFIOiuAawHS08P6smCMMbUSyCS9kkMdEJGxqlqsqmtrEcNWoJPfdppv36H2h5zHq3y9fAdrdubWxcMbY0wo1HVbXGuqOllVR6jqiNTU4IdXb88u4PrX57M3r7gOojPGmMAF0oO8UkReB25S1f0HHHsSGFbFNcGYCtwsIu/gjHvLVtXtIvIV8A8RSfaddyJwZy2f6yBFpR6GPfA1eUUezhuexiPnDQ71UxhjTCjUdVt8uM6KYw7Y/30tn+sgO3MKOfPpX9iZU8Tu/UW8ec1oYiLdoX4aY0wNlZSUkJGRQWFhYbhDqZGYmBjS0tKIjIwM6PxAEuTlOB+pLRCRy3xj08pIdReLyNs4jWtrEcnAmewRCaCqzwGf48yaXoszc/pK37G9IvIAMNf3UPeXTdgLpegIN61bRJNXlM/Uxdu4+9R+tIwL7H+eMaaZKy2Ctd9A71NAqm0Oa6tWbXEAwtpZsb+whNzCUgDmb9rHH95dxNMXDcPlqvP/r8aYAGRkZJCQkECXLl2Qum/vQkpVyczMJCMjg65duwZ0TUBDLFT1LuAa4E0R+ZuIlF1X7XhfVb1QVduraqSqpqnqS6r6nC85xjch5CZV7a6qA1V1nt+1L6tqD9/XlIDuqAZuPKY7AEWlXj5ckFFXT2OMacy8Xlj3HXxwNSz/GD7/f/Bob3jnItgyuz4iqFVb7OusmAn0FpEMEblaRK4Xket9p3wOrMfprHgBZwIgvo6Jss6KudRRZ0XblrF0ahVHWT78xbIdPPTFylA/jTGmhgoLC0lJSWl0yTGAiJCSkhJU73dAZd6gvFzbcJzSPz+JyMU1iLFBOm94J+75ZDmFpV7enL2JK8c2vndHxpg6krUZFr4JC1+HHN80iGUfgDsa+p4GQy+BtJH1Fk5N22JVvbCa4wrcdIhjL+NU0KgzLaIjePXKUZzx9M/s2V+Mx6u88NMG0pLjuPzILnX51MaYADXm3CjY2ANJkMsfUVWzgAt9ReN/BmKDerYGyuUSJgxoz8eLtrJudx6zN+zliG4p4Q7LGBMuJYWw6jNY8Bps+JHKHbQCXcbCBW9AbPKhHqEuNPm2uF3LGF65chTnPDuDolIvHq9y36fLad8yhhP7twt3eMaYZiSQIRYvHLjDt4rSUcD7IY8oTO48pU/5z2/MCrp+vzGmqVj6AfyrB3x4NWz4gfLkOD4Vxt0Gt2+AK6bVd3IMzaQt7ts+kecvHQ6quAS8Cre8s5BFW7LCHZoxphmpNkFW1WcOsX+9ql5f1bHGqG1iDL3atgDgy2U72J1bFOaIjDH1wuNMDKNovzOU4pfHochX8tEVCT1PhGumw/9bC8f/LRyJMdB82mKA8T1TeeicQXjL3ptEBTwa0BjTxD333HPccMMN5dt33303l156acifp9pWR0RyqXoCiOAMW0sMeVRh8vvje3Hjmwso9SrvzdvCTcf2CHdIxpi6oAobf3aGUGyeCV2PghWfQPF+SO4GHYfDkEtg6MUQER3uaIHm1RYDnD+iExl783li+lrOGNKBIZ2Swh2SMaYBuOyyy+jduzcPPfQQP//8M9OmTWPGjBkhf55qE2RVTSj7WUQWqurQkEfRQJw8oB2tW0SRX+zhrKFVLhRljGnMcnfC4rdg3hTI8htKtfQDGHgeDLsUOo2uj5JtQWtObXGZP5zQi4x9Bbz8y0YGdGzJ2cPSwh2SMSbM4uLiuPDCC7nrrrv44osv+Prrr4mNDf00jGA/t2rSyziLCI+cO5grX5nLws1ZdEhqEvNejGnevB5Y+y0seBV+/QLU43dQoMNQOOkf0HlM2EKsgSbdFpcRER4+ZxA7cgq5/cMltEuMocjj5culO3jo7IFWI9mYMLnv0+Ws2JYT0sfs1yGReyb2D+jcq666ir59+/LJJ5/QvXv3kMZRxgZ2HeCoXqmkJcfyxqxNnDqofbjDMcbU1kvHw9YFlffFJsOwy+HIWyDeKtY0ZFERLp69ZDjnPTeDq1+dS1GpF69CUnwkd57cN9zhGWPC4P777yc1NZXS0tLyfevXr+fvf/872dnZfPDBB7V+jkDGIJ/tt5l0wDaq+lGto2hA3C7hwlHpPPLVryzcvI+ureNJiosKd1jGmECUFjsT7KJbwKppTu3isuRYXNB5LBxzJ3Q+skEOozic5tYW+2sZG8nLV4zkjKd/ocRTgleV539YT6fkOC45onO4wzOm2Qm0p7cuPProoxQWFvLee+9xzz33cPbZTlPYrVs3XnrpJc4999yQPE8gPcgT/X7+4YBtBZpco3zW0I7863+/cu5zM7npmO788cTe4Q7JGHM4e9bCgldgweuQ0A7274KCvdCyExxxE8S3hpHXQEyjnsfW7Npif2nJcbx65SjOfW4GCni8yt8+WUb7ljEc17dtuMMzxtSD6dOnM2XKFGbOnElCQgI5OTksWrSIIUOGhPy5Apmkd2XIn7WB65AUS8vYSLLyS3h77hZ+d1xPIt2BlIw2xtSbkkJY+SnMe8mpRFGmMAt6nwojr4Jux4LLHbYQQ6k5tsUHGtCxJc9ePJyrXplbXiP55rcW8t51YxiY1jLc4Rlj6tDmzZu55pprmDZtGgkJzpzlW2+9lccee4xXXnkl5M9XbdYnImkiMs5v+48i8jffV5OtgzZpZCcAducW8e3KnWGOxhhTbtcq+PJO+FdP+Oiayslxchc45VE4bwr0OL7JJMfQfNviAx3bpw0PnDkArzr17QpKPFz16lwy9uWHOzRjTB1KT09n/fr19O1bMffgiiuuKE+OMzMzuf7661m4cCEPPfRQrZ8vkG7RR4Akv+3rgDycj/Tuq3UEDdQtv+lJ2QTpN2ZtDm8wxhjHzuXwzGiY9QwU+WZQu6Oh/9lw01y4dTGMuqbB1C4OsWbZFlflkiM6c93R3cpLeezOLeKKKXPZl1cc1riMMeGTkpLCc889x7p167jzzjtr/XiBjEHuraqf+W3nq+qjACLyU60jaKDioiMY2aUVszfs5ee1e9iwJ4+urePDHZYxzcuulZDcFbYvdsq0Lf9vxbGUHjD2Vhh0QVNNiA/ULNviQ7n9pD5s3VfAZ0u2A9AmIZqoCBsKZ4wJjUAS5JgDto/z+7l1CGNpcO44uQ9nPeOszvL2nM385RQrKWRMnSvOhxUfw9wXYet8SOgIuVshMh4GngvpR0LaSGjdbEYVlGm2bXFVXC7hX+cNZkd2AQs3Z3PjMT2Ij7bKpcaY0Ajk7XauiPQq21DVvQAi0gfIravAGoKh6cmkJjg9U+/N3UJhiaeaK4wxNbZrJXz+/+CRHvDxDU5yDM5QiomPw59+hdOfhCEXNsfkGJpxW3woMZFuXrhsJJ1T4rjhzfks25oNgKpS4vGGOTpjTGMWSIJ8D/CZiFwuIgN9X1cAU33HmrQrjnRqbGYVlPDFsu1hjsaYJqakEBa/Cy/8Bp45AuZMhpI851hELAy9FK7/EYZfAdEJh32oZqBZt8WHkhwfxevXjCYxJpLLXp7DrztyuO/TFdz45gJLko0xNRZImbcvfQXp/wzc4tu9DDhbVZfVZXANwW/Hd+c/X68hMsJF24QDP+E0xtSYKnxzL8x+tvL+1L4w/o/Q/yxwR4YltIaoubfFh9MxKZY3rhnNec/N5JxnZ7C/yPm070/vL+bf5w/BbUtSG2OCFNCALV/je1lNn0REJgCPA27gRVV9+IDj/wGO9W3GAW1UNcl3zAMs9R3brKqn1zSOmoiKcHH3qX2599MVRNoEEGNqrrTIWdWudS9Y/BbMfwUy1zrHImJg4HlOYtyqW1jDbMhq2xY3ZV1bx/PmNaM5//kZRLqFEo/yyaJtxEVF8I+zBiCNbOVEY0x4BbLU9AvAE6q6tIpj8cAFQJGqvnmI693A08AJQAYwV0SmquqKsnNU9Q9+5/8OGOr3EAWqOiSw26kb54/sxKNfr+aNWZsY2aVVOEMxpvHJXOckw/NfcZaBdkWAtwQ6HQHj/wRJ6c6kuwhb0v1wQtAWN9qOikD1bpfA61eP5sLJswAvJR7l7TmbaRHt5i+n9LUk2RgTsEB6kJ8G/ioiA3E+ztuNM5u6J5AIvAxU2SD7jALWqup6ABF5BzgDWHGI8y+kgY2ni4uK4Jxhabw1ezN/O62IVvFR1tAaczieElg1DWY/D5tnVD7WcThMfAzaWFWYINW4LW4KHRWBGpSWxJQrR3HpS7PKe5Jf+GkD8dER/P74XtU/gDHGENgY5EXA+SLSAhgBtAcKgJWq+msAz9ER2OK3nQGMrupEEekMdAWm++2OEZF5QCnwsKp+XMV11wLXgrPSSl2YNLITr8zYyBlP/8INx3Tn4tGd6+R5jGnUsjbD/Fed5Z8L9lU+ltITxv0BBpwDkTaeP1i1bIsbfUdFMEZ1bcXky0ZyzStzy5Pkx75ZQ4voCK4Zb0N4jDHVC7hopKruB76vu1AAmAR8oKr+9dQ6q+pWEekGTBeRpaq67oDYJgOTAUaMGKHUgZ5tE4hyu8jYV8AbszZx0ah060U2xl/+XnjzPNi9qmKfO8qZbDf+NkjtHb7YmpAatsV13lHhu7bOOysCdXSvVJ68aBg3vjm/PEl+cNpKhqYnM7xzclhjM8bU3JVXXsnChQvLt3fs2EFxcTF79+4N6fPUR1X1rUAnv+00376qTAJu8t+hqlt939eLyPc4H/utO/jSuuV2Ccf3a8vnS7ezcnsui7ZkMTTdGlnTjOXuhNztUFoI86Y4q9x5ipxjyV1h3O+dVe4iY8MapglajToqoH46K4IxYUA7Hj1/MH94dzERLuGGY7ozLD0p3GEZY2phypQp5T9v2LCB8ePHM3ny5JA/T30kyHOBniLSFScxngRcdOBJvmL3ycBMv33JOMupFolIa2As8M96iLlKfzmlD58vdWohvzFrsyXIpvlRhQ0/OmOLV3/h9BCXFkJUAgy7FIZeBi43tBsQ7khNZU2io6ImzhqaRkGxl7/8dynr9+ThVXDbh3/GNHp79uxhwoQJ/PWvf+X000M/b7hGCbKIuIAWqppT3bmqWioiNwNf4cyefllVl4vI/cA8VZ3qO3US8I6q+vc69AWeFxEvzqImD/tPKqlvaclxdGsdz/o9eXy6ZBt/Pa0vSXE28940A/l7YdGbMPs5yM6o2F9aCEfdDmNvgegW4YuvmQqiLW4yHRU1cdHodPKKSvn75yuJi3Tzf+cMIq+4lNU799twC2Nq4os7YMdBBXVqp91AOPnh6s8D8vPzmThxIueffz7XXXddaOPwCThBFpG3gOsBD05jmygij6vqI9Vdq6qfA58fsO9vB2zfW8V1M4CBgcZYH353XA/+8O5iiku9fLhgK1eP6xrukIypG6qQMc9Jild8DN7SimPihp7Hw/j/B2kjwMbj15uatMVNqaOipn57VDf2F5Xy+LdriHAJy7fnsGbnfl67epSV7zSmEfF4PEyaNIk+ffrwwAMPlO9fv349f//738nOzuaDDz6o9fNI5XbwMCeKLFLVISJyMTAMuAOYr6qDah1FCI0YMULnzZtXZ4/v9Sr97/mKghIP3VrH8+1tR9tkPdM0ZcyDKSeDp7hiX3wqjL4BRlwJcZZU1IaIzFfVETW4ztriGlJV/j5tJS/+vAEBFEiIjuC1q0fZkDljqrFy5Ur69g1/ec7rrruOzZs38+mnnxIRcXA/77nnnnvIBLmqezhUWxzM0nCRIhIJnAlMVdWSIK5tMlwuYeLg9gCs35PHzPWZYY7ImBDZuQL2boRFb8OLx8OLx4HXAwh0PQoumwp/WgNH3WbJcXhZW1xDIsJdp/blwlHplHUN5RaVcvGLs5mxbk9YYzPGVO++++5j/vz5vP/++1Umx6EUzKM/D2wEFgM/+koBZddFUA3dnyf04b15GbgENmXmc2T3cEdkTA2VFsGKqTDzKdi+CNzRTiWKlJ5w0kPQ/TiIbQkJ7cIWYklJCRkZGRQWFoYthtqIiYkhLS2NyMjIUD2ktcW1ICI8eOYA8otL+WTRNgTIL/Zw5ZS5PHvJMH7Tp224QzTGVGHjxo3ce++9dOnShXHjxpXv7927N++++27Iny+YBPlTVX2ibENENgNXhTyiRqB1i2jOGdaRDxds5YhuKeEOx5jg7dsIc1+sWP65jACXfgzdjmkw44ozMjJISEigS5cujW44k6qSmZlJRkYGXbuGbL6CtcW15HYJ/zpvMAXFHv63YicugaJSL9e+Np/HJg3htEEdwh2iMeYAXbp04XDDgjMzM7nrrrtYuHAhDz30EHfeeWetni+YIRYf+m/4JnG8U6tnb8Run9CHCJfw1uxN4Q7FmMB4PfDrF/DKqfD4YJjxZEVyHBkHI38LN86G7sc2mOQYoLCwkJSUlEaXHIPTW5mSkhLq3m9ri0Mg0u3iqYuGcerA9k7pN5dQ6lVueXsh78/bUv0DGGMalJSUFJ577jnWrVtX6+QYAuhB9pX96Q+0FJGz/Q4lAs12vdg2iTGc2L8t78/P4PfH9yI+uj5KShtTQ16PM4zi679V3p/aG8b90VntLiI6PLEFoDEmx2VCFbu1xaEXFeHiiQuH0iI6gnfnbSHCJbhdQlpyXLhDM8aEWSBZXW/gNCAJmOi3Pxf4bR3E1GhcM74bny/dwRVT5nBEtxRuO9GW0jUNRFmJtqR0WPg6zH8Vsjc7i3iIG/qf7dQubts/3JGawFlbXAfcLuHhcwbSIiaCl37ewOhurRjZxSpaGNPcVZsgq+onwCciMkZVZ1Z3fnMyLD2Z1i2imLtxH4u3ZHPR6HTat7RldU0YFebAkned4RNZm5xkWD1OFYoTH4BW3aBVV4hOCHekJkjWFtcdEeHuU/uSEBPBY9+s4ZZ3FvLYBUOJinCxZW8+acmxjfpTDGNM8IIZF7BWRP4CdPG/TlWb9eSQu07t6ywc4vHyxLdreOjsBlWK1DQXO5bB7GdhyXuV6xYnd4GL3oXWPcMWmgk5a4vrgIjw++N70SI6ggenrSSvaB63HteTK6bM4bTBHXjwjAG4XJYkm+ZNVRvtm8VA1/0oE0yC/AnwE/ANzgpOBjhraBr//PJXtmcX8t7cDH47vhvdUm3JXVMPSotgxSfwyxOw84AlP+NSYPT1MOIqiG8dnviamOeee47Fixfz7LPPAnD33XezadMmXn/99foOxdriOnTN+G4kxERw+4dLmb9pH/uLSnlr9mbyi0p55LzBRLqDmdtuTNMRExNDZmZmo5w0XVZRKCYm8OkawSTIcap6e/BhNX0PnzOQy1+ei0eVR79ezdMXDQt3SKapKymAD6+BVZ9V3p9+BIy7DXoc54w3NiFz2WWX0bt3bx566CF+/vlnpk2bxowZM8IRirXFdeyCkenER0dw69sLiY5wUVTq5eNF28gr9vDkhUOJibS/LdP8pKWlkZGRwe7du8MdSo2U1aQPVDAJ8mcicoqqfh58WE3b0b3a0D01nnW785i2ZDs3HJ3NgI4twx2WaUq8HshcC64ImPcyLHwDCrOcY1HxMOxyGH2dM6TC1Im4uDguvPBC7rrrLr744gu+/vprYmPDMufA2uJ6cNqgDsRHRXDd6/PKk+SvV+zkmlfnMfmy4cRFWeUi07xERkaGsp57gxfMX/itwF9EpBgoxllSQFU1sU4ia2QePW8wZz7j9Cb986tfee2qUWGOyDQJeZmw4FWY9Qzk73Um3LkioO9EGHE1oNBpdIMu0RZK9326nBXbckL6mP06JHLPxMCqeVx11VX07duXTz75hO7dw7aEprXF9eTYPm147erRXP3KXPAlyT+v3cOlL83h5StG0jI2ZKsjGmMamIATZFW1ae+HMSQ9mUFpLVmSkc2Pq3cza32mrbJnakYVMuY6lShWTXOS4jK9T4HTHoMEWw43HO6//35SU1MpLS0t35eXl8eNN95IVFQUxxxzDBdffHGdxmBtcf06olsKb197BJe+NBtVpdijzN+0jwsnz+L1q0eR0qJ5vDk1prkJOEEWZ0T2xUBXVX1ARDoB7VV1Tp1F18g8Pmkox/7re+Kj3ETYbGcTrOI8WPI+/PIY7NtQ+VhiRzjyFhhyEcQ0347CQHt668Kjjz5KYWEh7733Hvfccw9nn+2s1fHRRx9x7rnnMnHiRC644II6T5CtLa5/g9KSeO+6I7nkxVlkFZRQ4lGKPV4iI2zCnjFNVTB/3c8AY4CLfNv7gadDHlEj1rV1PNcd1Y28Yg+FJd5wh2Mak4J98Nx4+OzWiuRYXNDjBLhiGvxhORxxfbNOjsNp+vTpTJkyhVdffZVjjjmGnJwcFi1aBEBGRgadOnUCwO2ul8lb1haHQe92CXxww5G0SYgm0i387tgeJMbYEAtjmqpgEuTRqnoTUAigqvuAqDqJqhH744m96JgUy/99uSromnumGfGUQO5O2LYQPrkJHu0Le9c5x2KT4ejb4Y8r4ZIPoMs4aGQldZqSzZs3c8011/D++++TkOCMbrj11lt57LHHgIqZ3QBeb728Mba2OEw6p8Tz4Q1j6ZwSz58/XMK0JdvLj/20Zre1+cY0IcFM0isRETegACKSClg36QGiI9z88YRe3Pb+Yj5fuoMju6eQHG+vXcYnZzvMfRHmvuCMNS7Kgcg4GHQ+DL0E9u+CXhPAbTPkG4r09HTWr19fad8VV1zBFVdcAcDZZ5/NzTffzLRp05g4cWIVjxBy1haHUbuWMbx77RFc+/p8bnprAb/u6EGbhBju/mQZZw/tyD/OHmhl4IxpAoJ5FX4C+C/QRkT+DpwL3B3IhSIyAXgccAMvqurDBxy/AngE2Orb9ZSqvug7drnf8zyoqq8GEXNYnDm0I49/u5o/vb+YlBZRTL/tGKJsrFrzpQobf4JfHoe13+LLaxxH3Q5H3gQxVhawsYqPj2fKlCn1+ZTWFodZSoto3vrtaP768TKemL6WuCgnIf5o4VbW78lj8qXDaZMY+IIExpiGJ5gqFm+KyHzgOJyyQmeq6srqrvP1dDwNnABkAHNFZKqqrjjg1HdV9eYDrm0F3AOMwMkq5vuu3Rdo3OHgdgnjeqTy1pzNZOwr4N25m7l0TJdwh2XqW0EWLHoTZjwFudsqH0vpAWNvhYHnQWRYaumaRsra4oYhOsLN/50ziL7tE7n/0xXERropKPGwaEsWZzz9Cy9cNsLq4RvTiFXbrSkiib7vrYBdwNvAW8BO377qjALWqup6VS0G3gHOCDC+k4CvVXWvryH+GpgQ4LVhdc/EfkT5liR9/Ns15BeXVnOFaVL2boRHe8NXf6lIjl0R0P9s+O10+N18GHaZJccmYNYWNzwiwpVju/La1aOIdAtRbmeuwPbsQs59bkalMcrGmMYlkM/93/J9nw/M8/sq265OR2CL33aGb9+BzhGRJSLyga9sUcDXisi1IjJPROY1lCUQoyPdXHuUs+LMnv3FTPllY3gDMnWrpNAp07bhR3jvMnhqOJQWOsdatIXj74c/rYHzpkDH4eGN1TRWDb4tbq7G90zlk5vH0alVHC5xuvULS7zc9NYC/v31arxem7xnTGNT7RALVT3N970u1xf8FHhbVYtE5DrgVeA3gV6sqpOByQAjRoxoMC3RH07ozZRfNpJX7OG5H9ZxyejOtIyzskBNyr6NMOtZWPCas+Rz3m6nCsURN0CX8U6vcbdjwWVj0E3tNIa2WESuBa4FZ3Jjc9K1dTwf3zSWW99ZxPRVu4h0CyUe5Ylv19C3XQInD2wf7hCNMUEI+FVbRM4SkZZ+20kicmYAl24FOvltp1ExAQQAVc1U1SLf5ovA8ECvbcjcLuG2E3sBkFtYynM/rgtzRCYkvB5Y/RW8dBI8PhhmPwcl+VCYA2c845RnO/FB6HUS9DjOkmMTUg25LVbVyao6QlVHpKamBhBS05IQE8kLl43ghmO6U+JRoiNcTOjfjgkD2oU7NGNMkIJ55b5HVbPLNlQ1C2fSRnXmAj1FpKuIRAGTgKn+J4iI/1vr04GyCSdfASeKSLKIJAMn+vY1GleO7Uqyr9f45Z83sCunMMwRmRrbvxt++Cc80gPeOh+2zKo41m4QnPkMDJ5k44pNXbO2uAFzu4TbJ/Th8UlDUFWWZGSxakdu+XEbbmFM4xBMglzVuYEM0SgFbsZpTFcC76nqchG5X0RO9512i4gsF5HFwC3AFb5r9wIP4DTsc4H7ffsaDRHh3tOd5XGLSr08OX1tmCMyNbL8E3i0F3z3dyjw/RN0Rzm1i2+YAdf/BAPPBZfVPzV1ztriRuCMIR354IYj8Sqc8+wMvly2ncISDxdMnsm7czfboiLGNHAS6B+piLwMZFGxpOlNQCtVvaJOIquhESNG6Lx5gcxXqV9jH57OtqwC3rpmNGN6tA53OKY6JQXgioTVX8K8l2Dd9IpjSZ3hyFtg8AUQnRC+GJuJlStX0rdv33CHUStV3YOIzFfVEcE+lrXFjcuunEKue2M+Czdn0bd9Aiu3O73Jpwxsx9/PHGgLSRkTZodqi4NZKOR3wF+Bd33bX+M0zCYA719/BMc9+iNvz91iCXJDtnMFzHgSln0AMUmQtwsSO8KxdznVKFr3gvQjbOlnE07WFjcibRJjePu3R3DXf5fx4YIMotwuij1ePl+6g/mb9vGv8wYzvmfzG69tTI15SmDXSti2ELYtgA7DoPfJkL8X2vQJ2dMEs1BIHnBHyJ65memQFMdV47rw9HfruO7obvTvYAXkG4zSYlg5FX76N+xaXrHfHQkXvGlLPxsArrzyShYuXFi+vWPHDoqLi9m7t35HGlhb3PjERLr513mD6Ns+gb9PW0lclJv8Yg87c4q49KU5XDW2K3+e0NuWqDbmQF4P7FkNWxf4EuKFsGMJeIorzln0Nnx6C6SNhGu+CdlTV/uqLyKPqervReRTKq2R61DV06u4zFTh2qO688aszfzfF6u4+IjOnNTfZjaH1b5NMPt5WPAqFO+vfKzzWBj/R+hxfHhiMw2O/3LSGzZsYPz48UyePLnent/a4sZNRLhmfDcGdGzJH99dREGxB7dLKPUqL/+ygV/W7uGxSUPo2z4x3KEaEx5er1MRKrpFxb4vboe5LxzmIoH4VKe0alrQI9YOK5Busdd83/8V0mduhlrGRnL64Pa8PmszP67ZwwfXj2FEl0AWwDIh97+/wownKu+LiofhV8DI30Kruiw1axqzPXv2MGHCBP76179y+un1mpNaW9wEHNEthS//cBT3TV3Bhwsyypeo/nVnLje/tYD//eFo3C4bwmWaOFVnHYGyXuGyr/QxTqK7bRFsXwS5/qtRCsS1coY6dj4S+pwG7QfX2eT4QBLkR4DjgFNU9fY6iaIZuXpcN16ftRmA+z5dzgc3HEl0hH2sVudKi8FbCss+dCbdbav4qJy2/Z1Jd/3OhMiYsIVoAvDFHbBjaWgfs91AOPnhgE7Nz89n4sSJnH/++Vx33XWhjaN61hY3EYkxkTx6/mBO6NeGOz5cQnEpIMJDZw+05Ng0XRnzYdVnzuvv1gVQlH3wOWu/hrXfOElw16OgVXenV7nPKdBheL0OdwzkmdqLyJHA6SLyDs4qmuVUdUGdRNZEdWkdz9G9Uvlh9W6Wbs3h/k9X8PezBoY7rKZJFTbNgF8eg80zAYGiHEjtAyc/Avl7oO9EJ0Eyphoej4dJkybRp08fHnjggfL9eXl53HjjjURFRXHMMcdw8cUX11UI1hY3MRMGtGdY52Tu+HAp01ft4vFv1/Cv8+Jo39Kppb54SxaDOyWFN0hjgqHq9PpuW+hMdO98JGRnwPbFzlCJ9d9XfV1MErTu6axAO/62ysMswiSQBPlvODOm04BHqdwoK0EsQ2ocz148jJH/+Ia8Ig9vzt7MkE5JnDeiU/UXmsAUZsPCN2HmU5Djt9hX+hg47m/Od6tC0TgF2NNbF2688UZKSkp44YXK4+E++ugjzj33XCZOnMgFF1xQlwmytcVNUJuEGF66fARvz9nCg9NWcNJ/fuSBMwcQG+nm2tfnc9bQjtx3Rn8SYyLDHaoxB8vdWTE8YvtCp5c4f49zLD4V1Av5mb6TfSXcY1pCSk/odAT0nuAMqWiAC2wFkiBvV9WTReRvqnp/nUfUDMRFR/DutWM4/amf8Src/fEy+rZPZEBHq2xRK9sXwy9PwIpPwFtSsV/c0OdUOPrP1ltsauS+++5j/vz5fP/990REVG42MzIyGDjQ+XfldtfpcClri5soEeGi0emM7ZHCH95dxK3vLKJFtPPv7L8LtzJnw17+ff5gRndLCXOkxvjMfxWmP+iUQj2UgiwYdAF0GALthzjDJtwRznyfRiCQBPkJYDhwJmCNcogM6NiSe0/vz98+WU5RqZcb3pjPp78bR1KcFY0PmtcDr06ETb9U3h/fxpnZOvRSaGF1Rk3NbNy4kXvvvZcuXbowbty48v29e/fm3XffJS0tjYyMDIYMGYLX663LUKwtbuI6p8Tz3nVjeP7H9fz7f78S5RaKPcrWrAImvTCL647qzq3H9SQ2yuatmDqWl+n0CG9b5PQOJ3WCjiN8PcWLIWMelBZUviY6EVK6Q6fR0PNEp+xaTOOtyhJIglwiIpOBjiLyxIEHVfWW0IfVPFw2pgsz1mby5fIdbNlXwF/+u5RnLh4e7rAaB0+JUxR84evOO9nszb4DAt2OhjE3Q/fjwBXMaurGHKxLly6HXRb47LPP5uabb2batGlMnDixLkOxtrgZiHC7uOnYHhzdK5Xfv7OQtbvzcIvgUeW5H9YxddFW/nJqX04d2B6xoWImFAr2Va4kkTHvgOoRftzR0G6A86ns3nW+ZPgk6DgMYpPqNey6FkiCfBpwPHASML9uw2l+nr1kGOP/+R0Z+woY3tlKvh1WaRGsmOpMuivMgtwdTmWKrkc7wyf2bYDhVzrvdI2pJ/Hx8ZVqJNcha4ubkQEdW/LZLeN55KtfeennDURFuCgu9bItu5Cb31rIf/ts5cXLR1iSbIKTvxeK85zXSU8J7F4FP/zTWSzrUKISoG0/OPXfkNrbWUSrGag2QVbVPcA7IrJSVRfXQ0zNiojw8Y1juWLKHP7z9WqO7pVKjzbhn73ZoOzdALOfgwWvQ0lexf4RV8MRN0LrHuGLzZh6Ym1x8xMT6eavp/XjuL5tuO3dRWzPKSpPlEd2bWXJsTm8/L3OcIjti5zJc1t9PcPJ3SC2JexcAZ6iytdEtXAm0KUfAd1/4/QMx7cOS/jhFkxBuQIR+RZoq6oDRGQQcLqqPlhHsTUbrROimXzZCCY++TPXvT6Pj28aS3xUBK7mXA/TUwqrv4Cf/wNbD+gsi2oBwy5zSsE00z9c06xZW9zMHNm9Nf/749E88/06XvxxPREuIb+4lMIST/ny1Iu2ZNG/QyKRbhtW1qyt/RbmvexLhndUfU7WRkgaD6OvcxbaaN3TqUbRjJPhqgSTIL8A/D/geQBVXSIibwHWKIdAh6RYnrpoGJe8NJuLXphFlNvNm78dXd74NSs52+CZI5xybf7aDYYjb4a+p9uCHqY5s7a4GUqIieT2CX24cGQ6D32xkie+XcsH8zK445S+DEtPYtLkmXRKjuOeif0Z19OSnCYtf69vstwiiG3lJLjbFztf63+A/VUkxlEtfCvQjYFux0LPEyofb18vkTcqwSTIcao654CPdEpDHE+zNqZ7CmcN7cAH853avXf9dxn/Om9Q0/8YzetxvnYsgflTYNlHzso5ABExMPhCGHWtMwbKNEuq2mj/Dg43wa+GrC1uxtJT4nj2kuHMWp/J/Z+u4Ja3F5LaIorCEi9rdu3nkpdmc1L/ttx9aj86tYoLd7imtvL2VCy7vGUObFsAeburPjehg1NFoiTfGSucPsZZeKPDEGjRph6DbhqCSZD3iEh3nIL0iMi5wCGmOZqa+sdZA/lu1W4y84r5cEEGwzoncfHozuEOq25kZ8DcF52Pg6ISICcDIuNh4HlOzUR3BAw4p9HUTDR1IyYmhszMTFJSUhpdkqyqZGZmEhMT0k88rC02HNEthU9/N44P52fwf1+uAsDtEjxe5avlO/nu191cO74bNx7bnbio+lue19RCaTFERFWsRjf977DojcNf06INnPEstB9kSXCISaC9GyLSDZgMHAnsAzYAF6vqproLL3gjRozQefPmhTuMWtmUmcdxj/5AqVeJcAnvXz+GoenJ4Q4rNLweWPM/+Pkx2DIb32s8RMbBSX+HAec26rqJJvRKSkrIyMigsLAw3KHUSExMDGlpaURGVp75LSLzVXVEsI9nbbE50P6iUp7+bi0v/rger4LH73W9XWIMd57Sh4mDOjTveS0NSVkCvH2xM1Ri8yzn58QOkNDe+TS1ql7imJbQpi90HucMlWg/xMYMh8Ch2uKAE2S/B4oHXKqaG6rgQqmpNMqfLd7GzW8vBJwGbtot40hpER3mqGohe6uzDvu8lw8eW9y6F4y5CYZdbktAm2ajpgmy3/XWFptKtuzN56EvVvL50h1EuoUST8Xr+2e/G2ertYbTtkVOKbVNM2HnMijKqfq8tgOdiXPtB0FSZyeB7jTKlwzbSop14VBtccCfu4hIS+Ae4Cjf9g/A/aqafdgLnXMnAI8DbuBFVX34gON/BK7BGUe3G7iqrDdERDzAUt+pm1X19EBjbsxOG9yBmeszeXP2ZnbkFPK7txfy2lWjiGhsM5RVYdZz8NWdlPcWg1NsfOC5MOq30GFo2MIzprGpaVts7XDT16lVHM9cPJzZ6zO579PlrNieS4RL6Ns+sVJy7PUqxR5v85wEXpe8Xqce//ZFEBEHCW2d3uDtS2Dt15C1uerr4ls7iXHXo2H8Hyof6z2hzsM2VQtmiMWHwDLgVd+uS4HBqnp2Nde5gdXACUAGMBe4UFVX+J1zLDBbVfNF5AbgGFW9wHdsv6oGXBi4KfVaqConP/4Tq3Y4HUQ3HNOd2yf0CXNUAcjb4xQSX/o+zH8FdiytONa6l1O7eOC5EJ0QthCNCbdaDLEIui2u73YYmlZb3Bh5vMqH8zN4+MtV7M0rZnzP1lx3VHfG9kjh6xU7ufOjpVw1riuXHNGZlrHNY+GHkPJ6YM8a37LLc2HLLNiz2lnQCgChvFMoOhGSu8KOxdCindM73GW80znUfpAzdMKETa17kIHuqnqO3/Z9IrIogOtGAWtVdb0vkHeAM4DyhllVv/M7fxZwSRBxNVkiwgfXj2H0Q9PJKypl3sa9eLyKuyGOIysthl8/hxlPwNYF4I5yCpC3G+isvuOKcBoC6y02prZq0hZbO9zMuF3C+SM7ccqg9rw+cxMv/7KBS16aTd92CeSXeMjMK+aRr37l2e/XcfER6Vw9rittEqx8ZrX274Yf/wnzpoC35NDnRcXDGU85wyWSuoB6obQQom0hsMYi2IVCxqnqzwAiMhYoCOC6jsAWv+0MYPRhzr8a+MJvO0ZE5uF87Pewqn584AUici1wLUB6enoAITUeLWIieefa0Vz+0hzW797P7twi2rVsQI3YnjUw+3lY/JazfGWZNn3htP84CbGNKzYmlGrSFtd5O2waphbREdxwTHeuGteFjxdu5fkf1rEpM798jPL+olKe/2E9U37ZyHnD07juqO6kpzTj8nDFebBjmTNMYtMMZwxwbDK08A2XyK2iYIy4IbkzdBwO6UdCh8HQpv8B9fpd4LbkuDEJJkG+AXjVN/4NnNnTV4QyGBG5BBgBHO23u7OqbvXN3J4uIktVdZ3/dao6GWdWNyNGjAh50dFwG9gxiXevG8OZT//CDW/O551rjyDK7QpfyauSAlj+X5jxJOxaUflYRCwMugBGXwtt+4cnPmOatjpti2vaDvuubbKdFY1ddISbC0amc97wTny7ahfP/7CWeZuyykvDFZd6eXP2Zt6es5mJgztwx8l9aN8yNtxh171dK2H1V7DpF2escFWLbGRtgtQ+zrCI9oOcesPrv6uYPJfaxynPZpqUgBNkVV0EDBaRRN/2IaZgHmQr0MlvO823rxIROR64CzhaVcsXB1fVrb7v60Xke2AocFDD3NT1bJvAv84bzA1vLuD61+ezN6+Ym47twYn929VvINlb4e1Jzjtpfx2GwujrnVXuoppx74MxdayGbXG9tMNNvbOiKXC5hBP6teWEfm2Zv2kvz/+wnv+t2IlLwKvO1/+W7+TeiU2og0PVqbu/Y4kz/C8myRkPvGOpszRz9paqr4uIhTa+xPjEByofG3hO1deYJiOYKhb/AP6pqlm+7WTgNlW9u5pL5wI9RaQrToM8CbjogMceirNs6gRV3eW3PxnIV9UiEWkNjAX+GWjMTc3JA9tzz8R+3P/pChS49vX53HBMd247oVfdVbcozIG9G5xFPOa/6szEVa9zLDoBhl0Gw690lro0xtS5GrbF1g6bgwzv3IrJl7Vi3e79vPjTet6fl0GpV2nXMppNe/NJjnd6RbfszeeduZs5Z1ga3VIb+DCBsslzO5Y49YUz5kLmGueTzwPFJEFSupMgRydC2wGQfoRv8txg55gNEWy2gqlisVBVhx6wb4GqDgvg2lOAx3DKC72sqn8XkfuBeao6VUS+AQZSsRrUZlU9XUSOxGmwvYALeExVXzrcczWHmdNPTV/Do/9bXV40bUy3FJ64cCipCSGqk+z1wqafYeYzTkKMOo1Oi3Yw9GIYcjHsXgU9TrCPlYypoVpUsahRW1yf7TA0j7a4qdmVW8irMzby2oyN5BZ5GNW1FRePTmfNzv089d1aAIZ3Tubc4WmcOqg9iTFhrn6h6iSwZeXVfvo3LHkHvIdZeT06Ec56DtoNgpZp4CmGgn2QUM+fxpoGo9YLhYjIEmBk2cduIhKL07A2qM9hmkujPH/TXi59aQ75xR4A2iRE8+wlwxjeuVXNHzRrM8x7BRa8AvmZlY8df7+zmIfbliw1JhRqkSBbW2zq1P6iUt6Zs5kpv2xka1ZB+Thlf9ERLiYMaMe5w9M4snvruq+utH+30yu8dQFsngE7l0NcivNJ5s7lULz/4GvE5Sy20XE4pI1wkuJ2A6ysmqkkFAny7cBEYIpv15XAVFVtUB+1NadGObewhPOem1leJ9ntEu4+tS9XHNkl8Al8nhJY9hHMesaZtetP3NDzRBh5NXT/DbisqLwxoVKLBNnaYlMvvF5lzsa9/HfBVj5bvI28Ek/5WGV/7RJj+Otp/Th1UPvQPfmWubDsA9gy2xkycagEuNMRTjnRdgMgLhXW/A86DnWS4TZ9IaIRr0Br6kVIlpr2rcR0vG/za1X9KkTxhUxza5RVlXs/Xc6rMzaV77t6XFf+elq/6i/O2gIL33BqOpaNKwZI6emscDfwPIirRY+0MeaQarPUtLXFpr4Vlnj4ZuVOPpqfwferd+PVSkth8OY1oxnbo3X5+SUeL5HVzY0pyoWdK5zFNlxup2d3x1Lna8vsqpNicMqute3vrDx39J9Dcn+m+QrFQiGo6pfAlyGLytSaiHDf6QM4qmcqN7wxn2KPsi0rn8ISz8HLiO7fBQvfdBqiddNh/feAOuOwCvbB4Ath+BXOu3FjTINlbbGpbzGRbk4b1IHTBnUgc38Rny7exgfzM1i2zSmi8uz3a9mVW8hJ/dsRG+nm2H99T8ekWH7Tpw2/6Z1Kj+i9yM7lTs/wltmw59eDh/IBuCKdyhGdRjuvUy07OT3CHYc7r01tB0KL1Hq+e9McBdWD3Bg0516LnTmF3Dt1OV8s28GAjok8c9Fw0hNd8OsXMOd5ZynMst93y07OZLshFzrvxiNibcKdMfWoNj3IjUFzboubk7W79vPxwq38d+FWtmYV0CqqlLHp8Xy6trxKIHdEvM31EZ8e/oFadoIL34HWvZzXotJiUA9ENoNazCasQtKDbBq2tokxPHvJcL5evp233n+H5U/+g7Yyn+iKcqaO1L5wwwxw1VFpOGOMMU2b1wvZm+mxdzl/cs/ltrZzKGUVEYWZbN7ShiT3KfzoHcQmbccab8dKl2ZoKrtju9N/+HiiOvomziV1qfyaZB02JswsQW5qln3ECdNu4wT2Otu+DuM8YpE+pxJ35LXO6j9W29EYY0wwSovhp0dh6XvOHBZvSfkhAcqKvqXHFnFDF2Fk4V4+2BHJnKze/K3kclZ6O7NK08kljg6xMfxy/G/KX4uKS70s3ryXoZ2S6q6uvzFBCGahkKVUjMcvkw3MAx5U1SoGE5k6V1LozORd+41T/3HV5+WNloqLn3QI7xSP41vvMGJ/jee3bVO4MKWEVvH27tyYxsjaYlNnSoucihE7l0PGHKekWmIHZ5jDzuWwZ/WhawzHt3EW2ug4DEkbQYfeJ3M6cDqwLauAH1cfz7aVOylZswdKvWzPKuT852dydK9Ujundhqz8Yi55aQ6JMREM65zM8PRkhndOZnCnJOKjrS/P1L9gyrz9E/AAb/l2TQLigB3AOFWdWCcRBqlZjHsrKYBV02DOZNixzFk6s3AfxLWGAedA5lrodRIMOIfCqGSufmUuv6yreM2Mcrs4e1hHrhzbld7tEsJ4I8Y0X7Uo82ZtsQmNTTNh9VewdR7s/hXydnPwey+c8cFt+jmVI8DpkOk4zDdpboBTTi3A2sIlHi+LtmTx/a+7+GH1bpZtdSb5xUS6KCzxHnS+S6Bv+0SGd05mTLcUTh4YwlJyxhCaOsgHrdRUtk9Elqpqgyh90GQb5dJi2PADLHgNVn/prP5TpvNYGHurU6vYXfXKRq/8soH/fLOG7IKSSvtvOKY7t0/oU5eRG2OqUIsE2dpiExhVyNkGu1Y6de7jUp2Mc9dK2LXCqSZR1RLMAAi07Ai9T4VT6q7E9u7cIn5as5uvlu/gpzV7yhe/qsrorq1497ox5dt784rZlJlH/w4tiYqwYRmmZkIxSc8tIqNUdY7vAUfiLFkKcJh1HU2NqTrv1Be+Dqv/B6UHNGSRsdD/bDjyFqcszmFcMbYrlx/Zhf+t2MkjX/3K2l1Ofcn3520hKTaSC0Z2IikuClUNfJERY0w4WFtsDpazzRkGsWMJbJnj9AjnbK3cmVImItZ5zWg70BlKEZ/q9BB3GOr0Erfp69TDj4yp87BTE6I5e1gaZw9Lw+NVVu/MZdGWLGau28O8jfvYll1Yfu6vO3K57b3FDE1PYkinJJZvy+b2D5cSFeFiYMeW9GufSO92CfRpl0CvdgnhXwrbNGrB9CCPBF4GWuCMx88BrgGWA6eq6nt1FWQwmkyvxb6NsPxj+P4hKK1oIHBFQNejYPiVzjCKGq4StG5XLv/5Zg27cgqZs3EfMZEuzhzSgdU79zMsPZnLj+xCp1ZxIbkVY8zBatGDbG1xc+X1QtYmJ/lt2cl5bdi9yvla8i7s33n46zuNhjOfheQuTj38olynIyYmsV7Cr4mcwhKWZmQzb+NeFm7ex9KtOWTmOUm/WwTPYXKYDi1jOLF/O+49vUGtwm4amJCspOd7oJYAqpodothCqlE2ymXDJxa+DtGJsHMZbFvoHEvoAHm7oMt4GHIR9JoQ8sZs5fYcXp2xkQ8XZFDicf49iMCJ/dpy1diujOraynqVjQmx2tZBtra4CSvOd+aSZK6B7Uuc4RGZayF3R9WT5NxRzhjgvN3OdlQLaN0T2g+GNv0htZfzvQkssKGqbNlbwMIt+/h5zR7mbNjLln35By1/XWZkl2QeOnsgnVPiiXS7+O7XXTz42Qr6tHN6m3u1TaB7ajydWsUdvLiWaRZCMQY5GjgH6ILf0AxVvT9EMYZEo2mUS4udlewWvu6sHe/fS9xhGPQ/C/qd4STD4q6Xd/g/rd7N3Z8sY1NmfqX9fdolcFL/dozq2oqh6UnERdmMYmNqqxY9yNYWNwWqTsKbucYZzlCS71SQ2LMaZj7prHx6OO2HwFH/D1L7OD3CWZsgd7uzHd/68Nc2MUWlHlZtz+XXnbks3LSPZdty2Lw3j+yCijcTkW6ha+t4RIRfd+RW+ThtE6NJbxXHsPRk7jylb/l+r1cRwTqKmqhQjEH+BKeU0HygqJpzTVX273KS4eX/hY0/V06KwRk+0ftkuOCNsIQ3vlcqP/y/Y1m2NYt/fL6KmeszUYVVO3JZ5WtQuqfG8/71R1qZOGPCx9rixqRgH2Suh73rnU8Hdy5zeoNztlWMDxa3s2pcmYgDxv7GpThJdPtBzvjg1D7OV1yrinNSujtfzVB0hJvBnZIY3CmJ80d0Kt+fX1zKul15rNmVy+qd+1m7yxnffCg7c4rYmVNEdkEJJ/RrS1pyHG0SolmweR+XvDSbTslxpLeKo1Mr53vH5FjaJcbQNjGG1i2irH5zExNMD/IyVR1Qx/HUWoPstSjMhvU/OL0CW+ZUPuaKgK7jYfDFzpjiBjQWbM/+Ih7/Zg2fLtlGVn7l6hfdU+MZ0bkVEW7hl7V7GNujNaO6tmJU11a0b2lLgxpTnVr0IFtb3ND4J8HpoyAv0/k5cx3MeBKKq+6xLNdpFAy73FlmOaWH05OcvcUZJpHSA6Li6+c+momCYg/rdu93xjZv2sv6PXlszy5kX14xRaWVS81FuV0kxkawZ38Vkx39JMZEsOTek8q3C0s8PPfDOtomxtA2MZo2CU4inRIfhctlPdENSSiGWEwGnlTVpaEOLpTC3ihnbYY138DyjyB/L8QmOaV0vKXOuLDi/RAZ50y0G3Au9J4A0Q2/FnHm/iJmrsukyONlZ04h8zfuY96mfQeVjQNokxDNkd1TGN0thT7tEujaOp6kOOtxNsZfLRJka4vDQRU2/Oi08XtWO6XS9q6DnO0HVxjyFxFT+dPC2GRo1d2pIZzax0mC2w2EFm3q/h5MtQpLPGTsKyBjX77vewFLt2axesd+sguKKfZUnTNFuoVRXVuR2iKa1IRo3C7huR/WH3RehEto3SKaVvFRtIqP4rFJQ2jdomKy/TcrdhIT6SYpLrL8HBsbXbdCkSCvAHoAG3A+1hNAVXVQKAOtrXpvlEsKYdMvzsIdv37ujAHz13YA9DwRep4AaSOdEjztBoO78Y/j9XqVx75ZzadLtrMpM++QkyQGp7XkuqO7k5YcS6fkODZl5rFgcxadWsXRqZWzz1ZKMs1NLRJka4tDzet12u6szc5Y3j1rYfdKGDTJt3+TU1no189BD17MopK+p8OgC6BVN2jV1ekgKcxxhj8kd4Uoqw7UmBUUe8jYl8fyrbms2Z1Lxt4CduQUsr+olOgIF7v3F7Erp+ignuhDmTSyE20SY0iKjSQpLpK7P152UC3o2Eg3reKjSIqLJDEmkj+d1JvhnZPLj3+7cid79heREBNJQkwECTGRJPq+J8REWIJdjVAkyJ2r2q+qm2oZW0jVW6O8czn89zqnF6GqWcXRCc7CHSc/Aglt6z6eMCsu9bJ0azbfrdrF97/uYvXO/RR7qm4gIt1SXi2jTEJ0BO2TYuiW2oJureMZ3CmJk/q3Kz9eVOqhqNRLQnSETZQwTUItEmRri4OhCkU5lVd6y9oCX97ufM/d7nzap4deoIKIWEjuDNlbfcMlxBn/m9TZNya4ty8h7u4kxZE2zKw5U1Vyi0rZllXA2l37Wbc7jy1789mRXcju3CKyCoopKHZe06IjXOQWlRJMQbERnZPonNKChJgI4qPdTFuynY0HTK73F+kWbj62B7ce36t83yeLtvLp4m3ERTmPERvp+x7lJj4qgtgoNx2TYhnbo2LCZ35xKTuyC4mOdBMT4SIm0k1MpBt3Ix8yUuMEWUQSVTVHRFpVdVxV9wbw5BOAx3GK2b+oqg8fcDwaeA0YDmQCF6jqRt+xO4GrcZZWvUVVvzrcc4W0Uc7LhG0LYMtc2LHY6QXeugC2znfqTlYiToH1fmc4PcbtBoGr+Q7Y93qVtbv3s3FPHm0SY4hyu9ji+8jqnTmbWeNbqORQ4qPc9G2fSFJcJC1jo8guKOablbtwCcRFRZAQE0HL2EiS46JonRBFaoto2ibGcN3RFZNUiku9zNu0l7ioCGIj3cRGuomJcpVvN/Y/atO4BZsgN+u2+HCK851KEDnbnYUx9m10xv5mb3GqRBTsdepWdj3GOZ6z1ZkXUp3oRDjhfuhzqrOQhgjsWOqMB05MgwgbNmZCw+NVcgpK2JtfzPKt2WzPLmRHjpNMZ+YVk51fTG5hKXnFHopKPaS2iKbEo+QWlpBX7MFzqI9v/QgQH+30JsdGucgrKmVv3sFDJP2lt4rjqrFdiIpwEx3hYmNmHk9OX3vQeREuITrCRbTvdfabPx5FTKQbEcHrVS6fMocot4uoCN+X/88RLqLdLi4YlU7HpIo3ltNX7SQrv4QIt4tIlxDpdhHhdr6X/ZyWFEubxNovZlObBPkzVT1NRDbgLNLun1Woqnar5no3sBo4AcgA5gIXquoKv3NuBAap6vUiMgk4S1UvEJF+wNvAKKAD8A3QS/XQb/Vr3CgX7Yfti53kd+NPTiKcv+fg8+JaQ8fhzte66U5vQa8J0O0YZ7yxqZaqsmd/MVv25bM5M481u/azZud+NmXmsyOnkJyCEjomxZKeEkdWfgnZBSXszi085NivMgJ0TI4lLsr5IxWRw85YdruEKLeLP57Yk07JcURFuIhwuXjqu7XsL3T+MKv6Q46OdHHW0DRGdEkm0uXC5RK+XrGT1TtzcbsEtwgulxDhqvjuFqFbajwjulTkNhn78lm5PReXgMsluEScn0UQ3/fYSGd2dpmiUg+rd+z3lRwCQXC5fN99+0DonBJHpN+M6m1ZBXj8ShUJZec614pAy9jISh/F5RaWUFzqrfL8sv/hUW4XsVEV1xSXess/OShrKPw7/Muey/95VLXKTxuEym9gIt1S6dOD0kN8QuF/juuA0kzeal5Iyu/R75pAPmWryacaNUiQm0db7PU6Se3+nU7ln/27nJ9zMpwe38g46Htaxf7tS2Dt19U/btsBTo9vYgdnCeU5kyEqAZI6VZRKS+rs9BS37GRDIUyjoKrsyS1mW04+u3KKyNxfzJ79RezNKya7wHn9zCkspUPLGFJaRFNQ4qGw2MOK7Tlk7CugxOPF41U8qkH1Ygciwvf6VxjAcJNBaS1JiY8qT4B/WbfnoOIABzqyewpje7TG7XuetokxTBzcIeg4a1zmTVVP833vGvSzOkYBa1V1vS+Qd4AzgBV+55wB3Ov7+QPgKXFecc4A3lHVImCDiKz1Pd7MGsZStYVvwCc347zmHEKLtjDxCafSRNmL4TG3hzSM5kJESE1wJjIMS08+6HiJx0txqbfSuORfd+QyfdVOduUUsXt/EZn7i9iXX0JOYQn7C0spKPEQHxXByC6tKCj2UFDiYW/+4Wcde7xKgdfD36cd+GlA9T6Yv7X857KO6OrexLeIdtMmMcZJnEXIKSiptIxqVWIiXIzs2qo8eS4s8TBzfbUdhZzYry1xUe7y5PbzZdspLDl8IzWme4pTJxTnn/gvazPZsCfvsNf0atuCcT1Sfck6rNqRw89rMw97TWJsBBeOSi9PgLMLinl7zpZq7+nyMZ1J8Fs6dsqMDeQVHeZjcZz/D33aVUyC/Wr5Dn7defhPL/p1SOT4vhXDopZtzWb6qkPXpD2qVyr/Om8QbRLqdlneJt8WF2TBtD86E5yre6Ve9oHzXdyVS505O53OihZtnES3VXdISofhl1eeED3uDyEL3ZhwERFSE6NJTazZqrr+VJWiUi95RaXkFZVS6lWS4qIoLvVSVOphW1YB8zftI6+4lPwi53W27PW2sMRLYakHrxdO6NeWolIPJR4v+cUePl28zUnCy75U8XoVj4LXl5iXeLxk5hVTXOql1KvkV9O2A8xYl8mMdRWvN0PTk2qUIB9KwDOjRGQssEhV80TkEmAY8Jiqbq7m0o6A/6tfBjD6UOeoaqmIZAMpvv2zDri2YxWxXQtcC5Cenh7oLVVY9hGVkuPoRKcIe9fxkDbCWZ8+9uBEztSNsneQ/nq3S6B3u8NX+yj1eCvVoSwo9rBoSxaFJc4fcL7vDznf98efW1TK/sJSrhzbBRGhxOOlxOPlka9+JbugxNkuVUq8Xko9SqlXKfV68XiUkwa0o3tqC4pLnXffXy7fwdpqho2kxEfTt30iXq/zWFv25lebICuwv6gUrzqNV35xFePdq7BiWzYulwvFaXyKA3gHvzQjmzU7c1H1PW/h4d+9A2zYnce2rMLyXtaSQ/Tq+sstKGXKLxudDQ2shxbg9VmbKvXUBvKx4v9W7OTrlRXL7wbyVCu25bBiW05AMQH8uHo3mfuL6zxBLtNk2+KiHFj24aGPuyKcccRJ6XDG006nRWwr8BTBmq8hoR0kdnT2N4FJ0MbUNxEpH1ec0uLghLtzSjxjuge/CM09Ew+/1HfZa4B/+74zp5CCYg+lXi8lHvW9Piulvu8lXi9dU+LpkBRLqddJqkMtmFbkWWCwiAwGbgNeBF4Hjg55VEFS1cnAZHA+1gv6Ac54ClZ+BontnVXsEjtU/lzYNAoHFmmPjXIzpntK0I/zzrVjgr7mDyf0otTrxeul0nePVrxrjouKqLTAyt68YrbuK8Cr6vtyGgqvOsmfqhId6WJ454oesryiUmasyyw/D18C7FVQKh7jxH7tKg19+GzJNmdmtO+8skRRwZcQK0d2b03X1hX1Vn9as5v1u/NQ1fK3j/7XgdODPL5nxfK1K7fn8POaPZRd4Z+Qlv2YGBPJRaMrkqes/GLenF1dbgeXHdCD/PLPG8grqvyG4cA//hP6taVv+4ra4l8u23HIVbTKYu7foSUn9Kvcg/yNX5J9oKN7pVZ6jnrQNNvixI5w6SfO0LXEDk4PcIs2TsLboo3TcVFVu+yKhX6nhyJ8Y0wYVDVErW0QY4ujqJv5XsEkyKWqqiJyBvCUqr4kIlcHcN1WoJPfdppvX1XnZIhIBNASZ4JIINfWXmIHGH1tyB/WNB9ul+B2lSWkgZXUKatxGYz46IhKyVugThsU/MdO43umVkp+A9G3fWLQyWJSXBQ3HdsjqGsArhoX/EiDCQPaMWFAu+pP9DOgY0sGdGxZ/Yn1p2m2xS43dD/G+TLGmDALJu3O9c1ivgSYJiIuILKaa8CZCNJTRLqKSBQwCZh6wDlTgct9P58LTFenz30qMElEokWkK9ATOGApOmOMaVasLTbGmDoWTA/yBcBFwNWqukNE0oFHqrvIN47tZuArnK61l1V1uYjcD8xT1anAS8Drvokfe3EabnznvYcziaQUuOlws6aNMaYZsLbYGGPqWMALhTQWDaY4vTHGHEZNFwppLKwtNsY0BrWpg5xL1fXPypY3rdfZKdURkd1ATVaUag1UUfi40Wuq9wVN997svhqXmt5XZ1UNeJC3tcWNnt1X49JU7wua7r2FtC1ucj3INSUi85pib05TvS9ouvdm99W4NNX7Cpem+v/T7qtxaar3BU333kJ9X813LWRjjDHGGGOqYAmyMcYYY4wxfixBrjA53AHUkaZ6X9B0783uq3FpqvcVLk31/6fdV+PSVO8Lmu69hfS+bAyyMcYYY4wxfqwH2RhjjDHGGD/NLkEWkQki8quIrBWRO6o4Hi0i7/qOzxaRLmEIM2gB3NcfRWSFiCwRkW9FpHM44gxWdffld945IqIi0mhm5gZybyJyvu/3tlxE3qrvGGsigH+L6SLynYgs9P17PCUccQZLRF4WkV0isuwQx0VEnvDd9xIRGVbfMTYWTbUdBmuLG1tbbO2wtcOHpKrN5gtn9ah1QDcgClgM9DvgnBuB53w/TwLeDXfcIbqvY4E43883NJX78p2XAPwIzAJGhDvuEP7OegILgWTfdptwxx2i+5oM3OD7uR+wMdxxB3hvRwHDgGWHOH4K8AVOXeIjgNnhjrkhfjXVdjiIe7O2uIF8WTts7fDhvppbD/IoYK2qrlfVYuAd4IwDzjkDeNX38wfAcSIi9RhjTVR7X6r6narm+zZnAWn1HGNNBPL7AngA+D+gsD6Dq6VA7u23wNOqug9AVXfVc4w1Ech9KVC2qEVLYFs9xldjqvojzvLLh3IG8Jo6ZgFJItK+fqJrVJpqOwzWFje2ttjaYYe1w1VobglyR2CL33aGb1+V56hqKZANpNRLdDUXyH35uxrnHVZDV+19+T4+6aSq0+ozsBAI5HfWC+glIr+IyCwRmVBv0dVcIPd1L3CJiGQAnwO/q5/Q6lywf4fNVVNth8Ha4sbWFls7bO3wIUWEJBzTaIjIJcAI4Ohwx1JbIuIC/g1cEeZQ6koEzsd7x+D0Mv0oIgNVNSucQYXAhcArqvqoiIwBXheRAarqDXdgxtQXa4sbDWuHm6nm1oO8Fejkt53m21flOSISgfPRQ2a9RFdzgdwXInI8cBdwuqoW1VNstVHdfSUAA4DvRWQjznijqY1kckggv7MMYKqqlqjqBmA1TkPdkAVyX1cD7wGo6kwgBmhdL9HVrYD+Dk2TbYfB2uLG1hZbO4y1w4fS3BLkuUBPEekqIlE4kz+mHnDOVOBy38/nAtPVN/K7Aav2vkRkKPA8ToPcGMZQQTX3parZqtpaVbuoahec8Xynq+q88IQblED+LX6M02uBiLTG+ahvfT3GWBOB3Ndm4DgAEemL0zDvrtco68ZU4DLfLOojgGxV3R7uoBqgptoOg7XFja0ttnYYa4cPKZyzEcPxhTPDcTXODM+7fPvux/ljBucfyfvAWmAO0C3cMYfovr4BdgKLfF9Twx1zKO7rgHO/pxHMnA7idyY4H1uuAJYCk8Idc4juqx/wC87M6kXAieGOOcD7ehvYDpTg9CpdDVwPXO/3+3rad99LG9O/xQb4b6RRtsMB3pu1xQ3oy9pha4cP9WUr6RljjDHGGOOnuQ2xMMYYY4wx5rAsQTbGGGOMMcaPJcjGGGOMMcb4sQTZGGOMMcYYP5YgG2OMMcYY48cSZGOMMcYYY/xYgmyMMcYYY4wfS5CNCZCIpInIBQfse05ExlZ1zBhjTOhZW2zqgyXIxgTuOGDYAfuOwFlWtapjxhhjQs/aYlPnbCU90yyIyOXALUAkkKOq44K8fhzwCZAF5AJnA9HAfcATBx5T1fWhit0YY5oKa4tNY2EJsmnyRCQBmA0MUdViEUlS1Sy/4z8BCVVc+idV/cbvvC99+5b5tv8IZKnqywceM8YYU5m1xaYxsQTZNHkiEgcsBz4DXlXVeTV8nA1AT1Ut9W1/BVypqtsOPGaMMaYya4tNYxIR7gCMqWuqmi8iA4CJwGQReVFVnyk7HkivhYi0BrL9GuQ4IMnXIFc65jt+L5AMZKrq/XV1b8YY01hYW2waE0uQTZMnIj1VdQ3wjoj0A2L8j6vq+AAepguwzW/7WOC7qo6JSEecv60sYGxN4zbGmKbE2mLTmFiCbJqDu0RkDJCH8/Heb2vwGKuA1iKyDLgWOBn44BDHrgFuBVKBTrWM3Rhjmgpri02jYWOQjakBEVkAjFbVkiqO3QYkAinAr6r6ZH3HZ4wxzYG1xaauWIJsjDHGGGOMH1soxBhjjDHGGD+WIBtjjDHGGOPHEmRjjDHGGGP8WIJsjDHGGGOMH0uQjTHGGGOM8WMJsjHGGGOMMX4sQTbGGGOMMcaPJcjGGGOMMcb4sQTZGGOMMcYYP5YgG2OMMcYY48cSZGOMMcYYY/xYgmyMMcYYY4wfS5CNMcYYY4zxYwmyMcYYY4wxfixBNsYYY4wxxo8lyMYYY4wxxvixBNkYY4wxxhg/liAbY4wxxhjjxxJkY4wxxhhj/FiCbIwxxhhjjJ86T5BF5GUR2SUiyw5xXETkCRFZKyJLRGSY37HLRWSN7+vyuo7VGGOMMcaY+uhBfgWYcJjjJwM9fV/XAs8CiEgr4B5gNDAKuEdEkus0UmOMMcYY0+zVeYKsqj8Cew9zyhnAa+qYBSSJSHvgJOBrVd2rqvuArzl8om2MMcYYY0ytRYQ7AKAjsMVvO8O371D7D6t169bapUuXUMZnjDEhN3/+/D2qmhruOIwxxhysISTItSYi1+IMzyA9PZ158+aFOSJjjDk8EdkU7hiMMcZULaAhFiKSJiJ/EpFPRGSuiPwoIs+IyKkiUtthGluBTn7bab59h9p/EFWdrKojVHVEaqp1yBhjjDHGmJqrNrkVkSnAy0Ax8H/AhcCNwDc4Y4J/FpGjahHDVOAyXzWLI4BsVd0OfAWcKCLJvsl5J/r2GWOMMcYYU2cCGWLxqKpWVaJtGfCRiEQB6Ye6WETeBo4BWotIBk5likgAVX0O+Bw4BVgL5ANX+o7tFZEHgLm+h7pfVQ832c8YY+pfznZIbB/uKIwxxoRQIAlyyaEOiMhYVf0FJ7mtkqpeeLgHV1UFbjrEsZdxeq9rpaSkhIyMDAoLC2v7UGERExNDWloakZGR4Q7FmObNUwIFWRCdAKs+gwWvwYYf4aY5kNor3NEZY4wJkUAS5JUi8jpwk6ruP+DYk8CwKq5pUDIyMkhISKBLly6ISLjDCYqqkpmZSUZGBl27dg13OMY0T5nrYOEbsOBVJzkuyILCLEhKh2P/ArFWot0YY5qSQBLk5Tgl1haIyGW+WsVlGkW2WVhY2CiTYwARISUlhd27d4c7FGOal5JCWPkpzHsZNs+o2J+fCb1OgdHXQtejwVUf6y0ZY4ypTwENsVDVu0TkK+BNEXkVeFBVvYDWbXih0xiT4zKNOXZjGp2dy2H+q7DoTSg+4EOzpM4w5iYYeilExYUnPmOMMXUu4DrIqvqjiAzHWQr6JxG5uO7CMsaYMNj1Kzw3DtRbsc8dDX0nwlF/gjZ9wxebMcaYehNIglzefamqWcCFInI58DMQW0dxGWNM3du2EJK7wtZ5zoS7VZ9XJMepfWDsrTDgHIiIDm+cxhhj6lUgCfILB+5Q1VdF5Cfgz6EPyRhj6lBhDiz7AOa8ALtWQEwyFO6DuBQYfR10Hgdt+0Jyl3BHaowxJkyqTZBV9ZlD7F8PXB/yiJqw5557jsWLF/Pss88CcPfdd7Np0yZef/31MEdmTBOnCtsWwLwpsPQ9KC2qOOYtgXOnQJ9TrafYGGMMEECCLCK5VD0ZT3DKGCeGPKom6rLLLqN379489NBD/Pzzz0ybNo0ZM2ZUf6ExpmYKs2Hp+05v8e5VlY9FJ8CQi+HIW6Blx/DEZ4wxpkEKpAc5oexnEVmoqkPrNqSmKy4ujgsvvJC77rqLL774gq+//prYWBvGbUyd8JTAdw/B7Gf9dgp0HAbj/wS9TgKXO2zhGWOMabgCrmLh02jKuh3KfZ8uZ8W2nJA+Zr8OidwzsX9A51511VX07duXTz75hO7du4c0DmOatcJsWP8DtBvgTLhb9Bbs3wkiEJUAwy5zSrQldgh3pMYYYxq4YBNkU0v3338/qamplJaWlu/7+OOPmTZtGjk5OVx99dWceOKJYYzQmEZm6wKY+6IzlMJT7OwTt9NDPPwKp3Zx657WW2yMMSZggYxBPttvM+mAbVT1o5BHVYcC7emtC48++iiFhYW899573HPPPZx9tvO/8swzz+TMM89k3759/OlPf7IE2ZjqFO13EuLZz8PulZWPdTkKzn7eeoqNMcbUWCA9yBP9fv7hgG0FGlWCHC7Tp09nypQpzJw5k4SEBHJycli0aBFDhgwpP+fBBx/kpptuCl+QxjR0O5Y6vcWL34HSQr8DAmkjncU8epxgyz8bY4yplUAm6V1ZH4E0ZZs3b+aaa65h2rRpJCQ4cx5vvfVWHnvsMV555RVUlTvuuIOTTz6ZYcOGhTlaYxqofZvgo2ud2sVlohNg2OU2ttgYY0xIBTLEIg3ooqo/+7b/CLTwHX5LVdfWYXxNQnp6OuvXr6+074orruCKK64A4Mknn+Sbb74hOzubtWvXcv31Vl7aGHaugJxtUFoA81+Btd9WHOvgV4nCbVMpjDHGhFYgryyPAG/6bV8HTAbigPuAi+sgrmbllltu4ZZbbgl3GMaEX0khrJwKs55xloEWN6gHEjrA0bfD0EtAXFa32BhjTJ0KJEHuraqf+W3nq+qjAL7lpo0xpnb2roe5Lzs9xcW5FfvVAyc8CEfcYD3Fxhhj6k0grzgxB2wf5/dz6xDGYoxpTrwe+PULmPUsbPq58rHIOBg8CY78HbTqFp74jDHGNFuBJMi5ItJLVVcDqOpeABHpA+Qe9kpjjKmK1wvrvoMPr65cjSK1N4y7DfqfCRHRYQvPGGNM8xZIgnwP8JmI/B1Y4Ns3HPgLcGsgTyIiE4DHATfwoqo+fMDx/wDH+jbjgDaqmuQ75gGW+o5tVtXTA3lOY0wD4vXC+u8gOhE2z4T5U5xhFRGx4I6C/mfDuD9Amz7hjtQYY4wJqMzbl77FQf4MlM0kWwacrarLqrteRNzA08AJQAYwV0Smqmp5rSZV/YPf+b8Dhvo9RIGqDgngXowxDU1eJix8A2Y/C7nbnQl26oX0MXDMndDtWIiKg6j4cEdqjDHGlAto1osvEb6shs8xClirqusBROQd4AxgxSHOvxCn19oY0xipwpY5TlK8cqoz1riMOwqu+h90GBy++IwxxphqBFIH+QXgCVVdWsWxeOACoEhV3zzoYkdHYIvfdgYw+hDP1RnoCkz32x0jIvOAUuBhVf24iuuuBa4Fp+awMSYMivbD0vdg5tOQeUB59BZt4YibYPjlEJsUlvCMMcaYQAXSg/w08FcRGYgztGI3TmWLnkAi8DKV6yTXxiTgA1X163Kis6puFZFuwHQRWaqq6/wvUtXJOLWZGTFihIYoFmNMoEoKnGoU3z1YsU9c0PVoZ/nnzmNBJHzxGWOMMUEIZAzyIuB8EWkBjADaAwXASlX9NYDn2Ap08ttO8+2ryiTgpgOef6vv+3oR+R5nfPK6gy81xtSb0mL4dRqk9oWFr8OiN6FgH0TEOF+jfgujroUWbcIdqTHGGBO0gCvvq+p+4PsaPMdcoKeIdMVJjCcBFx14kq9sXDIw029fMs7CJEUi0hoYC/yzBjE0CFdeeSULFy4s396xYwfFxcXs3bs3jFEZE4Sszc6CHvNegqIcZ58rAvqcBiOvhpSeTlLscoc3TmOMMaYW6nxpKlUtFZGbga9wyry9rKrLReR+YJ6qTvWdOgl4R1X9h0j0BZ4XES/gwhmDfKjJfQ3elClTyn/esGED48ePZ/LkyWGMyJgAeL2wbjrMfArWfw/4/Ym27g2XT4WEduGKzhhjjAm5elm7VVU/Bz4/YN/fDti+t4rrZgAD6zS4MNizZw8TJkzgr3/9K6efbmWdTQOVvxcWvAaznoH9OysfS+kJ4/4IA86GyAMX2zTGGGMatxolyCLiAlqoak6I46l7X9wBOw4qyFE77QbCyQ9Xfx6Qn5/PxIkTOf/887nuuutCG4cxoVKwDz65CX71e1/rioR+p8PY30P7QWELzRhjjKlrASfIIvIWcD3gwRlXnCgij6vqI3UVXFPj8XiYNGkSffr04YEHHijf//HHHzNt2jRycnK4+uqrOfHEE8MYpWmWivNh63xnwY65L8GyD6G0wKlE0aItjLkZhl0KMS3DHakxxhhT54LpQe6nqjkicjHwBXAHMB9oXAlygD29deHGG2+kpKSEF154odL+M888kzPPPJN9+/bxpz/9yRJkU3/2rIU5k2Hha1BSCChExsPgSc6ku4gYSOlhJdqMMcY0K8EkyJEiEgmcCTylqiViL5oBu++++5g/fz7ff/89ERFV/29/8MEHuemmm6o8ZkzIeEph9Zcw40nYMqvysT6nwZnPWE+xMcaYZi2YBPl5YCOwGPjRt+pddl0E1dRs3LiRe++9ly5dujBu3Ljy/b179+bdd99FVbnjjjs4+eSTGTZsWBgjNU1a7k6YPwVmPw8FB5QWbD8Yxt8GvU8Bd2R44jPGGGMaiGAS5E9V9YmyDRHZDFwV+pCani5dulC5el1lTz75JN988w3Z2dmsXbuW66+/vh6jM81C7k545ZTKS0BHRMOgC2DM7yC1V/hiM8YYYxqYYBLkD4Hy7k1VVRF5Bxge8qiamVtuuYVbbrkl3GGYpqQoF3K2Q/4emPsirJgK3hLnWFJnGPcHGHS+MynPGGOMMZVUmyD7VrjrD7QUkbP9DiUCVgDVmIZk1yqY/SwsfhsQKC10xhOPuhaGX+GsftdxuE26M8YYYw4jkB7k3sBpQBIw0W9/LvDbOojJGBMMTwmsmgYznnBKtfk76s9Ob3FUXHhiM8YYYxqhahNkVf0E+ERExqjqzHqIyRgTiNwdMPdlmPM8FGZVPpY20kmMe00Alzss4RljjDGNVTBjkNeKyF+ALv7XqWqjmKinqjTWsnSHm+Bnmqm9G+GZI5zFPMpExMCQi2HMTZDSPWyhGWOMMY1dMAnyJ8BPwDc4q+k1GjExMWRmZpKSktLokmRVJTMzk5gYG+7drBXlgrcUti92Jt2t+hzU92fYqhuM/QMMPNeGUhhjjDEhEEyCHKeqt9dZJHUoLS2NjIwMdu/eHe5QaiQmJoa0tLRwh2HCYdcqmPU0LH7XqThRsBdiW8GRv4NeJ4IrCtJG2KQ7Y4wxJoSCSZA/E5FTVPXzOoumjkRGRtK1a9dwh2FMYMom3f3yGGxbWLG/yAOnPwUDz4NI+0TBGGOMqSvBJMi3An8RkWKgGBCccsiJdRKZMc1N7g6Y+xLMmXzwpLtOo2DcH6HniTbpzhhjjKljASfIqppQl4EY06ytnQ5vngPqrdgXEQNDL4EjbrRJd8YYY0w9CjhBFmd228VAV1V9QEQ6Ae1VdU6dRVePsvKLERFaxkaGOxTTHBTth4hY2PC902v86+eAr1qJTbozxhhjwiqYIRbPAF7gN8ADwH7gaWBkHcRVb7xeL3/+YCmfL9vOxEEd+L9zB4U7JNOU7VoFs56Bxe9AXArkboO41k7N4tTe0Kq7TbozxhhjwiyYBHm0qg4TkYUAqrpPRKLqKK56IyL8uGY3+cUe3p23hTOHdmRM95Rwh2WakkNNuisthLNfgH5nQER02MIzxhhjTGWuIM4tERE3vs+BRSQVp0e5WiIyQUR+FZG1InJHFcevEJHdIrLI93WN37HLRWSN7+vyIOINiIjw0uUjyrfv/GgJhSWNqsyzaahyd8D0v8MjPeD9yysnx51Gw1nPwaDzLTk2xhhjGphgepCfAP4LtBGRvwPnAndXd5EvqX4aOAHIAOaKyFRVXXHAqe+q6s0HXNsKuAcYgZOYz/dduy+IuKs1MC2JM4Z04JNF29iYmc9T09fyp5N6h/IpTHMz8xn431026c4YY4xphIKpYvGmiMwHjsMp8Xamqq4M4NJRwFpVXQ8gIu8AZwAHJshVOQn4WlX3+q79GpgAvB1o3IH617mD+HblLvYXlfLsD+s4bXB7+rSzCnYmQF4PILDuW5jzAqz5quJYq27OGOMBNunOGGOMaQyqTZBFJFFVc3y9ubvwS05FpFVZ8noYHYEtftsZwOgqzjtHRI4CVgN/UNUth7i2YxUxXgtcC5Cenl7dLVUpMsLNExcO4apX5uHxKnd8uJQPbzgSt8smS5nD2LUKZj4FK6dCTEvI2gzxbeCo/+dMtOtxok26M8YYYxqZQHqQ3wJOA+ZTXocK8C0UAnQLQRyfAm+rapGIXAe8ilMtIyCqOhmYDDBixAit5vRD+k2ftozplsLM9Zks2pLFG7M2cfmRXWr6cKapKpt09/N/YPuiiv1xreGcl6Dv6RDR6OevGmOMMc1WtZP0VPU03/euqtrN76urqgaSHG8FOvltp/n2+T9HpqoW+TZfBIYHem2ovXDZCKLczv+Wz5ZsR7XG+bZpanK2wzf3wz+7O5Pu/JPjTqPh9Ced2sWWHBtjjDGNWsBVLETkLBFp6bedJCJnBnDpXKCniHT1lYWbBEw94LHb+22eDpSNbf4KOFFEkkUkGTjRt6/OtIiJ4N4z+uESSEuOQeyjcQPw2R/h333h50ehKNvZFxkLI38Lv1sAV/8PuowNb4zGGGOMCYlgqljco6r/LdtQ1SwRuQf4+HAXqWqpiNyMk9i6gZdVdbmI3A/MU9WpwC0icjpQCuwFrvBdu1dEHsBJsgHuD2DMc61dNKoz27MKeXL6Ws4amsZRvVLr+ilNQ6PqTLxb8xXMfRHWTa84ltIDxv4eBpxjk+6MMcaYJkgCHUIgIktUddAB+5aq6sA6iayGRowYofPmzav14xSWeDjliZ8oLvXy1e/H43a5iIl0hyBC06DtWOpMutu+BApzICcDEjo45dmyNsGo6yBtePWPY0w1RGS+qo6o/kxjjDH1LZge5Hki8m+cmsYAN+FM3GuSYiLdPHz2IM5/fiYn/OdHjuqZysPn2DLUTVJpEaz4xJl0t8uv+mCn0XDyw9DrZHAH86dijDHGmMYsmFf93wF/Bd71bX+NkyQ3WaO6tiItOZaMfQW8M9dZhvqIbrYMdZOxbxPMmQzzX4Hi/ZWPdRkPp/wL2vQJS2jGGGOMCZ+Ah1g0FqEaYlFmxbZsTnniZwC6to7ni1vH21CLxk4VXjsTNnxfeX9UCxh+uTOMIrlzOCIzzYgNsTDGmIYrkIVCHlPV34vIp1SugwyAqp5eJ5E1EP06tOTcYR35YMFWNuzJ4+nv1nLbibYMdaNUWgQrP3Um3W2eWbG/TT8Yeyv0OxMiY8IWnjHGGGMahkCGWLzm+/6vugykIXv4nEH8b8VOcgpLeeb7dZw2qAO92yWEOyxTHVXImAu/PA4lBbB9MeTvgeSuTnm24v1wxI3Q3saWG2OMMaZCIAnyI8BxwCmqensdx9MgRbhdPHnRUC5/eS4er3LnR0v44Pojcdky1A1T0X5Y8q6TGGdtqtjf6xQYdQ10OxZcAZcAN8YYY0wzE0iC3F5EjgROF5F3cJaYLqeqC+oksgbm6F5tOKpna35cs4cFm7N4Y/YmLhvTJdxhGX+7Vjkl2pa8B56iiv3igp4nwdnPQUzLQ19vjDHGGENgCfLfcKpXpAGPUjlBVuA3dRBXg/TsJcMY9sA3FJV6eXL6WiaNTCcqwnoiwy5rC7x9IexcWnl/bCsYfR0MvxIS2oYnNmOMMcY0OoEkyNtV9WQR+Zuq3l/nETVg8dGRPHDGAO74aAl92iUQ6bYhFmFVmO30Fs99CXavrNjf6Qhn0l3PE61+sTHGGGOCFkj28AQwHDgTaNYJMsD5IzuxN7+Yh79YxZfLdnDywPbhDqn58JTCmv/BL/+BFu1g7bdQkgfth0C/MyCxgzP5LqV7uCM1xhhjTCMWSIJcIiKTgY4i8sSBB1X1ltCH1bBdM64rny7ext+mLufI7q1pGRcZ7pCatpztMO8lmPMCFGY5+8QNQy6CEVdBx2FhDc8YY4wxTUsgCfJpwPHASTThpaWDEeF28X/nDOL0p37m4hdn0a5lLE9fPJToCFtAJGS8XtjwA8x4AtZ9R6US3O5oGHk1THgobOEZY4wxpumqNkFW1T3AOyKyUlUX10NMjcKAji3p1yGRZVtzWLYth1veXsjTFw0jwm2T9mpt9dcw9SbYv7Py/lbd4MhbYOB5EN0iPLEZY4wxpskLJpsrEJFvRWQZgIgMEpG76yiuRuHNa0aTFOsMr/hq+U7+3wdL8Hqb1tLd9Wrvevj6Hvjomork2BUB/c+Ba76F3y2AEVdacmyMMcaYOhXMFP8XgP8HPA+gqktE5C3gwboIrDFoGRvFN7cdxTGP/MD+olL+u3ArcVFuHjxzACJW4aJa+Xth0Vuw+C2IS4ENPzpji3tNcMYa9z7FGWcc1yrckRpjjDGmGQkmQY5T1TkHJH6lIY6n0WndIoav/3AUv3n0BwpKPLw5ezPx0RHceXIfS5KrogpbZsOMJ2H1F+D1OPtjU+DYu2DoJU41CmOMMcaYMAkmQd4jIt3xzZYSkXOB7XUSVSPTPimWL24dz0mP/UhRqZfJP64nPiqCW4/vGe7QGo6CLFj8trPSXXZG5WMJ7eHk/3NKtRljjDHGhFkwCfJNwGSgj4hsBTYAF9dJVI1Ql9bxfHLzWCY++TMlHuU/36xmdLdWHNEtJdyhhd8Xf3YW8/D6feAgLmchjyNuhC7jwWWTG40xxhjTMAScIKvqeuB4EYkHXKqaG+i1IjIBeBxwAy+q6sMHHP8jcA3OkI3dwFWqusl3zAOUrSG8WVVPD/R561ufdol8cP0Yzn52prMetzbjCXtli3rMn+J8LxPfxln+edhl0KJN+OIzxhhjjDkE0QCTOBFpCdwDHOXb9QNwv6pmV3OdG1gNnABkAHOBC1V1hd85xwKzVTVfRG4AjlHVC3zH9qtqwGULRowYofPmzQv09Dqxdlcu170+nx3ZhbxxzWiGpieHNZ56oQqbZ8KsZ2DfZsjbBbnbnRXvBpwNmWtg9A3Q7VjrLTYGEJH5qjoi3HEYY4w5WDBDLF4GlgHn+7YvBaYAZ1dz3Shgra8HGhF5BzgDKE+QVfU7v/NnAZcEEVeD06NNAm9ecwTnPz+Ty1+ew4uXj8DjhTHdm+Bwi7w9sPANmP2ckxCX6XYsnPIv6HUSuG2lQWOMMcY0HsEkyN1V9Ry/7ftEZFEA13UEtvhtZwCjD3P+1cAXftsxIjIPZ/jFw6r68YEXiMi1wLUA6enpAYRU99q1jOGt347m3GdmcOELs3EJvHzFSMb3TA13aLVXtsrdzKdh3beg3opj4oIeJ8Cp/4KkhvG7MMYYY4wJRrALhYwr2xCRsUBBKIMRkUuAEcAjfrs7+z6GvAh4zFdJoxJVnayqI1R1RGpqw0lA05LjuP3kPni8SolHuebVeczduDfcYdVO3h54tBe8fias/boiOU7sAMffB7ethovfs+TYGGOMMY1WMD3INwCv+sYiA+wDrgjguq1AJ7/tNN++SkTkeOAu4GhVLSrbr6pbfd/Xi8j3wFBgXRBxh9VZw9LYl1/M/Z+tpKjUyxUvz+Gda8cwMK1l9Rc3BF6PkwTv/hUWvApL3oVC37BzVwT0ORVGXw/pY8DqPhtjjDGmCQimisUiYLCIJPq2cwK8dC7QU0S64iTGk3B6g8uJyFCcFfomqOouv/3JQL6qFolIa2As8M9AY24orhrXjf1FHv799Wryij1c/OIs3r/+SHq3Swh3aIeWuQ7mvQQL3oC4ZNi3EdxR0Pd0aD8I3NEw+AKIbQYTEI0xxhjTrAScIIvIP4B/qmqWbzsZuE1V7z7cdapaKiI3A1/hlHl7WVWXi8j9wDxVnYozpKIF8L5v9bmycm59gedFxIszHORh/+oXjcktx/Ukr6iU539cT05hKRe9MIv3rx9Dt9SAC3TUveI8WP6xU4li57KK/d5iOOkhGDzJln02xhhjTJMXTJm3hao69IB9C1R1WJ1EVkMNoczb4dz936W8MXszAHFRbp6YNJTj+7UNX0CqkDEXZj8PK6eCp7jy8bb9YZSvbrENoTAmZKzMmzHGNFzBjEF2i0h02fhgEYkFousmrKbrwbMGkl/s4aOFW8kv9rBsWza/6dMGlysMyWdpEXz9N6dEm7/oRBh6KQy/AlJ71X9cxhhjjDFhFEyC/CbwrYhM8W1fCbwa+pCavn9fMIQx3VN4/sd1PPbNGn5as4eHzx5It9QWeFWJdNfRQhqeEti6AKLinNrFS96Fgn2AOL3DXY92VrnrcbzVLjbGGGNMsxXwEAsoXzL6eN/m16r6VZ1EVQsNfYiFP1XlowVbeWDaCvKKShnTLYXd+4t45NzBDOgYwioXO5Y5Sz4vfgeK9zv73FHQ5zQYeomTOHccZks/G1OPbIiFMcY0XEElyI1BY0qQy2TuL+LOj5bwvxVOAQ+XwG+P6sYfju9FTKS7Zg+au9PpIZ77ImRtqnys18lw5jM24c6YMLIE2RhjGi5LkBuIolIPf/5gCZ8s2la+L71VHP88dxBHdAtiieoVU50V7rbMBg743bYf4tQs7nc6RMWHJG5jTM1YgmyMMQ2XJcgNzKIt+/jtq/PYvb+imsSFozpx5yl9SYw5zLjg7K2w9D346VEoyq3Yn9DemWw3+EJI7lx3gRtjgmIJsjHGNFyWIDdAHq/yj2kreXnGBsp+Pa1bRPHIeYM5trdvnPDe9bDgNcjfB1kbYf0PgELr3pC9GfqfA8Mvh7SRVp7NmAbIEmRjjGm4glkoZCkHfWZPNjAPeFBVM0MZWHPmdgl/ndiPi0Z34qpX57EpM589+4v5bsFKjs7+FNfcF2D3yooLWqbD0bc7K9sldXYm3UXGhO8GjDHGGGMasWDKvH0BeIC3fNuTgDhgB/AKMDGkkRm6t0ng+98N59uPX6HFqvcZuWoprl8rv0fRlJ7I1V87y0GXcdVwYp8xxhhjjAkqQT7+gFXzlpatpCcil4Q6MAOs+BT54AqO95Y6276REvs0ns/cx/FawTiyc7pz/k+7OGd4FF1b28Q7Y4wxxpjaCnYlvVGqOgdAREYCZV2VpSGPrLnxlMDmmc5wieUfwbIPYeeyiuORcdDvDAr6T+Kb7C7858s17NViyC3iqe/W8tR3axmWnsSkkemcMqg9LaKD+dUaY4wxxpgyAU/S8yXELwMtcPoyc4BrgOXAqar6Xl0FGYxGNUnP64XNM5zJdis/hZL8imNpo2DguaBeaNUduh9baXW77IISXp+5kTdmb2ZHdmGlh42OcHHKwPZcfmQXhnRKqqebMcYEwybpGWNMwxV0FQsRaQmgqtl1ElEtNfgE2euBLXNg6fuw7AMoPOB/Y5dxcMYzQZVkW7Mzl6e+W8tXy3dQWOIt3z+mWysePGsg3VNbhCp6Y0yIWIJsjDENVzA9yNHAOUAX/IZmqOr9dRJZDTXoBPmLO2Dh6xXLPZcRF6SPgWGXQe9TICaxRg9f6vHy7apdPPv9OpZkZKHqlB0Z3CmJc4d1ZFtWIQgM6ZTE0E5JtEm0ShfGhIslyMYY03AFM1D1E5yybvOBoroJpwkp2AelRU4P8cpPYdU02Lag8jnthziLePQ9HeKDWC3vECLcLk7q346T+rcjr6iUvOJSPlm4jQ8XZPDXT5YfdH7rFlGM6NyK4Z2TGZKexIAOLYmNsgoYxhhjjGnegulBXqaqA+o4nloLaw9y9lZY9Rksfge2L4LohIohFB2HQ7uBsGcNDJ4EvU6GFqn1Epaq8tGCrTz85Sp25x76vY1L4IlJQzl5YHvcLltcxJi6ZD3IxhjTcAWTIE8GnlTVpXUbUu3Ua4KsCrtXwYpPYMl7sHdd5eMRMXDig9DnVEjsUD8xVSOvqJQlGdn8vHY3M9ZmsnpnLnnFnkrnxEe5GZjWksGdkvhs8TbatYyld9sE0lrFkpYcR8ekWNKSY0ltEY3LEmljasQSZGOMabiCSZBXAD2ADThDLARQVR1Ud+EFr94S5MXvwJd3QsHeg4/FJjvDJgacDV2OAper7uOphe3ZBSzYtI8lW7Pp3TaBxVuyWJSRzYqt2ZR4D/3vw+0SWreI4sEzBzC+Zyoxkc7wjFU7ckiIiaRtQjQR7oZ978aEiyXIxhjTcAWTIFdZVkFVN4U0oloKeYJckAUbf4aszdCyI6z/ATb8AJlrK5/XshMMOBf6n+GMLZbG37O6bncu/5i2ipXbc8jMK6ao1HvY81u3iKJjUixrdu0nv9iDCLSIjiAhJoKWsZEkx0WR0iKK1BbRnD0sjQEdW5ZfuzWrAK9XSYqLpEV0BNIE/v8ZcziWIBtjTMNVbYIsIomqmiMirao6rqpVdKEe9BgTgMdxFhZ5UVUfPuB4NPAaMBzIBC5Q1Y2+Y3cCV+Msc32Lqn51uOeqdYJcUgCbZ8Hab2D1l5C5DqcWhE9UC+g8FrqOh3XToftx0PtkSOle8+dsJHILS9iaVcDWfQVsysxn9c5cNmbmcc6wNHZkF7Itu4Ate/P5ZW0m1b3tio10kZoQQ1JcJC1jI1m7az/bffWcRSAm0k2020V0pIuYSDexkW6O6Z3KeSM6ERflbC/flsOMdXuIi4ogNtLt7I9yE+V2Eel2ERnhIik2ksF+taALSzzszi1yjruFqAjn3Ci3y4aLmHplCbIxxjRcgSTIn6nqaSKyASdT9M8iVFW7VXO9G1gNnABkAHOBC1V1hd85NwKDVPV6EZkEnKWqF4hIP+BtYBTQAfgG6KWqngOfp0yNEuS8PTDvZafSxM6lTq3ig27EBWc9D/3PqrRgh6nM41V+XruHjL35rN21n525hezNKyYrv4ScghL2F5WSX+zhN33aEBflJqughKz8ElbtyKlUwzlUWkRHMKJLspM0R7jYX1jKD6t3V3muAC4RRODPJ/UmJsqN2yW4RfjX/37Fq5Rvu1zgFsHt9m2LcOmYzvRqm4BLBLcL3py9mY178nCJ4Cq/TnCJ8zguEcb1aM3xfdsi4rwxmLkukx9W73aukYp4XC7BhXN9WnIsl47pjAAiwrZ9Bbw9dzOCc03ZYznb4tsWfn9cTyLczp+viPDEt2vwqiKU7av44y675vTBHejUKq78/9HUxdvYuq+g/Jyy/2/4XTc0PZmRXSreTy/cvI/5m/b5nVNxRdlPbRNjOHVQ+/L9O3MK+WLp9mp/v5eN6VLpjc3rMzdW++bs+L5t6ZAUW7799Yqd7MguqLiBKgzokMjQ9OTy7aUZ2SzKyAJgROdk+rYPvjSjJcjGGNNwBb1QSNBPIDIGuFdVT/Jt3wmgqg/5nfOV75yZIhIB7ABSgTv8z/U/71DPV6ME+aPrYMk7B+9v1Q16nQQ9TnDqFEfFHXyOqRFVrZQozVyXyZZ9+WTlF7Mzp4is/GLyijzkFZWSX+KhoNjDiC7JDO+cTH6xsz191S5+XrvnsM/TIjqCbqnxFJd6KfF4yS0sZddhKnmYytwucItvHLlAicdLdU1GpMvpmS/7/RaXein2HP7Nj1sg3m9oTanHe9Dk0aokxVYejrMvv6TaaxJiIojyGxufU1By2LH24HziEe+3fHt+sYd8X3zxUW4+vmksPdsmVPvc/ixBNsaYhivgOsgiMhZYpKp5InIJMAx4TFU3V3NpR2CL33YGMPpQ56hqqYhkAym+/bMOuLZjFbFdC1wLkJ6eHugtVUhKh5iWEBELPY6HXidCl/EQV+WoEhMCB44xHtM9hTEEVwv6qnFdUVWKSr0UljgJS0GJhxKPl5JSpdjjISbSTf8OFWOdd+UW8sOvuynxKCUeb3nyVlTiodTr7CvxePn9cb3wqOLxKqVe5cFpKyj1KCUepdTrpdSreH3ne1XxeOGi0el0TonD6wWvKq/O2Mj6PfvxKni9iledNwZedY57VRnbvTVH9UrFq4oCP6/ZzQ+r96C+bfVdU/4zSoekWC4alV6+vWVvPm/Pcf7E1Pcf9fWjavl/4He/6YHLJeULyDw5fU21ye4pA9qT1iqu/LxPF29ja1bBYa/p3zGR4Z2dvx1VWLRlHws2Zx32mpQW0ZwysKIHeUd2AV8u33n44IDTBnfAJf49yJuq7UEe1bUV7VtWLJLzzYqd7Mg5/JumbqktKi3bvmxrNosznBKOfdon0iImmJLyxhhjGrpgJuktAQYDg4BXgBeB81X16GquOxeYoKrX+LYvBUar6s1+5yzznZPh216Hk0TfC8xS1Td8+18CvlDVDw71fDUeg1yU69QtNqaZUNXyxFd92xU/O/sjXFJpCENRqceXtJddp36P57vGLURHVCw4U1jiKe9BrtTc+P3sckFCTMXQpRKPl/2FpdXeQ1JcZKU3W5n7q/90ICEmkqiIih7k7PwSSryH7xmPi3JX6kHO8w0VAudTipossGM9yMYY03AF0+1RqqoqImcAT6nqSyJydQDXbQU6+W2n+fZVdU6Gb4hFS5zJeoFcGxqWHJtmRnzjk/32VHuNf+IbqJhId3kJwEBFul0kx0cF/VwpLaKDvqZlXPBzCuKjIyolzMYYY5qWYIrU5vrGD18CTBMRFxDIK8tcoKeIdBWRKGASMPWAc6YCl/t+PheYrk531lRgkohEi0hXoCcwJ4iYjTHGGGOMCUowXSAXABcBV6vqDhFJBx6p7iLfmOKbga9wyry9rKrLReR+YJ6qTgVeAl4XkbXAXpwkGt957wErgFLgpsNVsDDGGGOMMaa26ryKRX0Tkd1ATRYvaQ0cviRC49RU7wua7r3ZfTUuNb2vzqqaGupgjDHG1F4gdZBzocqJ4WVLTQdfALQBEpF5TXHCTFO9L2i692b31bg01fsyxpjmrNohFqpqs9eMMcYYY0yzEcwkPWOMMcYYY5o8S5ArTA53AHWkqd4XNN17s/tqXJrqfRljTLPV5CbpGWOMMcYYUxvWg2yMMcYYY4wfS5CNMcYYY4zx0+wSZBGZICK/ishaEbmjiuPRIvKu7/hsEekShjCDFsB9/VFEVojIEhH5VkQ6hyPOYFV3X37nnSMiKiKNptxWIPcmIuf7fm/LReSt+o6xJgL4t5guIt+JyELfv8dTwhFnsETkZRHZJSLLDnFcROQJ330vEZFh9R2jMcaY0GhWCbKIuIGngZOBfsCFItLvgNOuBvapag/gP8D/1W+UwQvwvhYCI1R1EPAB8M/6jTJ4Ad4XIpIA3ArMrt8Iay6QexORnsCdwFhV7Q/8vr7jDFaAv7O7gfdUdSjOqpnP1G+UNfYKMOEwx08Gevq+rgWerYeYjDHG1IFmlSADo4C1qrpeVYuBd4AzDjjnDOBV388fAMeJiNRjjDVR7X2p6neqmu/bnAWk1XOMNRHI7wvgAZw3MoX1GVwtBXJvvwWeVtV9AKq6q55jrIlA7kuBsgWGWgLb6jG+GlPVH4G9hznlDOA1dcwCkkSkff1EZ4wxJpSaW4LcEdjit53h21flOapaCmQDKfUSXc0Fcl/+rga+qNOIQqPa+/J9jN1JVafVZ2AhEMjvrBfQS0R+EZFZInK43suGIpD7uhe4REQygM+B39VPaHUu2L9DY4wxDVS1K+mZpkVELgFGAEeHO5baEhEX8G/gijCHUlcicD6uPwanx/9HERmoqlnhDCoELgReUdVHRWQM8LqIDFBVb7gDM8YYY6D59SBvBTr5baf59lV5johE4HwEnFkv0dVcIPeFiBwP3AWcrqpF9RRbbVR3XwnAAOB7EdkIHAFMbSQT9QL5nWUAU1W1RFU3AKtxEuaGLJD7uhp4D0BVZwIxQOt6ia5uBfR3aIwxpuFrbgnyXKCniHQVkSicCUJTDzhnKvD/2bvv8KjK7IHj3zOTSe8hCSWE0HtHFAFBil2wdxdde/fnqqvruq6u7lpWXevae9dFwa6oCAgovbcQAoRAeq9T3t8fM8QAAUIyk0km5/M882Tu3Dv3nks5HN77lhme9+cAP5rWv5rKYe9LRIYDL+IujttCX1Y4zH0ZY0qMMR2MMWnGmDTcfaunGWOW+ifcI9KYP4uf4W49RkQ64O5ykdGCMTZFY+5rBzAZQET64y6Q81o0St+YDfzBM5vFMUCJMWa3v4NSSil15NpVFwtjjENEbgS+BazAa8aYdSLyALDUGDMbeBX3I9903ANyLvBfxI3TyPt6DIgEPvaMOdxhjJnmt6AboZH31SY18t6+BU4QkfWAE7jDGNOqn2Y08r7+BLwsIv+He8DeZW3gP6GIyPu4/8PSwdN/+j7ABmCMeQF3f+pTgHSgErjcP5EqpZRqLl1qWimllFJKqXraWxcLpZRSSimlDkkLZKWUUkopperRAlkppZRSSql6tEBWSimllFKqHi2QlVJKKaWUqkcLZKWUUkopperRAlkppZRSSql6tEBWqpFEJEVEzt/vsxdEZGxD+5RSSinVNmmBrFTjTQZG7PfZMbiXuG5on1JKKaXaIF1JT7ULIjIDuBn30sClxphxR/j9ccAsoBgoA84CQoD7gaf332eMyfBW7EoppZRqWVogq4AnIlHAr8AwY0ytiMQaY4rr7Z8PRDXw1duNMXPqHfeN57O1nu3bgGJjzGv771NKKaVU26UFsgp4IhIOrAO+AN40xixt4nm2Ab2NMQ7P9rfA5caY7P33KaWUUqrtCvJ3AEr5mjGmUkQGAacDL4nIK8aY5/fub0wLsoh0AErqFcfhQKynON5nn2f/34E4oMAY84Cv7k0ppZRS3qcFsgp4ItLbGLMF+EBEBgCh9fcbY8Y34jRpQHa97eOBnxraJyJdcP/dKgbGNjVupZRSSvmHFsiqPbhHRMYAFbi7WlzVhHNsBDqIyFrgauBk4JOD7LsSuAVIBLo2M3allFJKtTDtg6xUE4jIcuBoY4y9gX1/AqKBBGCTMeaZlo5PKaWUUk2nBbJSSimllFL16EIhSimllFJK1aMFslJKKaWUUvVogayUUkoppVQ9WiArpZRSSilVjxbISimllFJK1aMFslJKKaWUUvVogayUUkoppVQ9WiArpZRSSilVjxbISimllFJK1aMFslJKKaWUUvVogayUUkoppVQ9WiArpZRSSilVjxbISimllFJK1aMFslJKKaWUUvVogayUUkoppVQ9WiArpZRSSilVjxbISimllFJK1aMFslJKKaWUUvVogayUUkoppVQ9WiArpZRSSilVjxbISimllFJK1aMFslJKKaWUUvVogayUUkoppVQ9Qf4OwNs6dOhg0tLS/B2GUkod0rJly/KNMYn+jsNXNBcrpdqCg+XiQxbIIpICXACMBzoDVcBa4Evga2OMywexNktaWhpLly71dxhKKXVIIrL9CI7VXKyUUj5wsFx80C4WIvI68BpQCzwCXAhcD8wBTgIWiMhxzQzqJBHZJCLpInJXA/tDRORDz/5fRSStOddTSqm2RnOxUkq1vEO1ID9ujFnbwOdrgZkiEgykNvXCImIFngOmAlnAEhGZbYxZX++wK4AiY0wvEbkA9z8O5zf1moeyvaCC4CALYTYroTYrIUEWRMQXl1JKqSPRbnJxeY2D4spaIoKDiAgJIjhIh8kopfzjUAWy/WA7RGSsMeYXIL0Z1x4NpBtjMjzn/ACYDtRPytOBv3vefwI8KyJijDHNuO4BnvlhC/+ZswXnfqe1WQWb1UJwkIVgq4U/jOnG0K6xhNqshNmszFq5i90l1cRHBBMfHkxMuI2oUBvRoUHun2FBdIwOJSEyxJvhKqXal3aRiwsrarn8jd9YtbOk7jOrCMFBFkJt7saLsGArydGh/PXUAUSEWIkICQIDHyzZQXSYjZgwG7HhwcSF24gNc+fk6NAgbexQSh2xQxXIG0TkbeAGY0z5fvueAUY089pdgJ31trOAow92jDHGISIlQAKQX/8gEbkauBogNfXIG1J2FFYcUBwD2J0Gu9NJZa0TgH9/t/mIz907KZJjeiQQHeYumjfsLmXJtkIiQ20kRATTKSaUzrGhJMeEkRgZTIfIEDrGhJISF37E11KqrbDb7WRlZVFdXe3vUHwuNDSUlJQUbDZbU0/RLnJxZa2D3cX7/nlwGkOV3UmV3UmR5/8JW/MqOOXp+Y0+rwiE2az835Q+9EiMIDbcRkxYMP9bnoXNKiRGhpAY5X4lRYWSGBVCqM16RLEr1Ra1pzwMR56LD1Ugr8OdKJeLyB+MMYvr7WtV/x03xrwEvAQwatSoI27ReOTsoYztlUiV3Um1JxlX1Tgpr3VQXuOgosZBZY2T84/qSmJUCNV2F1V2J8/PTWdrbjlVdid2Z8OXzS2r4fPV2ZRVO3C66h1TcvA/kHHhNk4b0pmEyGASIkOotTv5au0eOka7i+nU+HBS4sLpEhdGl9gwdyuKUm1IVlYWUVFRpKWlBXTrnjGGgoICsrKy6N69e1NP0y5ycUpcOO9ffQzLMouo8OTe0io7JVXun6XVdipqHESGBHHpmG6U1ziprHWQkVfOGwsPPt7RGKisdfLQVxsaHUtIkIXoMBuXHJPK5H7JJEWFEB8RzKqsEiprHXXFdFy4LaD//KrA1l7yMDQtFx+yi4Ux5h4R+RZ4V0TeBB70jJb2xmO1XUDXetspns8aOiZLRIKAGKDAC9feh8UinDG8yxF/b+qA5Lr3dqeL8moHpdV2yqr3JnQHvZIi6ZUUifG0hHzw205+2JBDcZWdwopaiivtVNmd+5y31unii9XZFFUe9MnqPkJtFhIjQ/j3eUPpGhdOcnQoFoF12aWkxIURE6ZJXLUu1dXV7SIpiwgJCQnk5eU15zTtJhf3TIykZ2LkEX/v7lP6U1rloKTKnVOLKu0UV9ZS4smzeWU1XDuhp7uPc5Wdoooa7p659oDcu1eNw0VeWQ1Pfr+FJ7/fArhbooMssk9jSJBFiIsIpmN0KKkJ4fRJimRc70RGdotr2i+AUi2oveRhaFouPmzTozFmnoiMBP4LzBeRi5sRY31LgN4i0h138r0AuGi/Y2YDM4BFwDnAj97uf+wtNquFuIhg4iKCG9wvIoQHB/HHcd3547h9//did7rqknh+eQ0xYTaGp8Zhd7ooqqjlyzW7eW3BNoqr7JRXOw74F7Ha7mJnURXnv+huWLJa3I8N95RWe2IT4iOC6RwbxoBO0QxNiaFnUhS9kiKJCWvyY1+lmqU9JGXw3n1qLj64kCAriVFWEqMaP97jjOEpdTk2t6yGPM8rt6ya3SXV7Cqu4uwRKdisFvLK3fveWbSdwsraunM4XKbue2t2lfAl8MLPW+mVFEXn2FC6xIazp7SKrbnlpMSF0zMxgt7JUXRLiKBHYgQJEcHt5u+Bap3a05+/I73XQxXIdWcyxhQDF4rIDGABENaU4Orz9GO7EfgWsAKvGWPWicgDwFJjzGzgVeBtEUkHCnEn7oBjs1pIjg4lOTr0gM+TokO5fGx3Lh/rLqqdLkNuWTW7iqrYVVxFVlEV2wsqMAZOG9rZ83kla3eV1hXIdqchp7SGnNIaVuwo5t1ff7/GleO6Mzw1jp5JEaQlRLAuu5QusWEkR4e0q784SrVimot9ZG+OTdov9x7MOSNSyC6pIq+shpzSarKKKtmaV0FWURU5pdVU1joZnBJLmM3K1rwK5m3Or2ul3pRTzg8b9z1fcJCF5KgQxvbqwG0n9CExUvOuUq3FoQrkl/f/wBjzpojMB+70xsWNMV8BX+332d/qva8GzvXGtQKF1SJ0igmjU0wYow5xXFFFLYsyCthVVMVOTxLPzC9nd0k19btCv7JgG7DtgO/brEJydCg9EiMZ0iWG0d3jGdwl5qAt5Eopn9Fc3EqkJoSTmnDwAdTlNQ4sAuHB7n9ajTE8+f1mvl2fw56Sakqq9u02V+twP/37YMlOPliyk8iQINI6hBMSZGXTnjI6xYbS05OD+3eOpldiJClxYVpEK9UCDlogG2OeP8jnGcC1PotIeUVcRDCnDO50wOd2p4vtBZVszSunsKKWM4Z1ISO/nK15FSzfXsQbCzM9xxmyitwt1PM258FP7u9HhwVx25Q+nDK4U6NbXZRqrS6//HJWrFhRt71nzx5qa2spLCxs1rHepLm47Yjcb8C0iHDbCX257YS+AFTbnWQXV5FZUEFGXgUZeeVs2FPG0JRY0hLCySyoJCO/glU7iymvcbAlp5wtOeV8s3ZP3TltVqFzTBhHpcVz7+kDtJucavNaax4+aIEsImU0PABEAGOMifZ6NMrnbFZL3cDBvQZ2jmFg5xim9k9mcv8ktuaWsyW3nPW7S8nIq9in1aO0ysHfP1/P3z9fT2JUCIO7xJCeW05ydAjH9Ejg2J4JDOoSQ1SoJm3V+r3++ut177dt28b48eN56aWXmn2sN2kuDhyhNis9EiPpkRjJpH4HP+6btbv5YvVuNueUsb2gkhrH7yuJ252G7YWVbC+s5JPlWXSKCaVvxygSIoPZklPOkJRYxvSMZ0iXWG1tVm1Ca83Dh2pBjtr7XkRWGGOG+yQC1WqEBVsZ3zuR8b0T9/m8sKKWNbtKWJNVzLb8Ci4YncqarBLWZpewamcxOwor2VFYyZLMIp750b1eQWy4jT5JkUzsm8QJA5PpmRipiVq1Wvn5+Zx00knce++9TJs2zWvHeoPm4vbnpEGdOGmQ+wmgMe6BgFvzKtiSW8b67FLW7CqhV2Ik/TpFs2lPKRv3lDFvcx4uA6uzSnhnsXvauyCLu6tcn+RIxvdOZELfxCbNEqJUS2htebixE+i2mtHKquXFRwQzoU8iE/r8XjgflRYPQFZRJfd+tpYVO4sprjctXXGlnd8yi/gts4hHv93E1AHJnDakE6O7x9MpptnjilQAuf/zdazPLvXqOQd0jua+0wc26tjKykpOP/10zjvvPK655hqvHesjmovbGRGpG0g4pmfCQY97c2Emz89NJ6e0pu4zh8uwq9g9oPunTXlYvxIm90tiaNdYhqTE0Dc5iiCrhXgdW9LuaR4+kK4woZolJS6c1y8fDUBOaTWrs9wtzauySlixo4jSagdWERal5/P9+hwAusaFUVbjoHuHCKb2T+bUIZ1IjQ/XFmbV4pxOJxdccAH9+vXjH//4R93nFRUVXH/99QQHBzNx4kQuvvjigx6bkZHBQw89RElJCZ988ok/bkMpZhybxoxj0yittrNpTxkbdpeyYXcZ63aVsDGnjFqHi84xoWzOKeM7Ty7eKzzYSvcOEYzuHs+JA5MZnhpHSJCuJqhaxpHk1oMd+9lnn/Hll19SWlrKFVdcwQknnNDsuORgU1mKyFn1Nv8N3F5/vzFmZrOv7gOjRo0yS5cu9XcYCvejwS255WTmVzC5fzIbdpeyOKOAHzbmsmjrvmsMhNms9O8UxdT+yZw2tBNd4yP8FLVqCRs2bKB///7+DoNrrrmGHTt28PnnnxMU9Ht7wdtvv01sbCynn346559/Ph9++OFBj93rnHPOOWiB3ND9isgyY8yhJqPZe5zmYtUsdqeLTXvKCA6y0Cc5ipJKO6t3FfPfuVtZuPXA9V4E90Dvvh2jOKF/MjOOTcNi0QaMQNPa8/Be9XPr4Y4tKiri9ttv59VXX23wWkeSiw/Vgnx6vfc/77dtgFaZlFXrISL0SY6iT7K7C+WgLjEM6hLDuN4deOK7zSzcWkB5jQOAKruT5TuKWb6jmEe+3UREiJW/njqA04d2PmBkuFLecP/997Ns2TLmzp17QKLNyspi8ODBAFit1kMe2wI0F6tmsVktDOoSU7cdE25jfO9EYsOC+WlTLit3FrN8exHFngHZBvfYk0VbC1i0tYCnftzCqG7xHO2Z7rNnUgSJUTqLkWq+I8mtjTn2wQcf5IYbbvBKbIcapHe5V66g1H76dYzmpT+Mwukyda3KizLcibiy1j2pfmWtk7tnruFvs9ZyTI8Eju+bRHiIlTOGdSHUpo/+VPNkZmby97//nbS0NMaNG1f3ed++ffnwww9JSUkhKyuLYcOG4XK5Dnmsr2kuVr4yOCWGwSnuwtkYw87CKlbsLGLlzmJW7ihmbXYJx/VJJCEimN+2FTJnw+9dMyKCrfTtGMWkfkmcO6rrAQtdKXU4h8vDR3KsMYa77rqLk08+mREjRnglvkNN85YCpBljFni2bwP2Dn99zxiT7pUIVLtltUhdq/KV43vgdBnWZZewcGsBwVYLAztHM2dDDj9syOWBL9YDcPfMNXTvEMFpQzozY0w3EiIbv7SsUnulpaVxqJWSzzrrLG688Ua+/PJLTj/9dD744IODHltQUMA999zDihUr+Ne//sXdd9/t1Vg1F6uWICJ1C6FMH9YFcM/bXONw1c21nFtazS0frGBRRiEVtb8/9fv3d5sJD7bS2zNz0XmjUugSd/AFVZSCw+fh+rn1/fffP+SxzzzzDHPmzKGkpIT09HSuvbb5U8Qfqg/y+8C7xpgvPNubgJeAcKCfMebiZl/dB7TfW2C6/eNVfLIs64DPk6JCOL5vEleO707v5KgGvqlao9bS962lNLMPsuZi1Wos217E3E3ucSQrdxbjcDVcQwxNieG4Pokc1yeR4V1jCbJaWjhSdTjtLQ+D9/og992bkD0qjTGPe0423yuRKtVID0wfyJT+yXy3fg8/bMitW7wkt6yGD5fu5MOlO0mKCuG2qX04eXAnXV1KBRLNxarVGNktjpHd4gCorHWwbHsRi7YWsDijgNVZJThchgl9OlBW7eC5n9J55sd0QoMsJEQGc1yfRGaMSaNfJ13bRrV+hyqQ9+9QNLne+w4+iEWpgwoPDuKkQR05aVBHHE4XSzKL+G79Hr5fl0NWcRXgHuh318w1/G32Oqb2T2ZK/ySO75dEbLjO8anaNM3FqlUKDw7aZ3GpihoHSzIL6dcxmo4xoZRU2vllaz7/+GI9u4qref+3nbz/205CbRYGd4nhjGFdmD6sM5G68qpqhQ5VIJeJSB9jzGYAY0whgIj0A8paIjilGhJktTCmZwJjeibwt9MGsGF3Gd+t38NJAztS63Qxc/kuZq/K5ss1uwHonRTJFeO6c96oFCwWfcyn2hzNxapNiAgJYmLfpLrtmHAbJw/qyJerd/PDxhyq7e4ls6vt7kaOJZlF3PPZWjpGh3LyoI6cMyqF/h2jdUo51SocqkC+D/hCRB4Clns+Gwn8BbjF14Ep1RgiwoDO0Qzo/PsjuyEpsfzphD6MfugHquxOtuSWc9fMNdzrmRHjTyf0YVjXOD9GrdQR0Vys2iwR4bmLR1Btd7Ioo4CfNuby48Zcsoqq6o7ZU1rN6wszeX1hJklRIUwZkMwJA5I5tmcHgoO0UUP5x6GmefvGM0H9ncDNno/XAmcZY9a2RHBKNVWYzcozFw7n42U7+WFDLg6Xwe40zN+Sz/wt+cSG2Th9aCf+b0of4nUmDL8wxrSL1RMPNfK6kd/XXKzavFCbleP7JnF83yTun2bYmlfOj55iecWOYr66eRwrdpbw48YcPluxi/d+3UGQRRjaNYaLRnfjpEEdidA58b2uveRhOPJcfNBZLNoqHTmt9ldQXsNnK7P5eOlONu7Z94l0qM3CKYM7cfaIFMb0SNBHey1k27ZtREVFkZCQENDJ2RhDQUEBZWVldO/efZ99jZ3Foq3SXKwaq6rWSVjw7/Pbby+oYOJjc6lfnYjAwE7RnH9UV04Z3Emn+PSC9pKHoWm5+FDTvL0MPG2MWdPAvgjgfKDGGPOuV6L3Ek3K6mCMMazLLuXjpTuZtTKbDlEhHJUWxxerd1NW7aB7QjhjeiZw18n9iA7TgX2+ZLfbycrKorq62t+h+FxoaCgpKSnYbPsORDqCad40F6t2ZWdhJU/9sIVv1+2hrNrR4DG9kiI5b1RXTh7Uka7xOudyU7SnPAxHnosPVSAPw93HbTDux3l5uEdT9waigdeAF4wxNd68gebSpKwao8bhJLe0hq7x4VTbnXy7bg9Pfr+ZzIJKRODYngk8MG0QPZMiD38ypZrgCArkYWguVu1QrcPFgvQ8vli9m+/X5VBW83uxLAJ7y5cBnaI5cWBHTh/aiR6JmrPVkTniArneFyOBUUAnoArYYIzZ5JMovUCTsmqqP77+Gz9uytvns15Jkdx9Sj8m90v2U1QqUB1pFwtf5GIRiQc+BNKATOA8Y0zRfscMA/6Luxh3Ag8ZYw67xrbmYuVNNQ4n8zfn88XqbL5fn8Px/ZK448S+fLcuh2/X7WHpdvcf216JEVw4OpVpw7qQGKXdMNThNblAbms0Kaumqqp18snyLF6Zn8H2gsp99sVHBHPdxJ5cdmwaNl0RSnlBa+iDLCKPAoXGmIdF5C4gzhjz5/2O6QMYY8wWEekMLAP6G2OKD3VuzcXKV6rtTkqr7CRF/z5F+KPfbOT5uVvrtkXg6O4JnDcqhRMH6gA/dXBNWUlPqXYlLNjKpcd046LRqXy/fg8vzstgxY5iAAorannoyw0892M610zoyYWju+oCJCoQTAcmet6/CcwF9imQ986/7HmfLSK5QCJQ3CIRKrWfUJuVUJt1n8+q7E6CLFK39LUxsDjDvcJfsHUNJwxM5qwRXRjfO1EbOVSjaAuyUgdhjGHZ9iJenJfBnA052CwWhqXG8Nu2IsJsVs4e2YUZY9LonRzl71BVG9RKWpCLjTGxnvcCFO3dPsjxo3EX0gONMa4G9l8NXA2Qmpo6cvv27b4IW6kG5ZXVMHN5Fh8u3UlGXsU++wQwuJ8GnjakE9OHdWFEamzAz96gDs8rXSxExAJEGmNKvRmcN2mBrHxha14567JLmTa0Mxv3lPLagm18umIXdqehX8coHjtnCINTYv0dpmpDmlMgH0kuFpE5QMcGdt0DvFm/IBaRImNMg6voiEgn3C3MM4wxiw93Xc3Fyl+MMSzfUcSHS3byxerdVNY6Abh5Ui+25lcwZ30ONQ4XXePCOHN4F84emUK3hAg/R638pTmD9N4DrsU9OGMJ7oEaTxljHvNFoM2lSVm1lIe/3sALP2fUbY/sFsfDZw+md5K2KKvDa8IgPa/nYhHZBEw0xuzeWwAbY/o2cFw07uL4n8aYTxpzbs3FqjUor3Hw1erdzNmQw38vGYnVIpRV2/l2XQ4PfL6OUs80cuN6deCio1OZOiBZu2C0MwfLxY35UzDA00pxBvA10B241LvhKdX29E6KIiUurG572fYipj4xj0tf/ZWdhZWH+KZSTeKLXDwbmOF5PwOYtf8BIhIMfAq81djiWKnWIjIkiPOO6spLfxiF1bMQVFSojX4do+qKY4DfthVy/bvLOeafP/DINxvZUaA5vL1rTIFsExEb7qQ82xhj921ISrUNZ49M4cc/TeTvpw8gPuL3AXvzt+Rz3KM/cd07y9hdUuXHCFWA8UUufhiYKiJbgCmebURklIi84jnmPOA44DIRWel5DfPCtZXyGxGY0j+prmiudbq71FfUOnhh7laOe+wnLn31V75esxu784Du9qodaEwXi5txj2peBZwKpALvGGPG+z68I6eP9ZQ/lFXbeXn+Nl6Zn1HX3w0gyCLMODaN6yb2pIMujarqaUIXC83FSnlZdnEVby3azvu/7aCk6vf/c9qsQkiQhfIaJ4lRIZw3KoULjkrVVfsCUHP6IHc3xmyrty1AL2PMFu+H2XyalJU/5ZXV8MyPW3jv1x2kxoczIjWWmSt2ERJk5fKxaVx9XA+dHk4BTSqQNRcr5SOVtQ7+t3wXr/+yrW4GjBlj0pjQtwPv/bqDHzfmYoDxvRO5aHQqk/snaV/lANGcAnm5MWZEAycb6eUYvUKTsmoNMvMrKKmyM7RrLBl55fxnzhZmr8om2Grh6uN6cM2EHkSF2g5/IhWwmlAgay5WysdcLsPPW/J4bcE2/jF9EGkd3LNbZBdX8bdZa1mSWUhJlYOkqBAuGJ3Kpcd00xX72rgjXihERPoBA4EYETmr3q5oILThbymlgLqkCtAjMZKnLxxOTmk1v24r5Nmf0nl1QQa3TO7DH8d1JzhIWyHUwWkuVqrlWCzC8X2TOL5v0j6fx0cEs2JHMSVVDqJDg4gICeLpH7bwws9bOXNYF64Y350+Oid+QDnUSnp9gdOAWOD0ep+XAVf5MCalAk55jYPymt9HTFfZXTz8zUbeWLiNR88ZynF9Ev0YnWrlNBcr5Wfb8ivqBvSVVjsorXYQHGShe4dwPlvpXpxkQp9Erhrfg7G9EnQBkgDQmC4WY4wxi1oonmbTx3qqtXK5DJ+vzubx7zazY79p4Cb2SeTBMweREqcDQNqLJnSx0FyslB/VOlx8tWY3ry7YxppdJXWfB1stDOwcTWZBJUWVtfTrGMWV43swbWhnfULYBjSnD3Ii7laKNOq1OBtj/tiMYOKBDz3nzATOM8YUNXCcE1jj2dxhjJl2uHNrUlatXa3DxTuLt/PE95v3aVUOsgg3TerFNRN6Emqz+jFC1RKaUCB7PRf7kuZiFaiMMfy2rZBnfkxnQXp+3ec9EiO45rgevLYgk005ZSRFhTDj2DQuPjpVB2e3Ys0pkBcC84FluFdwAsAY879mBPMoUGiMeVhE7gLijDF/buC4cmNM5JGcW5OyaitySqt54PP1fLlmNwDJ0SHklNaQGh/O304bwOT+SfqYLoA1oUD2ei72Jc3Fqj1YmlnIUz9sYf6WfB4+azAXjE7FGMP8Lfm8NG8rC9ILCLNZOXdUCn8c232f8SmqdWhOgbzSGDPMy8E0dnlTLZBVwPtpYy6PfLOR1y47im35Fdw3ex3pueUc3zeRv50+kO6aUANSEwpkr+diX9JcrNqT5TuKGNQ5Zp8uFXd8vIrKWgcG+H59Dg6X4YQByVw1vgej0uL9F6zaR3MK5AeBhcaYr7wYTLExJtbzXoCivdv7HecAVgIO4GFjzGcHOd/VwNUAqampI7dv3+6tUJVqEcaYutZiu9PFawu28eg3mxCBayb04IbjexEefKgxtaqtaUKB7PVc7EtaIKv2bGteOVOf+BmXcS86ctrgTkSF2Zi9KpviSjtjeiRw65TeHN0jwd+htnsHy8WN6T1+C/CFiFSLSKmIlIlIaSMuOEdE1jbwml7/OOOu0A9WpXfzBH0R8B8R6dnQQcaYl4wxo4wxoxITdTYA1fbU70phs1pwuAxOY3C4DM/9tJXjH5vLV2t2c7j/0KqA1qRcrJRqecbABM/sRHan4dOV2bz36w6m9k/mpkm9SM8r5/yXFnPBS4tYnFHg52hVQw7bJGWMadLEfsaYKQfbJyI5ItKpXheL3IOcY5fnZ4aIzAWGA1ubEo9SbUlSVAjRoUGUVrsH8eWW13D9u8s5tmc8908bRG+db7PdaWouVkq1vF5Jkbx++WhW7izm6R+28OPGXBwuw8fLsgiyCOcf1ZVOMaG8uWg7F7y0mGN6xHPL5D6M6aktyq3FYVuQxe0SEbnXs91VREY387qzgRme9zOAWQ1cN05EQjzvOwBjgfXNvK5SbcK5o7ryw58mcsawzoC7NQJgcUYhJ/1nHk98v5lah8uPEaqW5qNcrJTyoWFdY3ntsqOYfeNYpvR3Lz7icBne/XUHK3cWM//O47nv9AFk5FVw4cuLOf/FRSzaqi3KrUFj+iD/F3ABk4wx/UUkDvjOGHNUky8qkgB8BKQC23FP81YoIqOAa40xV4rIscCLnmtbgP8YY1493Lm135sKNAu25PPXz9aQWbDv3Ml9kiN54rxhDOoS46fIVHM0oQ+y13OxL2kuVupAa7JK+NfXG1i4tYDPbxzH4BR3/q62O3n/tx38d+5WcstqOLp7PLdM6c2YHrroiK81Z5DecmPMCBFZYYwZ7vlslTFmqI9ibRZNyioQVdudPD93Ky/M3Uqt00VMmA2bVSiqtHP9xJ7cOKkXIUE6d3Jb0oQCWXOxUgHAGMP63aUM7Px744bLZbh31lpOH9qZjbtLed5TKI/uHs+tWij7VHMG6dlFxIpnIJ1nsnp9tqtUCwq1Wbltah++umU8Q7vG8tQFw/jhtomcMawLz/yYzrRnfmF1VrG/w1S+pblYqQAgIvsUxwCfr87m3V93cMFLi1m6vYj3rjqa+6cNZHtBBRe9/Cvnv7iYhen5OlC7BTWmQH4a+BRIEpGHgAXAP30alVKqQb2SIvn0umOZ2DeJmHAbj583lNcuG0V2SRVnPPcLj36zkRqH8/AnUm2R5mKlAlRuaQ3BVndJ9sXq3Zzy1AKyi6v4/MZxPDB9IDsKK7nolV+59NXfWJddcpizKW84bBcLABHpB0wGBPjBGLPB14E1lT7WU+3Nwq35XPzyrwRZBbvT0Csxgn+fN4xhXWP9HZo6hCPtYuH5juZipQLUzsJKHv12E5+vyq77LC7cxq1T+nDWiC58vDSLZ37cQnGVnTOHd+H2E/rSOTbMjxEHhiPuYiEi0Z6f8binYXsfeA/I8XymlGoFFm8twOCeaxMgq7iKM5/7hX99vYFqu7Ymt3W+zMUiEi8i34vIFs/PuEPFISJZIvJsc66plGpY1/hwnrlwOJ9efywju7n/KhZV2rlv9jqmP/cLR/eIZ+4dx3P1cT34YvVujv/3XB79ZiNl1XY/Rx6YDtXF4j3Pz2XA0nqvvdtKqVbgthP68sofRpEQEQxAtd1FqM3Kiz9ncOrT81m+o8jPEapm8mUuvgt3S3Rv4AfP9sH8A5jXzOsppQ5jeGocn1w7hucvHkFqfDgAeWU1dIoJIybMxt0n9+fHP03g5EEdeX7uViY8Npe3FmVid+qQBG9qVBeLtkQf66n2Kr+8hrv+t5o5G35fdyci2EplrZOrjuvBbVP7EGrTmS5ai6Z0sfBBDJuAifUWbZprjOnbwHEjgTuAb4BRxpgbD3duzcVKNV+Nw8lbC7cTGmzl0mO67fO5IGzaU8Y/v9rAoowCenSI4M8n9+OEAck648URaPIsFiJypojE1NuOFZEzvByfUqqZOkSG8PIfRvHwWYMJD3YXwhW1TqLDbLw0L4NTntLW5LbMR7k42Riz2/N+D5DcwHUtwOPA7c28llLqCIUEWbnquB77FMcAz/20lVOfnk+1w8l7Vx3Na5eNwmIRrnl7Gee9uIgVmuubrTGzWNxnjKkbMmmMKQbu81lESqkmExEuGJ3KVzePZ3hqLADnjUrh3SuPpsbh4twXFvHUnC049FFcW9SkXCwic0RkbQOv6fWPM+7HiQ09Urwe+MoYk9WIa10tIktFZGleXt5hb0gpdeQy8sr579x0tuSWc+4Li/jLp2sYkRrHN7eM56EzB7Etv5Izn1/IDe8tZ8d+C0ypxmvMQiGrjTFD9vtsjTFmsE8jayJ9rKeUm8Pp4v3fdnDeUV0JCbJSWm3nb5+t5bOV2YzsFseT5w0jNSHc32G2W01YKMTrubgxXSxE5F1gPO45lyOBYOB5Y8yh+itrLlbKR2odLl6en8HTP2yhxuFu7OgQGcy9pw1g2tDOVNQ6eWleBi/Py8DhcvGHMWncNKkXseHBfo68dWrOSnqvAcXAc56PbgDijTGXeTlGr9CkrNTBFVfWcvozC8gvr8FqsXD/tIGcNaKL9lfzgyYUyF7PxSLyGFBgjHlYRO7ynO/OQxx/GdoHWalWYXtBBX/9bC3zt+TXfTa+dwcePGMQ3RIiyCmt5snvN/PR0p3Ehgdz18n9OGdEChaL5vv6mrOS3k1ALfCh51WDOzErpdoQYwx/+mgVO4uqqLK7iAoN4k8fr+Km91dQUqnTBLUBvsjFDwNTRWQLMMWzjYiMEpFXmnlupZQPdUuI4K0/juapC4bRIdLdOjx/Sz4nPDmP937dQXJ0KA+fPYQvbx5Pjw4R3PnJas59cREbdpf6OfK2QWexUKodmbk8i3s+XUuVZ37klLgwdhdXkRwdyuPnDWNMzwQ/R9h+tIZZLHxJc7FSLaek0s7D32zk/d92APDG5UcxsW9S3X6Xy/C/5Vn86+uNlFTZuezYNG6d0puoUJu/Qm41jriLhYj8xxhzq4h8TgMDN4wx07wfZvNpUlbq0NJzy7jh3RVsyikDICbMRqjNQm5ZDddO6Mn/TelDcFBjHi6p5mhsgay5WCnVWEszC/lpUy53nNhvn8+rap2EBVsprqzlsW838d5vO0iMDOHe0wZw2pBO7bqbXVMK5BHGmOUiMqGh/caYn70co1doUlbq8Kpqnfx99jo+XLoTABEY0CmaddmlDOoSzX/OH06vpEg/RxnYjqBA1lyslGqyhen53PzBSh4+azBTBrhncly5s5i/fraGtbtKGderA/dPH0jPxPaZ85vSB/kxz89TjDE/7//yTZhKqZYQFmzlkXOG8Pi5QwmzWTEG1mWXMr5XB3YVVXHaM/N5Z/F2Aq0LVhuluVgp1SQ1Dif3fLaW/PIarnxrKX/+ZDXlNQ6GdY1l1g3jeGD6QFZlFXPSf+bx7283UVXr9HfIrcahCuROInIsME1EhovIiPqvlgpQKeU7Z49M4fObxtInOZIwm5X7pg3gm1uP46i0eP762VquemspBeU1/g6zvdNcrJRqkmCrhZsm9SIqJAiAD5fu5OSn5vHbtkKsFuEPY9L48U8TOX1IZ579KZ2pT/7MnPU5fo66dThUF4tzgCuAccASoH4HFWOMmeT78I6cPtZT6shV1TpZl13CqLR4wD2g47VftvHI1xuJCQ/m3+cO2WfAh2q+I+hioblYKdUsu4qruOPjVSzcWgC4u9VdfVwPbpvah5Ag98qrizMKuPeztWzJLWdK/2TuO30AXeMDf678pnSx2G2MORl4zBgzyRhzfL1Xq0zISqmmCQu21hXHABaLEBUaRL9O0USHWrns9SXc//k6qu36+M0PNBcrpZqlS2wY71xxNH87bQAhQRaMgRd/zmD6s7+wPts97dsxPRL46pbx3H1yP35Jz2fqkz/z/Nz0drvy6qEK5Kc9P89ogTiUUq3I5pwy/jZrHWt2lVBc5WBq/yRe/yWTM577hc2e2S9Ui9FcrJRqNotF+OO47nx58zgGd4kBYOOeMv63/PdV5G1WC9dM6MkPf5rAxD5JPPrNJs58fiEb97S/uZMP1cViMbAamI57Uvp9GGNu9m1oTaOP9ZRqvspaB/fNWsfHy9yJUwROH9KJBVvyqah1cs+p/bn0mG7temqg5jqCLhaai5VSXmV3unjmhy18tz6Hz24YS6jN2uBxX63Zzb2fraW02s4tk3tzzYSe2KyBNQ1oU7pYnAb8CFQDyxp4KaUCVHhwEI+dO5R/15vlYvaq3fROjmJEahx/m7WOK9/UAXwtRHOxUsqrbFYLt53Ql9k3jtunOC6urOWTZVl1MxidMrgT3/3fcZw4sCP//m4zZz7/S7tpTT7sSnoiMtQYs6qF4mk2bbVQyrs255Rx7TvLyMirAKBjdCgnD+rIu7/uIDrMxuPnDWVCn0Q/R9n2HOlKepqLlVK+dtP7K/h8VTaT+yXxr7MHkxQVWrfv6zW7+aunNfnmSb25dmJgtCY3pQV5ryoR+UFE1npONERE/ur1CJVSrVKf5Chm3ziO04d2BmBPaTVvL97O4+cNJS7cxozXfuOBz9dT49ABfD6muVgp5TP55TUs2VYIwA8bcznxyXl8s3Z33f6TB3fi+9smcNKgTjz+vbs1ecPuwG1NbkyB/DJwN2AHMMasBi7wZVBKqdYlMiSIpy8Yxj+mD8RmFaYOSOa0IZ34/KZx/GFMN177ZRtnPLeQLTqAz5c0FyulfKZDZAjf3noc04e5G0OKKu1c+85y/vLpmroZjOIjgnnmwuG8cMkI9pRUM+3ZBTz9wxbsATjTRWMK5HBjzG/7febwRTBKqdZLRLh0TBozrxvLI+cMQUQItVl5YPogXv7DSHJKqzntmQW8rSvw+YrmYqWUT8WE23jqguE8e9FwYsJsALz36w7Oen4hmfkVdcedNKgT3/2fuzX5ie83c8Zzgdea3JgCOV9EegIG6iat333oryilAtXglBiiQ2112zUOJy/P28Z1E3tyVFoc9362lqveWqYD+LxPc7FSqkWcNqQzX98ynpHd4gBYv7uU055ZwI8bf19lr35rck5p4LUmN6ZAvgF4EegnIruAW4FrfRmUUqrteOjLDfyWWchDX24gOTqUP5/Ul3mb8zjpqfnM25zn7/ACieZipVSL6RwbxgdXH8M1x/UAoNbpIjk69IDjArU1+bCzWNQdKBIBWIwxrbqToY6cVqplLc4o4Kb3V5BX5m4x7tcxiv+b2pvHvt1Mem45Fx+dyt2n9CcyJMjPkbYuRzqLRb3vaS5WSrWoOetzKKmyc/bIlEMe981a90wXJVV2bj+hL1eN74HF0rrny2/yLBYiEiMiTwA/Az+JyOMiEuOLIJVSbc8xPRL48uZxHNPDvVT1xj1l3PbhKq6f2JMrx3Xnvd92cOKT8/glPd/PkbZtmouVUv4yZUDyAcXxl6t3883aPft8trc1eXK/ZP719UZmvP4buaXVLRmq1zSmi8VrQBlwnudVCrzuy6CUUm1LUlQo71xxNNdP7AlARa2T2z5ahcNleP+qowkJsnDxK7/yl0/XUF6j48qaSHOxUqpVSM8t545PVnHtO8t44PP11Dp+73ccHxHMfy8ZwT/PHMySzEJOemr+Pn2X24rGFMg9jTH3GWMyPK/7gR6+Dkwp1bYEWS3ceVI/Xp0xqm708xsLM3llfiZf3TKeq8Z3531Pa/KCLdqa3ARez8UiEi8i34vIFs/PuIMclyoi34nIBhFZLyJpzbmuUqptyy6uwurpOvHaL9s478VFZBVV1u0XES46OpXPbxxHUlQIf3xjKX+fva5uuri2oLELhYzbuyEiY4Eq34WklGrLJvdP5oubxjEkJQYRuGJcd0JtVu45dQCfXDuGkCALl7z6K3fPXENZtd3f4bYlvsjFdwE/GGN6Az94thvyFvCYMaY/MBrIbeZ1lVJt2HF9EvnypvEM7uLu5bVyZzGnPr2AOev3bSnunRzFZzeM5bJj03hjYSZnPr+Q9NxWPXyiTmOWmh4GvAns7etWBFzWnCVPReRc4O9Af2C0MabBkRwichLwFGAFXjHGPHy4c+vAEKVah1qHi0UZBQcsQ11SWctzc7fyyvwMOsWE8fDZgxnfu/0tVd2EpaaH4f1cvAmYaIzZLSKdgLnGmL77HTMAeMkYM67BkxyE5mKlAl+Nw8k/v9zAm4u213129XE9uOPEvgcsQ/3jxhxu/3g1lbUO7jt9IBcc1RUR/w/gO1guPpJZLKIBjDHNnrtDRPoDLtxTFt3eUIEsIlZgMzAVyAKWABcaY9Yf6tyalJVqveZuyuUvM9fwxPnDsFkt3PHJKjLyKrhwdFf+ckp/ourNrxzomjGLhTdzcbExJtbzXoCivdv1jjkDuBKoBboDc4C7jDEHPCsVkauBqwFSU1NHbt++ff9DlFIB6MvVu/nz/1bXjTEZ2S2OV/4wiriI4H2Oyy2t5raPVrEgPZ+TB3Xk4bOGEBPu37zfnFks/ikiscaYUmNMqYjEiciDzQnGGLPBGLPpMIeNBtI9fe1qgQ+A6c25rlLKf4ora7n949Vkl1Rz4cuLmbspl1k3jOWaCT34cMlOTnxyHj/rvMkH1dRcLCJzRGRtA6998qlxt5Y01GISBIwHbgeOwt3v+bKGrmWMeckYM8oYMyoxsf09FVCqvTp1SCc+v2kcAzpFAxAebCU67MDCNyk6lLf+OJq7T+7H9+tzOPmpefy2rbClw22UxvRBPtkYU7x3wxhTBJzis4h+1wXYWW87y/PZAUTkahFZKiJL8/L0H1ilWqOYMBu3TOlNSJAFY+CZH9O59NXfuHh0N/533bGEBVuZ8dpv/PmT1ZRq3+SGNCkXG2OmGGMGNfCaBeR4ulbg+dlQ3+IsYKWnscIBfAaM8ML9KKUCSPcOEcy8/lhumtSLZy8cUTeIb38Wi3DNhJ7MvP5YgoMsXPDSIp74bhOOVrYCX2MKZKuIhOzdEJEwIOQQx+89rlGtFt6grRZKtX4iwqXHdOPzm8bRr2MU4B7YccrT88ksqODLm8dz7YSefLzM3Zr8+apsGtsFrJ1oUi4+jNnADM/7GcCsBo5ZAsSKyN7kOgk4ZFc3pVT7FGqz8qcT+u7TbcLhdPHGL9sOWIJ6SEosX9w8njOHp/D0j+mc/9JidhZW7n9Kv2lMgfwu8IOIXCEiVwDf4x4ockiHabVojF1A13rbKZ7PlFJtWJ96o5oBymsc/N+Hq7jrf6u54fiezLx+LDFhNm56fwVnPPcLv2YU+Dfg1qNJufgwHgamisgWYIpnGxEZJSKvAHj6Gt/uufYaQICXm3ldpVQ78a+vN/L3z9dz8Su/kl9es8++yJAgHj9vKE9dMIzNe8o45en5fL1mt58i3VejBul5ZpOY4tn83hjzrVcuLjKXgw/SC8I9SG8y7sJ4CXCRMWbdoc6pg/SUajt+2pjL7R+voqCiFoA7T+rL9RN74XQZZi7P4vHvNrOntJop/ZO56+S+9EqK8nPE3tOUQXq+ysW+oLlYKVVtd3Lei4tYnVUCQJfYMF68dCSDuhy4COjOwkpufH8Fq3YWc9X47tx5Ur8DZsLwhWbPYuHlYM4EngESgWLc/dtOFJHOuKdzO8Vz3CnAf3BP8/aaMeahw51bk7JSbUtuWTW3f7yakspaPrnu2H0SYlWtk9d+2cZ/526lyu7k/KO6cuuU3iRFhfoxYu9o6iwWbYXmYqUUuIvku2eu4dMV7k4AoTYLj54zlGlDOx9wbK3DxUNfrufNRdsZnRbPsxcNJynat/m+VRXIvqRJWam2x+UylFbbiQ3/fUqgHQWVlFTZGZwSQ0F5Dc/8mM47i7cTHGThmuN6ctVx3QkPDvJj1M2jBbJSqr0wxvDqgm3886sNuDxl53UTe3L7CX0bHMz32Ypd3D1zDZGhQTx74XCO7pHgs9iaPM2bUkr5msUi+xTHxhjunbWWac8t4K+frSHIYuHv0wby/W0TmNAnkSfnbGbCY3N5/7cdrW7ks1JKqX2JCFeO78Ebl48mOtTdsPHfuVu54s0llFQdOGvRGcO78NkNY4kKCeKiV37l5XkZLT5oWwtkpVSrk55bzsKt+RgD7yzewaTH5/Lx0p10iw/nv5eM5H/XjaFrXBh3z1zDyU/N54cNOTrjhVJKtXLH9Ulk9o3j6J0UCcDcTXks317U4LF9O0Yx68axnDAgmYe+2sB17yynrAWnAG3MUtNrOHDy+BJgKfCgMaZVDTHXx3pKBYb03DL+NmsdC7f+nmJGdYvjgemDGNA5GmMM367bwyPfbGJbfgXH9IjnL6f0Z0hKrP+CPgJNWGpac7FSKiC4Zy9aycDO0dw6pc8hjzXG8Mr8bTz8zUZS48N54ZKR9O3ovQHbTe6DLCKPAk7gPc9HFwDhwB5gnDHmdK9F6QWalJUKHMYYPl+9mwe/WE9umXt6IKtF+MOYbtw2tQ9RoTbsThfv/7aD/8zZQmFFLcf3TeTskSlM6Z9MqM3q5zs4uCYUyJqLlVIBw+XpjGyp1wd5T0k1ydEhiBzYL/nXjAJufH8F5dUO/nXWYM4Y3uDacUesOQXycmPMiIY+E5E1xpjBXonQSzQpKxV4yqrtPDVnC68vzMTpSarnj+rKI+cM2eeYV+Zv48MlO9lTWk10aBCnD+3M2SNTGN41tsGE609NKJA1FyulAlZuWTXTnvmFkWlxPH7u0AYbOHJLq7nxvRX8llnIH8Z0455T+xMS1LyGkOYM0rOKyOh6JzoK97RrAI5mRaWUUo0QFWrjr6cN4MubxzE6LZ4wm5Wbp/Q+4Jj/m9qHX+6axNtXjGZSvyT+tzyLs55fyOTHf+a5n9LJLq7y0x14heZipVTAeujLDewprebL1bu54KXF5JXVHHBMUnQo7151NFcf14O3Fm3n/BcX+yyvN6YF+SjgNSAS9wpKpcCVwDrgVGPMRz6JrIm01UKpwGaMYUtuOX2Sf++DVutw8eqCbfxhTDciQn6f+q2s2s7Xa/bwyfIsfttWiAgc2zOBs0ekcNKgjn6dJq4JLciai5VSAauoopbr3l3G4oxCAFLiwnj9sqPondxwf+Ov1+zmjk9WExxk4ekLhjOud4cmXbfZ8yCLSAyAMaakSRG0EE3KSrU//527lUe+2UinmFD+fFI/Th3S6YAVmHYUVDJzRRb/W57FzsIqIoKtnDy4E2ePSOHo7vH79INrCU2dB1lzsVIqUNU6XNw9cw3/W54FQFRIEM9fMoLxvRMbPH5rXjnXvbOMLbnl3DalDzcc3+uIc3lz+iCHAGcDaUBdc4sx5oEjiqCFaFJWqn0xxnDJq7/yS/rvkzgkRYVw8dHduPDorgesuudyGZZkFvK/5Vl8tWYP5TUOUuLCOHFgR3omRtK9QwTdO0QcdKCItzShBVlzsVIq4BljeH7uVh77dhPgHpj94BmDuHB0aoPHV9Y6uHvmGuxOF89dNOKI83ZzCuRvcE8ltAz3COq9N/D4EUXQQjQpK9X+uFyGj5ft5JFvNlFYUVv3uc0qnDK4E38Yk8aI1AMH6lXVOvl23R7+tzyLX7cVUuv4fdGR8GAraQkRdQVzmudnjw4RxEUE01xNKJA1Fyul2o3PV2Xzp49X1eXle07pz1XH9WjwWGMMtU5XkwbsNadAXmuMGXTEV/QTTcpKtV/VdiezV2Xz5sJM1mWX7rPv3SuPZmyvg/dRc7kM2SVVZOZXsi2/nIz8CjLzK9iWX8HOoqq62TMAYsJsdYVz9w4RnH9UV5KjQw967oY0oUDWXKyUaleWbS/i6reW4jSGz64fS1qHCK9f42C5uDEjVBaKyGBjzBqvR6WUUl4UarNy3qiunDsyheU7inhz4Xa+WrObjjGhHNMjYZ9jc8uq9+l+YbEIKXHhpMSFHzDYw+50sbOwkm2egnlbfgWZBRX8mlHApyt2ceqQTiT7/vY0Fyul2pWR3eL47Iax5JbV+KQ4PpTGFMjjgMtEZBtQg3v0tDHGDDn015RSyj9EhJHd4hnZLZ6/ntqfnUWVWOsN3FidVcwZz/3C1AHJzDg2jTE9Eg7Zb81mtdAjMZIeiZEH7KuqdRIS1JgZM5tNc7FSqt3pGh9O1/jwfT6bvSqb3kmR9O8U7bPrNqZAPtlnV1dKKR9Lig4lab/uD28u3I7LwLfrcvh2XQ69kyK5YHQqI1Jj6dcxmrDgxvdjO5Jjm0lzsVKq3fslPZ/bPlxJqM3KsxcNZ2LfJJ9c56AFsohEG2NKgTKfXFkppfzk8rFpWC0wa2U2NQ4XW3LL+ccX6wGwCPRMjGTGsWlcckw3P0equVgpperbklOGw2Uor3HwxzeWcP+0gVw6Js3r1zlUC/J7wGm4R0wb3I/z9jJAw0MJlVKqlRvUJYZHzxnK3Sf358OlO3l70XZ2eVZjchnYkltOtd25z3feXryd+ZvzGNg5hoGdoxnYJZqO0aEtsYS15mKllPK4bGx3OsaEcuuHK6m2u7h31jq25Vdyz6n99+lK11wHLZCNMad5fnb32tWUUqoViYsI5toJPbl6fA92FFayLruUddklrMsuZXhq3D7HLtiSx3frc/hufU7dZ/ERwVxzXA+umdDTZzH6MheLSDzwIe65lTOB84wxRQ0c9yhwKmABvgduMY1dZUoppbzspEGd+DAmjCvfWkpeWQ2v/bINlzH8fdpAr13jsCNLRGSsiER43l8iIk+ISMOzNSulVBtksQhpHSI4dUgn7jypH2/+cTQju+1bIHeMDqVrfNg+nxVW1BJkbZEBer7KxXcBPxhjegM/eLb3v+6xwFhgCDAIOAqY0MzrKqVUswztGstnN4ylb3IUceE2Ljs2zavnb8wgvf8CQ0VkKPAn4BXgbTRBKqXakfunD+J+oKTKznpPS/P67FKOSos77He9xBe5eDow0fP+TWAu8Of9jjFAKBCMu3uHDchBKaX8rEtsGJ9cN4YdhZVenwauMQWywxhjRGQ68Kwx5lURucKrUSilVBsRE2ZjTM8ExvRMOPzB3uWLXJxsjNnteb8HDpzO2RizSER+AnbjLpCfNcZsaOhkInI1cDVAaqo+aFRK+V5UqI2BnWO8ft7GFMhlInI3cAlwnIhYcLcgKKWUajlNysUiMgfo2MCue+pveIrvA/oVi0gvoD+Q4vnoexEZb4yZv/+xxpiXgJfAvZLe4WJTSqnWqjEF8vnARcAVxpg9nj5vj/k2LKWUUvtpUi42xkw52D4RyRGRTsaY3SLSCcht4LAzgcXGmHLPd74GxgAHFMhKKRUoDju6xBizxxjzxN7WAmPMDmPMW74PTSml1F4+ysWzgRme9zOAWQ0cswOYICJBImLD3ee5wS4WSikVKORgM/WISBnuwRkH7ML9NM536/s1g4jkAdub8NUOQL6Xw2kNAvW+IHDvTe+rbWnqfXUzxiQe7iBf5mIRSQA+AlJx583zjDGFIjIKuNYYc6WIWIHngeM8cXxjjLmtEefWXLwvva+2JVDvCwL33ryaiw9aILc3IrLUGDPK33F4W6DeFwTuvel9tS2Bel/+Eqi/nnpfbUug3hcE7r15+75aZgJPpZRSSiml2ggtkJVSSimllKpHC+TfveTvAHwkUO8LAvfe9L7alkC9L38J1F9Pva+2JVDvCwL33rx6X9oHWSmllFJKqXq0BVkppZRSSql6tEBWSimllFKqnnZXIIvISSKySUTSReSuBvaHiMiHnv2/ikiaH8I8Yo24r9tEZL2IrBaRH0Skmz/iPFKHu696x50tIsYzf2ub0Jh7E5HzPL9v60TkvZaOsSka8WcxVUR+EpEVnj+Pp/gjziMlIq+JSK6IrD3IfhGRpz33vVpERrR0jG1FoOZh0Fzc1nKx5mHNwwdljGk3L8AKbAV6AMHAKmDAfsdcD7zgeX8B8KG/4/bSfR0PhHveXxco9+U5LgqYBywGRvk7bi/+nvUGVgBxnu0kf8ftpft6CbjO834AkOnvuBt5b8cBI4C1B9l/CvA17gU8jgF+9XfMrfEVqHn4CO5Nc3EreWke1jx8qFd7a0EeDaQbYzKMMbXAB8D0/Y6ZDrzpef8JMFlEpAVjbIrD3pcx5idjTKVnczGQ0sIxNkVjfr8A/gE8AlS3ZHDN1Jh7uwp4zhhTBGCMyW3hGJuiMfdlgL2rv8UA2S0YX5MZY+YBhYc4ZDrwlnFbDMSKSKeWia5NCdQ8DJqL21ou1jzspnm4Ae2tQO4C7Ky3neX5rMFjjDEOoARIaJHomq4x91XfFbj/h9XaHfa+PI9PuhpjvmzJwLygMb9nfYA+IvKLiCwWkZNaLLqma8x9/R24RESygK+Am1omNJ870r+H7VWg5mHQXNzWcrHmYc3DBxXklXBUmyEilwCjgAn+jqW5RMQCPAFc5udQfCUI9+O9ibhbmeaJyGBjTLE/g/KCC4E3jDGPi8gY4G0RGWSMcfk7MKVaiubiNkPzcDvV3lqQdwFd622neD5r8BgRCcL96KGgRaJrusbcFyIyBbgHmGaMqWmh2JrjcPcVBQwC5opIJu7+RrPbyOCQxvyeZQGzjTF2Y8w2YDPuRN2aNea+rgA+AjDGLAJCgQ4tEp1vNervoQrYPAyai9taLtY8jObhg2lvBfISoLeIdBeRYNyDP2bvd8xsYIbn/TnAj8bT87sVO+x9ichw4EXcCbkt9KGCw9yXMabEGNPBGJNmjEnD3Z9vmjFmqX/CPSKN+bP4Ge5WC0SkA+5HfRktGGNTNOa+dgCTAUSkP+7EnNeiUfrGbOAPnlHUxwAlxpjd/g6qFQrUPAyai9taLtY8jObhg/LnaER/vHCPcNyMe4TnPZ7PHsD9lxncf0g+BtKB34Ae/o7ZS/c1B8gBVnpes/0dszfua79j59IGRk4fwe+Z4H5suR5YA1zg75i9dF8DgF9wj6xeCZzg75gbeV/vA7sBO+5WpSuAa4Fr6/1+Pee57zVt6c9iK/wz0ibzcCPvTXNxK3ppHtY8fLCXLjWtlFJKKaVUPe2ti4VSSimllFKHpAWyUkoppZRS9WiBrJRSSimlVD1aICullFJKKVWPFshKKaWUUkrVowWyUkoppZRS9WiBrFQjiUiKiJy/32cviMjYhvYppZTyPs3FqiVogaxU400GRuz32TG4V41qaJ9SSinv01ysfE4XClHtgojMAG4GbECpMWbcEX5/HDALKAbKgLOAEOB+4On99xljWvtSpEop1eI0F6u2QgtkFfBEJAr4FRhmjKkVkVhjTHG9/fOBqAa+ersxZk69477xfLbWs30bUGyMeW3/fUoppfaluVi1JVogq4AnIuHAOuAL4E1jzNImnmcb0NsY4/BsfwtcbozJ3n+fUkqpfWkuVm1JkL8DUMrXjDGVIjIIOB14SUReMcY8v3d/Y1otRKQDUFIvIYcDsZ6EvM8+z/6/A3FAgTHmAV/dm1JKtRWai1VbogWyCngi0tsYswX4QEQGAKH19xtjxjfiNGlAdr3t44GfGtonIl1w/90qBsY2NW6llAokmotVW6IFsmoP7hGRMUAF7sd7VzXhHBuBDiKyFrgaOBn45CD7rgRuARKBrs2MXSmlAoXmYtVmaB9kpZpARJYDRxtj7A3s+xMQDSQAm4wxz7R0fEop1R5oLla+ogWyUkoppZRS9ehCIUoppZRSStWjBbJSSimllFL1aIGslFJKKaVUPVogK6WUUkopVY8WyEoppZRSStWjBbJSSimllFL1aIGslFJKKaVUPVogK6WUUkopVY8WyEoppZRSStWjBbJSSimllFL1aIGslFJKKaVUPVogK6WUUkopVY8WyEoppZRSStUTsAWyiLwmIrkistZL50sVke9EZIOIrBeRNG+cVymlApXmYaVUWxWwBTLwBnCSF8/3FvCYMaY/MBrI9eK5lVIqEL2B5mGlVBsUsAWyMWYeUFj/MxHpKSLfiMgyEZkvIv0acy4RGQAEGWO+95y73BhT6f2olVIqcGgeVkq1VQFbIB/ES8BNxpiRwO3A8438Xh+gWERmisgKEXlMRKw+i1IppQKX5mGlVKsX5O8AWoqIRALHAh+LyN6PQzz7zgIeaOBru4wxJ+L+dRoPDAd2AB8ClwGv+jZqpZQKHJqHlVJtRbspkHG3lhcbY4btv8MYMxOYeYjvZgErjTEZACLyGXAMmpiVUupIaB5WSrUJ7aaLhTGmFNgmIucCiNvQRn59CRArIome7UnAeh+EqZRSAUvzsFKqrQjYAllE3gcWAX1FJEtErgAuBq4QkVXAOmB6Y85ljHHi7iv3g4isAQR42TeRK6VUYNA8rJRqq8QY4+8YlFJKKaWUajUCtgVZKaWUUkqppgi4QXodOnQwaWlp/g5DKaUOadmyZfnGmMTDH9k2aS5WSrUFB8vFAVcgp6WlsXTpUn+HoZRShyQi2/0dgy9pLlZKtQUHy8VeKZBFJAW4APcclZ2BKmAt8CXwtTHG5Y3rKKVUe6Q5VimlWlaz+yCLyOvAa0At8AhwIXA9MAc4CVggIsc18xonicgmEUkXkbuaG7NSSrUVLZFjlVJK7csbLciPG2PWNvD5WmCmiAQDqU09uWcp0eeAqbgnil8iIrONMV6b/7LG4aSgvJbOsWHeOqVSSnmLT3MsuBshgKcAK/CKMebh/faHAG8BI4EC4HxjTGZzrtmQnNJqYsNthATpCtJKKf/yRoFsP9gOERlrjPkFSG/G+UcD6fVWT/oA97yZXiuQz39xEbuKq/jH9EGcNKiTt06rlGokp8vgdBmCg35/qFVYUcvOwkrsThe1Dhe1np92p6Ha7qTa7iQ4yMLk/snYnS7sThd5ZTV8uGSn+ztOFw6nwe40ODz7HS6Dw2W49JhuhNosODzXffHnDMqq7biMOxaX2fsCl2d7Ur8keiZG4jQGl8vw3foc0nPLOaZHAk+cN5Sk6FBf/fL4NMc2shHiCqDIGNNLRC7A3ZJ9flOv2ZB1u0o4/dkFjOvVgTcuH43FIof/klJK+Yg3CuQNIvI2cIMxpny/fc8AI5p5/i7AznrbWcDR9Q8QkauBqwFSU4+sIcXpMuwoqKSw0s59s9cxpX8yQVad/U6pg8kvr6Gs2kF5tZ2iSjsFFTUUV9gprKylpMpOWbWDQV2iiY8IpqrWRY3DyY8bc9maW+4pZA12l7t4dboMTmMwBpKiQkiJC6PG4aLG4aKwopbCilqf3MOy7UVH/J3PVmbvsy2AARZnFFBYWevLAtnXObYxjRDTgb973n8CPCsiYrw4kf6G3aW4DMzbks/89Hwm9AnYCT6UapOqap2UVdup3ZvHPY0WDpehxu6kyu4kyGphUOdo7J78XlhZy/zNeZ7GDRd2l4tax95GC1PXcDFtaGdEfm8s+WDJDqrtLpyeRg2ny90w4TS//7txXO8OdIoJw2UMTpf735CzR6Z47X69USCvw120LheRPxhjFtfb1yJNAMaYl4CXAEaNGnVECdtqEa6b2IuHvtpATqm79eniY7r5JE6lWpPKGgfrskvJKqoku6SanNJq8strKCyvpdhT6FbWOhjUJYZqu5OKGncC3F5Qgeswf8s+XbHriONxugwRIUHER1gIDrKwu6T6sAVydGgQt03tgy3Igs1qobzazj+/2ojVIlhEsFqEIIv7p9UiBFndP/8xfRDJ0aF1+/711UZKqu0E7T3eKgSJxf3T89m5o7oyuns8VhEsFmHWyl2syy5lSv9k+nWMPuL7PQK+zrGHbYSof4wxxiEiJUACkF//oOY0VpwwqCNBM9fgcBle+nmrFshKHYbLZah2ONmwu5SiCjvFVe5Gir0NFeXVDsprHFTUOOjfOZrYsGDP0zgnizMK2F1cjd3lLlb3FqF7Xy5jSIgIJiEypK6ILa6wU1J90AdazdKUfzO25OzbXjCsa2yrK5Dtxph7RORb4F0ReRN40DOq2hutC7uArvW2Uzyfec2lY7rx35+3UlhRyyPfbOTskSmE2rQPnGp7jDFkFVWxdlcJm/aUkZFfwa6iSnLLaqi0O+kUE0pJlZ3iSncCbYw9JdV0iAyhc6yN8OCguhbkQ7l+Yk/OHdWVMJuVUJuFtxdt55etBYTZLITarJ6XhZCg398P6BTNCQM71p0ju7iKDbtLsVndBbPNaiHE89O9LYTarHSIDNnn2n8c1+OIf91enjHqiL8zfVgXpg/rcsTfawJf51ivaU5jRXSojVOHdGLWymwWZhSQW1ZNUpTPWuWV8htjDDUOFyWVtZTVOCipclBabWd3cRXLthdRVGmnpNJOaY2dimoHVXYn1XZ3C6zLGKJCg6i2u5+0Nda8Lb//XzbIIhhjcB7mb6gtyELX+HCCrRasFmF7QQWrskoO+Z0OkcFcP7EXNqtgtVjIL6vhiTmbD/kdEXj5D6OIjwjG6mnYuO6dZVTWOusaN/Y2dljqNXrcMrk3Y3p2cO/3fM+bvDYPsjFmnoiMBP4LzBeRi7106iVAbxHpjrswvgC4yEvnBiDUZuXOE/ty18w1lFY7eHl+BjdN6u3NSyjlFWXVdlbuLPb0zTXs9rT8btxTSnpuOfZDZDyLwJAuMfROiiImzEZEiJXnftp6wHHhwVbiI4KJjwgmLjyYv50+gJ6JkXX7v1y9m2q7k8jQICJDgogIcf90v7cSERx0QP/Rmyb35qbJR/Z3qnNsmA6crceHObYxjRB7j8kSkSAgBvdgPa+acWwas1ZmYwy8s3gHt03t4+1LKOUzDqeLgopacktr2F5YwaY9ZWwvqCS7uIq88hpKKu1U1jqoPVxlehhT+yeTEBVCmM1KmM3Kcz+lU3qIRgurRfjnmYOZPqwzNk+x++9vN7Fwaz4hQVZCbO7Gh5Agq/unp/FiVLc4Th78+7isTXvKWLq9EJvV3UDh/mkh2PPTZhUiQoIY1CWm7ju1DhdnjuhSd929T+hsFss+Re/+5v95UrN+jbzBGwVy3Z0ZY4qBC0VkBrAAaPa/bp7HeTcC3+IeYf2aMWZdc8+7v3NGpvDsj+lkFVfx3I/pXHZsGlGhNm9fRqlGqbY72ZxTxsKt+SzJLGJLTjk5pdUHtBjYrEJydCgRwdaDFsc2q9ApJozOsaG8MuOouv9lG2Po1zG6rhCOjwgmNtx22Kcnpw7RgawtzKc5lsY1QswGZgCLgHOAH73Z/3iv4V1jSUsIJ7OgkrcXZXLr5N46WE+1GjUOJ9sLKtm8p4xl24tIzy0nt6yagopaahwuKmoch+1+Vl9UaBAPnTmY6NAgosNsOJyG815cBLhbVaNDbcSF24gJD3b/DLMRGeLuVpZQ78lZz8RIDBARbCU8JGjfn8FB+wx+3uv2E/sCfY/o/vt2jKJvx6gj+k6wpxW6LfJGgfzy/h8YY94UkfnAnV44P8aYr4CvvHGugwmyWvjLqf25/t3lVDtcPPHdZu6bNtCXl1QKu9PF9oIKNu0pZ1NOGZv3lLFiZxE5pTWH/F5KXBif3TCW+PBgLBYhu7iKv3y6hi6xYXSJC6NLbBgpcWF0iQ0nMSqkwUdPIsLpQzv76taU9/g0xx6sEUJEHgCWGmNmA68Cb4tIOlCIu4j2OhHh8rHduW/2Oooq7SxIz+c47YusWlhJpZ30vDK25lawNa+cFTvcxXBh5cH733aJDeXyY9NIjA4lKSqEnYWVPPjlhrr9QRZ3Y0bn2FCSo0OJjwgmMTKEafVysNNl+On2icSF24gKtTW6y8CUAclNv1l1UOKDRgC/GjVqlGnq8qbGGE5+aj4b95QRZBF+/cvkff6XplRzFVfWMn9zPrNW7WJVVgkF5TV1LQ4WgbSECCJDg1i9Xz8vq0XonRTJgM7R9O8YTc+kCCb106TYlonIMmPMkXd+biOamotLquyMevB77E7D6O7xfHTNGB9EpxRU1jpYvr2YTTllbNpTxvrsEjILKiivcdYdExxkITIk6JADhkVgXK8OvH3F72NbC8pr+HVbIZ1iQukcG0aHyIYbKpT/HSwXN7sFWUTKaHigiADGGOPT4d3eJCLcc2p/Ln31Nxwuw68ZhZyij5NVM9Q6XCzbXsScDXv4fn0OOwqrDjgmLSGcZy8aQa+kSEJtVjLyyvnz/1YzoFM0AzpHM7BzTN0+1f4EUo5tjJgwG6cN6cSnK7JZkllISZWdmDDt7qaar6rWybLtRSzOKGDeljzW7ippsEvEiNRYbpzUi56JkaTEhfPF6mxu+WAlMWE2+nWMon+naPp2jKJnYmRdi7Btv+lhEyJDOGWw1g9tWbMLZGNMXYcUEVlhjBne3HP607heHXh1xihu/3gVby3O5OTBHRHR//WpxjHGsCW3nPlb8lmwJY9f0guodR58pHFSVAgDO8fsM6ihR2IkH197bEuEq9qAQMuxjTHj2O5kFlSyckcxFTUOLZBVk1TbnSz3FMSLMgpYubP4kAOZ9wqyWPZ5QjepXxKL7p5Ex+hQrQfaEa/NYuHR5vtriAiT+ydz65Q+3Dd7HT9uzGVyf32UrQ4ur6yGX9Lzmbspj/lbcimocPdT694hggl9O/D9+ty6YyOCrRzXJ5FJ/ZKY0CfRl4tLqMDU5nNsYwzrGsszFw5n/KM/8d6vOzwDipQ6tGq7kxU7ilmUUcDijAJWbC/C7jJYBAanxPLHcd0pqqjlo6VZdd+JCg1ieGoc/TtG0a9TFP06Ru8za4/7GJsO2m+HvF0gB4yLjk7ljYWZ/POrDYxOiydKWzBUPdV2J1+s3s3rv2xjXXZp3edhwVb+deYgxvdJJCUu3D3FzfO/MLp7PJP7JXNU9zhCgrSrhFKHkxIXzuR+SXywZAc3T+7d4Eh8pSpqHHy+KpvPVu5i2faiuhbikCALdpdhVLc4Xr/8qLoCd+OeUjbsLmNCn0Qm9k1kWNdYXT1XNcgbfZDPqrcZu982xpiZzb2GP9isFs4d2YVHv93MBS8v5subx/s7JNUK7Cqu4t3F23nn1+2UVh0472RVrZNRafGkxLmntQkOsuifHdUsgZpjG+PSMWnM2fAbz/y4hT+doK3I6ndrskp4f8kOPlueRaXdRXiwlfpzDuydEnNTThlh9cZv9OsYzec3jWvpcFUb5I0W5NPrvf95v20DtNnknZ5bAcC67FIWZRQwpkeCnyNS/mCMYVFGAW/+ksl363MafMYdG27j+L5JTOqXRCdd3EJ5V8Dm2MMpKKvBIvCsZ256nVWofSurtjN7VTbv/7aDtbtKCbZKXetvZe3vM09YBIanxjGhTyIT+iRi0X7Dqgm8MUjvcm8E0hr939Q+zF6VjcNluPOTVcy/0/8ru6iWU1Hj4NMVu3hrUSabc8qJCQsixGah2u5umbAInDK4E38Yk8bIbnE6hY/yiUDOsYfTNSG8bpaB5+du5d7TBvg3INXijDGsyirh/V93MHtVNlV2J/06RvHA9IGM7h7PqU8vANyNFFP7JzOxbxLjenUgJly7Rarm8UYXixQgzRizwLN9G7C3h/t7xpj05l7DX7rGh3PJMd14Y2EmOwur+GJVNqfpwgoBLzO/grcWbeejpTsor3EysHM0j54zhGlDO/PSvAyen5vOeaO6cuW4HqQmtM0VglTbEcg59nBGdYujR4cIMvIr+GjpTv56an+dRaCdKKmyM2vlLt77dQcb95QREmQhKSqEx84dytHd4+v+HFw1vgep8eGcObwLYcE6vkN5jze6WDwGvFtv+xrgJSAcuB+42AvX8Jsbju/Fh0t2UGV38bfZ6zh1SCdN0AHI5TL8vCWPNxdmMndTHhZxT/VzyuCOPHfRiLrf88vGpnHx0an6qFe1pIDOsYciIlx0dCoPfrmBsmqHzioU4IwxLN9RxHu/7uTLNdlU2110iQ2lY3Qoe0qr2VlUxZbcco6p193xrpP7+TFiFci8MXSzrzHmi3rblcaYx40x/wBSvXB+v0qMCuGKcT0AKKyo5fVfMv0bkPK6eZvzmPLEz1z++hJ+zSgkyCK4DNQ6Xfy0MY/iesuLRofatDhWLS2gc+zhnD0ihSBP96Un52z2czTKVzbnlHHBS4s5+7+L+GpNNr2SIokJs7GruJo9pdWAe2aK4kOsaKeUN3mjQN5/ItfJ9d538ML5/e7qCT3qJqr/93ebcDa09I5qc4ora7n941X84bXfyCmrxiJQZXfi8Pz+DuwczSPnDCEqVGdDVH4V8Dn2UOIigjnVs6Lp2l2lFJTX+Dki5U0VNQ7+9fUGTnlqPut3lzKsaywOl2HtrlJKqtyNE8nRIdxxYl8W3z2Zmyb39nPEqr3wxr/8ZSLSxxizGcAYUwggIv2AMi+c3++iQ21cP7En//p6I5W1Th75eiN/ObW/v8NSzfD1mt389bO1FFbWYrMKFTW/j4Ae37sD107oybE9E7Q7jWoNAj7HHs6Fo1OZtTIbgCe+38xDZw72c0SquYwxfLsuhwc+X0d2STXnj+pKTLiNl+Zl1B0zJCWGK8Z15+RBnXQebNXivFEg3wd8ISIPAcs9n40E/gLc4oXztwozjk3jzYWZFFfZ+WlTLned3A+LzlrQ5uSWVvO3Wev4Zt0eBnSOIizYSlZRFQCnD+3MtRN6MLBzzGHOolSLahc59lCO7h5PWkI4mQWVfLZiFw+eMUj/89qG7Sio5L7Za/lpUx79Okbx9IXDGZUWT63DxcKt+aTGh/PHsd0Z2S1Of5+V33hjmrdvPBPX3wnc7Pl4LXCWMWZtc8/fWoTarPzwp4l8t34Pt3ywkk9X7OLskSn+Dks1kjGGj5dl8eAX66l2uPjzSf24anx3Nuwu49p3lvHPswYzoU+iv8NU6gDtJcceiohw8dHdeGl+BvnlNWQVV9I1LsLfYakjVONw8uLPGTz3UzpWgQl9EvnXmYPoXG9hpU+vH4tNV7ZTrYAYE1j9aUeNGmWWLl3qs/O7XIYznv+FvLIafrp9IqE2nVamtdtZWMndM9ewID2f7h0ieHXGKHokRtbtr3W49PGdanEisswYM8rfcfiKt3Ox02XILq7iuMd+4qbje3GbrqzXpszfksffZq1jW34F43p3YE9JNem55Uzpn8zLfxipLcXKbw6Wi5tdFYjIyyLSYIcwEYkQkT+KSMBMQ2SxCH85pT+7S6p54Iv1/g5HHYLTZXhtwTZOeHIeSzML6RAZzLb8CtZll+5znBbHqjVrbzn2YKwWoWt8OMf3TeK933ZS61lKWLVue0qqueG95Vz66m+4XC6mD+vMoq0FpOeWA7CruKpuMJ5SrYk3KoPngHtFZIOIfCwiz4vIayIyH1gIRAGfeOE6rUZxpZ3gIAvv/bqDrbntYoxMm7Mlp4xzX1jIA1+sp2NMCHaXIb/cPT3QrJW7/BydUkek3eXYQ7l0TDfyy2v4cnW2v0NRh+BwunhlfgaTH5/L9+tzuPjoVEJsVmatzMbpMgRZhFun9GbWDWOJDQ/2d7hKHcAbfZBXAueJSCQwCugEVAEbjDGbmnv+1ijEZqlrvbjp/ZV8dct4P0ek9qp1uHjx560882M6ITYLaQnhbMuvBCDIIvzf1D5cO6Gnn6NUqvHaY449lBCrhTCblb98upYzhnfRR/Ot0IodRdw9cw0b95RxXO8OdEsI573fdtZNkdq/UzT/PneIDohWrZrXJng1xpQDc711vtZsYp9ERqfF81tmIet3l7I+u4QB+hfd77bklHHT+yvYuKeMoSkxbMktJ7PAXRz3TIzgqQuGM6iL/j6ptqk95dhDWbOrhCq7e1rGmSuyOHtEVz9HpOqbtXIXt3+8ig6RIbxwyUjmbsrl7cU7AHcjxY2TenHD8b10IJ5q9fRPaBOICHee9PsAkUe/aXeNOK3OmqwSzntxEXll1RyVFseqrBIqa93/iM4Y040vbhqvxbFSAeDskb+vrPfsj1v9HI3ayxjDS/O2cssHKxmRGsc3tx7HSYM6ct3EnoTaLAzoFM3sG8dx65Q+WhyrNkGXCGuiUWnxDO8ay4qdxSzZXujvcNq1pZmFXP76EqLDbLx75dF8t34PSzKLSIoK4bFzh+r0bUoFkA6RIZw4qCNfrt7NtvwKsooqSfFME6b8w+UyPPjlBl77ZRsnDkzmqQuG183w1C0hgvevOoZBXWK0MFZtik/+tIqIRUSifXHu1mRy/yQAKmqcpOtgPb9YsCWfS1/9jQ5RIXx87RjSOkRw5bge/N+UPnx763FaHKuA1F5y7MFcNDq17v1DX27wYySq2u7kpg9W8Nov2zhrRBfW7CrhsxX7DoQenhqnxbFqc7z2J1ZE3hORaBGJwD2J/XoRucNb52+Nju+XVPf+tQWZ/guknZqzPoc/vrmEDpHBvDJjJJ1jwwD3VHy3TOlNXISOjFaBoz3m2IMZ0yOBbgnuVuMfNuTicumUb/5QUmVnxmu/8eXq3Vw1vjvzt+STXVzN3Z+uYe2uEn+Hp1SzePO/dAOMMaXAGcDXQHfgUi+ev9UZ0CmapKgQAH7amOvnaNqXz1dlc+07y+gSG0pOaQ23fLCS4spaf4ellC+1uxx7MBaLcMFR7lbkWqeLtxZv93NE7c/ukirOe2ERy3cUcceJffjf8l3kldUAcPOk3gzs3G4fcKgA4c0C2SYiNtzJe7YxJuBn/hYRpgxIJi7cRmm1HZcrsFYlbK0+WrqTWz5YQa/ESLKLq6l1uti4u4w12mKhAlu7y7GHck69wXovz9/m52jal805ZZz1/EJ2FVfx11MH8OLPGRRWuBso/nxSP/5vah+dfk+1ed4skF8EMoEIYJ6IdAMCvmJ56IxB/H3aQCpqnazYWezvcALeG79s485PVjOwcwyZhRXUOFxYLcIzFw5nfG/tb6wCWrvMsQeTGBXCCQOTEYHsoip2F1f5O6R24deMAs7570IcLsO9p/Xn0W82UlrtAODvpw/guok6z7wKDN4skD83xnQxxpxijDHADuCPXjx/qyQiTOyThNUizNmQ4+9wAtpzP6Xz98/Xc1RaHFvzyqm2u7AI/Of8YZw8uJO/w1PK19pljj2UP5/Uj5nXHQsCHyzZ6e9wAt5Xa3bXDYq+++R+3Dd7HRW1TkTg4bMGc9nY7v4OUSmv8WaB/L/6G54E/oEXz99qxYTbOLp7PN+v1wLZF4wxPPbtRh77dhPje3dgfXYplbVOLAJPnj+M04d29neISrWEdptjD6ZbQgTDU+MY0yOBz3XpaZ9645dt3PDecganxPC/a49l/pZ8qu3uJ3hPnjeMC+rNLKJUIGj2PMgi0g8YCMSIyFn1dkUDoc0892PA6UAtsBW43BhT3Jxz+kJ5jYPk6BAWbi3gp425+8xuoZrH5TI88MV63liYyQkDkli4tbCuxeKxc4YyfVgXf4eolE/5MscGipMGdeRvs9aRnltGr6Qof4cTUFwuwyPfbuTFnzOYOiCZZy50z3H8yNlDqLY7mTa0sz7BUwHJGy3IfYHTgFjcxeze1wjgqmae+3tgkDFmCLAZuLuZ5/OJvLIaPl3hbr14e5GOpvYWp8tw18zVvLEwkyvGdecPY9JweKZzeuSsIZw9MsXPESrVInyZYwPC0BT3KplP/bDFz5EEllqHi9s+WsmLP2dw8dGp/PfiEXULgAQHWXj+4hFaHKuA1ewWZGPMLGCWiIwxxizyQkz1z/1dvc3FwDnePL+3dO8QQfcOEWzLr2BJpq6q5w12p4vbPlrF56uyuXlyb/5vSm9EhNcvG832ggrOO6qrv0NUqkX4MscGijs+WQ2450RW3lFtd3LVW0uZvyWf20/oQ1x4MLd/vIrHzxuG1TN7iM5UoQKZN5eaTheRvwBp9c9rjPHWIJI/Ah966Vxed3zfJLblb6OsxkFmfgVpHSL8HVKbVW13cuN7K5izIYc/n9SX6yb2qts3pmcCY3om+DE6pfzG1zm2zZrUL5nNOeVU1jpZl13CwM4x/g6pTTPGcMcnq5m/JZ9Hzx5CWY2Dez5bC0BseDB/nzbQzxEq5XveHKQ3C4gB5gBf1nsdkojMEZG1Dbym1zvmHsABvHuQc1wtIktFZGleXp5XbuZITarX7/iVBRl+iSEQuFyGG99bzpwNOdx0fE8+WZalKzIp5dakHNseTOn/e/59eZ7m3+Z67qd0Pl+VzR0n9iWvvIZ/fLEegJgwG2cO13Efqn3wZgtyuDHmz0f6JWPMlEPtF5HLcPe/m+wZtd3QOV4CXgIYNWqUX1brOKp7HOHBViprnfy4Idc9lb86Ys/9lM6cDbncMLEn7y/JIr+8hoteXswPf5pIomfVQqXaqSbl2PZgeGocseE2iivtzN+S7+9w2rRv1u7m399tZtrQTlTWOnjup60AxEcE884VRzNAV8hT7YQ3W5C/EJFTvHg+ROQk4E5gmjGm0pvn9raQICvjenUAILukmsoah58janvmb8njiTmbmdo/mY+XuYtjgOuP76XFsVI+yLGBwmoRju/rbkUuqKglt7TazxG1TeuyS/i/D1cxtGss3TtE1hXHSVEhfHTNMVocq3bFmwXyLbgTeLWIlIpImYiUNvOczwJRwPcislJEXmh+mL5Tv5vFu7/pbBZHYldxFTe/v4IeCRGs2VVCbpm7OL79hD5cO0FXZlIKH+RYEYkXke9FZIvnZ9xBjnN6cvBKEZndnGv6yuR63Sxe0aWnj1huWTVXvbmUmDAblx/bjad/dM8I0iU2jI+uGaPT56l2x2sFsjEmyhhjMcaEGmOiPdvN+u+mMaaXMaarMWaY53Wtt+L1hfrzH3+2Qietb6wah5Pr311OrcNFbLiNPZ7Wn1un9ObGSb39HJ1SrYMvcixwF/CDMaY38INnuyFV9fLwtGZe0yfG904kyDO7wtdrd/s5mral2u7kmreXUVhZy2PnDOG+2esxBsJsVl6//CgddK7aJa8VyOJ2iYjc69nuKiKjvXX+tiA5OpTLx6YxqHM0u0uqcbn80h26zXnwiw2s2lnMCQOTWbajGICzhnfhlslaHCu1l49y7HTgTc/7N2nDoydiwmwclRYPQFZRlXZzayRjDH/5dA0rdhTz+LnDGNe7AzdN6oXVIjxyzhD6JGvLsWqfvNnF4nlgDHCRZ7sceM6L528T7jt9IFeM705hRS2rsor9HU6r9+mKLN5evJ0zhnXm81XuVp+0hHAeOGOQzrGp1L58kWOTjTF7m1v3AMkHOS7UM1PQYhE542An8/eMQtOGdeaYHgkY4OfN/pnRqK15cV4GM5fv4tYpvTl1SCdEhCvH9+CnP01k2tDO/g5PKb/xZoF8tDHmBqAawBhTBAR78fxtxvF9k7BahO/X5/g7lFZt455S7p65htHd47lmQg96JkZiswrPXDiCyBBvTrCiVEBoUo5tzFSanvMZ4GCPvboZY0bhLs7/IyINDgwwxrxkjBlljBmVmJh4JPfmFReOTuXtK0YTE2bj+w2afw9nzvocHvlmI6cO6cTNk3rtsy81IdxPUSnVOnizQLaLiBVPghWRRMDlxfO3GbHhwRyVFsf36/f4O5RWq6zaznXvLCcq1MazFw2nf6cYZt04ljcuH83gFJ3kX6kGNCnHGmOmGGMGNfCaBeSISCfP+ToBDS5FZ4zZ5fmZAcwFhnvljnzAZrUwuV8SP2zIxe5sl/8ENcrGPaXc8sEKBnaOZsaYNM57cTFZRa16siilWpQ3C+SngU+BJBF5CFgA/NOL528z5m3OI7eshi25FaTnlvk7nFbHGMMdH69mR2Elz100gqSoUABCbVbGeqbKU0odwBc5djYww/N+Bu7FSPYhInEiEuJ53wEYC6xv5nV96oSBHSmpsrNkW6G/Q2mVCspruPLNpUSEBPHYOUP4vw9XsnR7EWc8t5AK7butFODdWSzexT1n8b+A3cAZxpiPvXX+tqSospaMvAoAXv8l07/BtEIvz8/gm3V7uGpcdzLzKzjI+i9KqXp8lGMfBqaKyBZgimcbERklIq94jukPLBWRVcBPwMPGmFZbIFfWOti4pxQBnp+b7u9wWp1ah4vr3llOblkN/71kJP/8aiO7iqsAuG5iTyK0e5tSgBdW0hORaGNMqYjE43489369ffHGmHb3X/gJfRKxCLgM/LAhl4fO9HdErcfijAIe+WYTJwxIZu7mPF6Yl8EvW/N58rxhWCw6KE+p/fkyxxpjCoDJDXy+FLjS834hMLip12hpwVYLry3YhgGWbi/CGKMDfj2MMfz1szX8llnIUxcM46eNuXUrD542pBN/HJvm3wCVakW80YL8nufnMmBpvdfe7XYnNjyYkd3c8+3vKa2mqKLWzxG1Drml1dz43gq6xYcTHxHMxj3u7icpcWFaHCt1cJpjj0CQ1cJEz6p61XYXy7YX+Tmi1uO1XzL5aGkWNx7fi4jgIJ79yd3C3ispkkfOHqL/kVCqnmYXyMaY0zw/uxtjetR7dTfG9Gh+iG1T/UVDPlq604+RtA52p4sb3ltORY2DS4/pxgdL3L8mI1JjuXVKHz9Hp1TrpTn2yNVfVe+tRZn+C6QV+WlTLg99uZ4TByZz1ogu/N9HKwGIDAnihUtGatcKpfbjzYVCzhSRmHrbsYeaLzPQHd+33qp6K3f5MZLW4ZGvN7Iks4g/n9SX//zgXsI0KjSIpy4Yjs3qzbGiSgUmzbGNN7GPe6pNgJ835/s5Gv9Lzy3j5vdW0LdjNA+dMZjr311OWbV7MN5j5wyhV1KknyNUqvXxZmVynzGmZO+GMaYYuM+L529T+nWMolOMe3aGTXvKqLY7/RyR/3y1ZjevLNjGpcek8tWaPZRU2QF45OwhdI3XuTaVaiTNsY0UE25jlKebW0mVvV3PJlRcWcsVby4lxGbhlRmjKKioJb+8BoBrjuvByYM7+TlCpVonbxbIDZ2r3T6zEZG6bhYuA3M3NTi9aMDbmlfOHR+vYljXWGLCgvkt0z2e6MLRqZyiiVmpI6E59gjU72bx/m87/BiJ/xhjuPOT1WQXV/HipSPpEhtG345RfHnzeK4c1507Tuzr7xCVarW8WSAvFZEnRKSn5/UE7kEk7daket0sPlme5cdI/KOixsG1by8jxGbltql96qZc6pMcyd9OG+Dn6JRqczTHHoFJ/X5fNfvrNe1z0aaPlu7ku/U53HFiX0Z2i6/7PDk6lL+eNoAg7d6m1EF582/HTUAt8KHnVQPc4MXztznH9krguYtGMKV/Eqt3luBytZ/5fo0x/OXTNaTnlfP0BcMZ37sD950+kOjQIJ65cARhwVZ/h6hUW6M59gj0TIwgzbNccnZJNXtKqv0cUcvKzK/g/s/XM6ZHAmcM68Iv6doXW6kj4bXHc8aYCuAub50vEIQHB3HqkE7UOJzM2ZDLml0lDO0a6++wWsTnq3cza2U2t03tw7je7tXxZhybxlkjuhAVavNzdEq1PZpjj4yIcOdJ/SiqqOWez9by/fo9XDomzd9htQi708WtH64kyCI8cs5gbvlgJYu3FfCnqX244fheOp2bUo3gjYVC/mOMuVVEPgcOaCI1xkxr7jXauuP7ukdUf78+p10UyPnlNdw3ay1DU2K4bsK+s1BpcazUkdEc23SnDO6EMYZXF2zj23U57aZAfvbHdFbuLOaZC4fz3q87WZRRAEB6brmfI1Oq7fBGC/Jbnp//9sK5AlJcRDBDusTw+apsbm8HgyLum7WOihon107syYUv/8q/zx1KWocIf4elVFulObYZRIQTBnbklfkZlFTaiQkP7P+kL9texLM/pXPm8C4kR4dy8wcrAPfMSv88a7C2HivVSN7og/yY5+cpxpif93954fxt3o3vLWfFzmK2F1ayo6DS3+H41NdrdvPlmt1cO6EHj327iaXbi5j27AJKKu3+Dk2ptkpzbDOdODAZh8vw/YbAHqxXXuPgto9W0jE6lD+f3Jc7PlmFMRASZOG5i0cQHqyTnijVWN4okDuJyLHANBEZLiIj6r+8cP42r2N0aN372auy/RiJbxVW1HLvrLUM6hJNUZWdjLwKAK4a3yPgW22U8iHNsc2wdlcJt3+8CoCPlgT2bEL/+Hw9OworefL8YbwwN4PtngaZO07sS89EXQxEqSPhjf9O/g24F0gBHgfqP78xwCQvXKNNm9QviVcWbAPgs5VZ3Dipl58j8o37P19HSZWde07tz20fuf9BGp0Wz/XHB+b9KtVCNMc2Q+fYMLblu/+zvnxHEdV2J6G2wJtF55u1e/hw6U6un9gTlzG8sTATgKPS4rh8bHf/BqdUG+SNAnm3MeZkEfmbMeYBL5wv4IxKiycyJIjyGgdbcysorqwlNjzY32F51Xfr9jBrZTY3TerFiz9nYAwEWy386+zBdUu+KqWaRHNsM8RHBDMiNY6l24twuAzzt+QzdUDy4b/YhuSUVnP3zNUM6hLNVeN7MO25BQCE2iw8ds5QzcFKNYE3ulg87fl5hhfOFZCCgyyM90x1ZoAfNuT4NyAvK650T6PUr2MUIUEWNu5xL+t6w/G99LGeUs2nObaZJtVbVe+TZTv9GIn3uVyG2z9eRZXdyX/OH06IzcLEPu77/fNJ/XSAtFJN5I0WZLuIvAR0EZGn999pjLnZC9do847vm8TXa90DRD5ZtouzR3b1c0Te88AX6ymsqOVfZw7mxveXA+5J+q+d2OMw31RKNYLm2Gaa0j+ZR7/ZBMC8zXk4nK6AWUXurUWZzN+Szz/OGESvJHeDxD/OGMRZI7owNCXWv8Ep1YZ5o0A+DZgCnIgue3pQE/sl1r1fmllIjcNJSFDb7wf348YcZi7fxY3H9+J/y7OotrsA+NdZQwLi/pRqBTTHNlPvpEhS4sLIKqqiyu7it8xCju3Zwd9hNdvmnDL+9fVGju+byCVHp+6zb3hqnJ+iUiowNLtANsbkAx+IyAZjzCovxBSQkqJCGdwlhjW7SrC7DIu2FjCxb9Lhv9iKlVbb+cvMtfRJjuSmyb0oqbRjESE6LIjR3eP9HZ5SAUFzbPOJCFP6J9cNXPt8VXabL5BrHE5u/WAlkSFBPHrOUGYu38XUgclE62JMSnmFN58xVYnIDyKyFkBEhojIX714/jbv+H5JRIRYsYh7UFtb99AXG8gtq+axc4YSEmQlKTqU5y4ewT+mD/J3aEoFIs2xzTCp3+8NEt+s3YMxByxK2KY88f1m1u8u5ZGzh7Bhdyl/+ngVJz45j+U7ivwdmlIBwZsF8svA3YAdwBizGrjAi+dv864a350V957A1AHJ/Lgxr00n6Hmb8/hw6U6uPq7nActnB0rfPqVaGc2xzXB0j3gigq1EhFgpqrSzdlepv0NqskVbC3hpXgYXHZ3K6B7x/Pl/qwEorbKTGBni5+iUCgzerGTCjTG/7feZw4vnb/OiQm0EB1mYOqAje0qrWZ1V4u+QmqS8xsHdM9fQMzGCMT3jeeL7zVTbnf4OS6lApzm2GUKCrHx+0zjm3n48FoFv2+hTvJJKO3/6aCVpCRH89dT+PPjFenaXVANwz6kD6Bof7ucIlQoM3iyQ80WkJ+6ZzBCRc4DdXjx/wJjaP5mIYCsvzcvwdyhN8q+vNpBdUsWDZwzm/tnrefqHLZzzwkJcrrbbIq5UG6A5tpl6JEaSGBXC6O7xfLe+bRbI985aS05ZDf85fxi/ZhTy0VL36oDje3fgwtGBMzuSUv7mzQL5BuBFoJ+I7AJuBa714vkDgjGGvPJqhqfG8uWa3azLblutyAvT83n31x1cMbY7i7bmk+FZoWr60C5YdDJ6pXxJc6yXnDiwI5tzyutW2GsrZq3cxexV2dw6uTdpCRHcNdPdtSIqJIhHzh6CiOZgpbzFawWyMSbDGDMFSAT6GWPGGWO2e+PcIvInETEi0raHHQNlNQ5O/M98FqQXEGwVnvhus79DarSKGgd/nrma7h0imD6sC//9eSsAAztHc/nYNP8Gp1SA82WObU9cLkPXuDCgbXWzyCqq5K+frWVUtziuP74X93+xjpzSGgDuPW0AnWPD/ByhUoHFawWyiMSIyBPAz8BPIvK4iMR44bxdgROAHc09V2sQHWpjVDf3/JS2IAs/bMxtM6OOH/t2E1lFVTx89mDu/3wddqfBIvDwWUN0YJ5SPuarHNvevLIggyvfck8nPXvVLj9H0zi1Dhe3frASY+DJ84fx48ZcZi53xz6xbyLnjkrxc4RKBR5vVjWvAWXAeZ5XKfC6F877JHAnnn53geCcke5kVlHjJCLEyuPfbfJzRIf3a0YBbyzMZMaYNLbmVrB0u7uov3xsdwan6L/RSrUAX+XYdmVcr98XbVqfXUZuabUfo2mcf361gaXbi/jnWYPpGh9O59hQ+nWMIio0iH+dNVi7VijlA94skHsaY+7zPAbMMMbcDzRrrWERmQ7sCrTJ8c8Y3oUunsdhNouFX9ILWLg1389RHVxVrZM7/7ea1PhwLh+bxr++3gBAl9gwbpvax8/RKdVueD3Htkf9O0XROSa0bvu79Tl+jObwZi7P4o2FmVw5rjvThnYGYGDnGGbfOI73rzqGTjHatUIpX/D2QiHj9m6IyFig6nBfEpE5IrK2gdd04C/A3xpxjqtFZKmILM3Ly2vWTbQEm9XCtRN7AlBcZScmzMa/v93UaudF/vd3m9heUMkjZw/h0W83UVbtnlnqgekDiQjxxmrlSqlGaFKOVfsSESb1/33RkC/XZPsxmkNbu6uEu2eu4Zge8dx1cr999gUHWRjURZ/eKeUr3iyQrwOeE5FMEckEnqURI6yNMVOMMYP2fwEZQHdgled8KcByEenYwDleMsaMMsaMSkxM3H93q3TuyBSSotwTutuswvIdxczd1PqK+8UZBbz2yzYuOSaVMT0TOGdkCl1iwzh1cCcm90/2d3hKtSdNyrHqQPVz16KthSzY0vqe4BVX1nLdu8uICw/m2YtGUFrtYNbKXa22IUWpQOPNWSxWGmOGAkOAIcaY4c3pGmGMWWOMSTLGpBlj0oAsYIQxpu0MOz6EUJuVq49zPx3NL68lISKYf3+3qVXNJZxTWs2N762ge0IEd53cH4Dj+ybx/W3H8eAZupy0Ui3J2zm2PRvTI4EwmxWAqNAgbvtoJYUVtX6O6ndOl+HmD1aSU1LDfy8ZQYfIEO6dtZZbPljJ1W8v04WZlGoB3pzF4p8iEmuMKTXGlIpInIg86K3zB6KLjk4lPiIYgF5JkazLLuWbVjLtUK3DxXXvLKOy1sGLl44ksl5XivDgIOI8cSulWobmWO8JtVkZ19s9a6hFhKKKWu78ZHWraZ39z5zNzNucx/3TBzI8NY6Pluzky9XuNWEECAnSWYOU8jVv/i072RhTvHfDGFMEnOKtk3taklvfc7BmCA8O4v5pA3n/qmN498qj6ZUUyRPfb8bZClqRH/xyPct3FPPYOUOpdbpYmB5Qv/RKtUU+zbHtzeR+7n7IJVV2LhnTjTkbcnjnV//PJvrduj0882M6FxzVlQtHp7Iuu4R7Z60FoENkCA+dqbNWKNUSvFkgW0UkZO+GiIQBIYc4XgGnD+3MmJ4JBFkt3Da1D+m55cxa6d+5OWcuz+KtRdu5+rgenDgwmT//bzUXvfIrd89c02paWJRqhzTHetGkfkmE2izccWJf7jqpHxP6JPLgF+vZklPmt5i25pVz20erGJISw9+nDaSkys517yynxuHCIvDMhcNJjNLfcqVagjenIHgX+EFE9s7LeTnwphfPH/BOGtiRgZ2j+c+cLZw+tDM2Pyy+sXfU9JgeCdx5Yl/eWJjJ2l2lACREBGvLhWo2u91OVlYW1dWtf/5ZbwgNDSUlJQWbzdbcU2mO9aKk6FDm3zmpruD897lDOfmpedz0/go+u2EsoZ4+yi2losbBtW8vIzjIwn8vGUlIkIWb3l/BjsJKAO44sR9jeia0aEwqsGkuPjSvFcjGmEdEZBUwxfPRP4wx33rr/IHOGMOC9Hw6xYSyLjuXj5dmcdHRqS0aw95R0/ERwTxz0XDW7y7l0W/ci5h07xDBjZN6tWg8KjBlZWURFRVFWlpawP+HyxhDQUEBWVlZdO/evbnn8nqOFZFzgb8D/YHRxpilBznuJOApwAq8Yox5uDnXbS3qt8YmRoXw2DlDufyNJTzyzUbuO31gi8VhjOHOT1azNa+cd644mi6xYbzw81a+98zRPKV/MtdO0CmvlXdpLj40r05ia4z5BvjGm+dsL177JZN/fLEegN5JkTzz4xbOGtGlxVoxnC7DLZ5R0x9ecww2i4Xr311OrdOF1SI8ds6QFm9RUYGpurq6XSRkcM+5m5CQgLfmZ/dBjl0LnAW8eLADRMQKPAdMxT2b0BIRmW2MWe/FOPxud0kVq7NKmDGmG6//kslxfRI5vm/S4b/oBS/Pz+DLNbv5yyn9OLZXB9Jzy3jsW3fjRGp8OI+fN7Rd/H1RLUtz8aHpUNhWYtrQznUjk0NtFnaXVPNuCw4YeWrOZn7enMd90wYwNCWW2z5aSVaRew2Cu0/ux6i0+BaLRQW+9pCQ92rN92qM2WCMOdxa96OBdM/qfbXAB8B030fXchZnFHDCE/N4cs5m+naMol/HKO74eBV5ZTU+v/bC9Hwe/nojpw7uxFXj3a3EPRMjeWD6QKJCg3j+4hHEhDW7e45SDWrN+cnbjvRetUBuJRKjQrhwtLtLxZpdpQzuEs1/56ZTUePw+bXnrM/h6R/TOXdkCheNTuXFeRn8sDEXgBMHJnPFuOY9GlZKtWldgJ31trM8nwWM/h2jCQt2PyF7+OuN3Hf6AMqqHdz+8Sqfzk2/q7iKG99fQc/ESB49Z0jdP+AiwsVHd2PBnyfpanlK+YkWyK3INRN6YLO6E2RIkJX88lreWJjp02tm5lfwfx+tZFCXaP5xxiDWZZfy7+/cDUrdEsJ57Fx9tKdUWyYic0RkbQMvr7cCi8jVIrJURJZ6q1tJS4gJt/HQmYMBKK128OqCTO45pR8/b87zWQ6utju57p1l2B0uXrx0JBEhQTicrn3j0pZjpfzGmwuFrBGR1fu95ovIkyKiQ28boVNMGOeM7ArA0u1FHJUWbOcZlwAAXtFJREFUx4s/b6Wkyu6T61XWOrjm7WVYLcJ/Lx5JqM1K/07R3DSpF2E2K89fPILoUE3QKjC98MILXHfddXXbf/3rX7n00ku9dry3NTXHGmOmGGMGNfCa1chL7wK61ttO8XzW0LVeMsaMMsaMSkxMbPzNtQJTByT/f3v3HR9llTVw/Hdm0jskEEpC771bwAI27B1wbajYld111dV12+u61V11baus3bVjQ+wdRZDeQaWT0EN6T+a8f8wkBEggyTzJZCbn+/mMzDPP89y514TDmTu3cO6wTgB8tnYXidERnNy/PX/7cB1rd+Q5/n5/eHc1KzJy+dekofRoF8cnq3dy1iPfsnFPgePvZUxL1lJjsZM9yB8C7wOX+h7vAYuAncBzDr5PSLvxhJ64Xft7kfNKKnj6m42Ov4+qctebK/lxdz4PTxlOetsYANwu4Rcn92HOneMZ2Mm+2jOh64orrmD27Nnk5OQwe/Zs3n//fWbMmOHY9U0gUDF2IdBbRLqLSAQwBZjVhO8XMH84eyDJvl1C//jean49sR+JMeFMf2UpxWXObe/8yoKtvLZoG7dO6MWpAzuwJauQX72xnHU787n0qe8prbCtpE3r0VJjsZMJ8smqereqrvQ97gFOUNW/A90cfJ+Q1iU5hnOHensx5m7Yy/G9U3j6201kFTg7WeTZuZuZtXw7t5/al+P7tDtkAxBbjN6EupiYGC655BLuuecepk+fzsyZM4mOjnbs+ibgeIwVkfNFJAM4BnhfRD72vd5JRD4AUNUK4BbgY2At8LqqrnagPS1O29gI7j13EADZReU89NlPPDBpKD/tLuDPHzizaMfSrdn84d3VnNCnHb84uQ8l5ZXc8L8l5Jd455v84eyBRIbZikGm9WipsdjJZd7cIjJGVRcAiMhovGtmAjT9TLMQctP4nry9LJNwt4ujeybz7fq9PPH1Bu45c4Aj5S/YtI+/fLCWUwakcuMJPfli3S5mzNnIw1OG0z4hypH3MKY+/u+91azZ7uzX1wM6JdR7Ddurr76a/v378+6779KzZ0/Hr3eY4zFWVd8G3q7l9e3U2MZaVT8APmjMewSbMwZ3YOLADny0eifvr9zBWUM6ct3xPZgxZyMn9GnPKQNSG1XuT7vyeWNxBq8t3EZqYiT/njIMt0u4+61V1UM4rju+BxMHdXCyOcbUi8XiQzmZIE8DnhGROECAPGCaiMQCf3XwfUJer/bx3H/RUI7rnUJqQhTrdxfwwrwtTDuuB6l+JrC78kq46aUl1Wtrbs8t5pevLSe3uJxJT87js9tOICwAO/gZEwj33nsv7dq1o6Jif35ZWFjITTfdREREBCeeeCKXXnppnddv3LiRP//5z+Tm5jJz5symrq7F2GYgItx73kDmb8piUKdEBnVO5KT+qcxdv5c7Zy7no18cX+84nFtcznvLt/PG4gyWb8shzCVM6NeeOyf2IykmgtcXbuP1RRkAjOnWljtO69uUTTOmxaotFh8uvh58/TvvvMP7779PXl4e11xzDaeeeqr/lVJVRx9AIpDodLn1fYwcOVJDzZa9hdrz7vf1t2+v9Kuc0vJKveDxudr/dx/qDzvztKS8Qs955Bvt+uvZ2vXXs/W95ZkO1diYuq1ZsybQVVBV1X/+8596/vnn65dffqnHH3989esvvPCCzpo1S1VVJ02adMTrVVUvvPDCw75XbW0GFmkQxtj6PoI9Fm/eW6Aej6f6eP3ufO332w/1Z/+dp5WVnjrvq6z06Jwfd+utLy/RPvd8oF1/PVtPe/Br/e+cDbonv6T6ulWZOdXnR/7pU92ZW9yk7THmYC09Flc5OL4e7vp9+/bp1VdfXed7NSQWO9aDLCKRwIV4x8KFVS0Npqr3OvUerVWX5BgmjU7n1YVbue74HtUT6hrqz++vYfGWbB792XD6pMbzh3dXsTwjF4Arj+nKWUM6OVltY1qsL774gmeffZZ58+YRHx9PXl4ey5YtY9iwYWRkZDB4sHfJL7fbfcTrm4vF2ObVNTn2gOOe7eL4w9kDuOutlfz3m41cf8KBX+tuySpk5uIM3lycwfbcEhKjw5k8Op2LR6YzqHPCActl5haXc+P/llBa4cEl8Mglw/3+dtCYYNTQ2Hqk6++77z5uvvlmR+rm5BCLd4FcYDHQ9NsPtRIFpRW8NH8LMRFuRISHP/+J+y8eWuf1qkp2UTnbc4rZmVvCjrwSduYWszmriPdX7GDauO6cNaQT7y3fzvPztgAwND2J35zZv7maZExAbd26lWnTpvH+++8THx8PwM9//nMeeughnnvuOdLS0sjIyGDYsGF4PJ4jXt+MLMYGSKVHeXHeZs4f3pmvftjDPz/5gWN7ptCzfSwfrNzJG4u28f2mfYjAcb3b8Zsz+3Ny/1SiwmufbLcrr4Ry35rHt5/Wl2N62kqopvVpaGw93PXPPvssd911F6effjojRoxwpH6i6swuQSKySlUHOVKYH0aNGqWLFi0KdDUcc+P/FvPhqp1Ehrm4YHgary3aylNXjqKiUtmZV8L2HG8CvCO3hJ15JezILaGs4sDF5t0uoUNCFEf3SObvFw5mc1YR5z76LYVllSRGh/P+9HGktWlcr7QxDbV27Vr692+5H8gKCwu55ZZbiIqKYty4cQeMQT5YVlYW99xzD59++inTpk3j7rvvrvW62tosIotVdVR969VSYmx9hUoszikq48pnF7J8Ww5TRqdz1+n9mPjQN1R4lOKyCgrLKumWHMPFo9K5YERnOibWbzZ9VkEpL32/lVvG98Llss2YTPNr6bG4vvEV4OGHH+b5559n9OjRDBs2jBtuuKHW6xoSi53sQf5ORAar6koHy2z1ph7bjQ9X7aS0wkN4mBAV7ubq5/b/oxPuFlITouiYGMXQtCQmDoyiQ6L3uENiNB0To0iJi6xeW7morIKbXlpMoW9NzwcnD7Xk2JgaYmNjefbZZ+t1bXJyMk888UQT16iaxdgASIwOJyHK+0/lqwu3ceaQjvx7yjBue305E/p15OJR6Yzq2uawO46WV3r4dv1e2sZEMDQ9CYDkuEimn9S7OZpgTFBqSHydPn0606dPd/T9nUyQxwFTRWQT3q//BFBVHeLge7Q6R/VIZky3tizYvI83F2cw4/KRFJVV0jExmg6JUSTHRjSo92H97gJ25pYAcPP4nkzo17gli4wxzc5ibACICH+9YDCnPTiHwrJK7npzJR//8njm3jXhsPdVVHr4ftM+3lu+nY9W7ySnqJwzB3fksUud+frXGNO0nEyQT3ewLFPDLRN6ccUzCygsq2TB5mxuO6VPo8sakpbE+9OP4+lvN/HLkxtfjjGm2VmMDZC0NjHcdUZ/fvfOKjJzivn7h+v403mHjnbxeJSFm/cxe8UOPly1g70FZQecn7thL+WVHsJtKU1jWjy/E2QRSVDVPCDfgfqYWhzXO4WhaYksz8jlubmbuPa47sRHhdf7flWloLSi+p70tjH88Zz6Ld5tjAksi7Etw6VjujB7+Xa+37SPF+dv4cwhHTm6x/7JdQs27ePWV5awK+/A+ZPhbuGEPu04a0gnTh6QasmxMUHCiR7kl4Gz8M6sVrxf+1VRoIcD79GqiQi3TOjNtS8sIq+kgr9/tI77zhtcfT4ju4jXF24jp7ic3OJycorKySkuJ6+4nJyiMvJKKvCosuHPZ9hkENMiqOphx2yGEgcmQluMbQFcLuHvFw5h4r/nUFLu4dKnvmfVH08jOsK7UkXX5Bh253uTY7dLGNsrhbOGdOS0AR1IjKl/h4Yxzclicd38TpBV9Szfn939LcvU7aR+7enXIZ51O/P53/ytByTIewvKePiL9UcsI7+0gsRoC9QmsKKiosjKyiI5OTnkA7OqkpWVRVRU49e4tRjbcnRLieX2U/ty3/trqfQoW/YV0q9DAgCpCVFcM7Y73dvFMnFgB5LjIgNcW2MOz2Lx4Tm5UchYYJmqForIZcAI4CFV3erUe7RmLpfwi5P7cMP/FtMj5cAF7JOiwxGBhKhwEqPDSYrx/ln1PCk6gsTocMKs99i0AFXrDO/ZsyfQVWkWUVFRpKWl+V2OxdiW4aqx3flo1U4WbclmdWZedYIM8NuzBgSwZsY0jMXiw3NyHeQVwFBgCPAc8BQwSVVPcOQN6ilU1t6sy7wNWeSVlHPawA7Vr3k8ikL1Um7GmJavEesgt4gYW1+hHIsLSyv4dv1ehqUn2Q54xgS55lgHuUJVVUTOBR5V1adF5BoHyzdQ645LNq7YmFbBYmwLERsZdkAnhTEm9DiZIOeLyN3AZcDxIuICbMCrMcY4w2KsMcY0EyfXm5mMd/H6a1R1J5AG3O9g+cYY05pZjDXGmGbi2BjklkJE9gBbGnFrCrDX4eq0BKHaLgjdtlm7gktj29VVVds5XZmWwmLxIaxdwSVU2wWh2zZHY7HfCbKI5ONdi/OQU3i3QU2o5VyLIyKLGjJhJliEarsgdNtm7QouTd2uUImx9WW/J8HF2hV8QrVtTrfLiXWQ452oiDHGmENZjDXGmOZne14aY4wxxhhTgyXI+80IdAWaSKi2C0K3bdau4BKq7QqUUP3/ae0KLqHaLgjdtjnarpCbpGeMMcYYY4w/rAfZGGOMMcaYGixBNsYYY4wxpoZWlyCLyEQR+UFE1ovIXbWcjxSR13znvxeRbgGoZoPVo123icgaEVkhIp+LSNdA1LOhjtSuGtddKCIqIkGzdE192iYik3w/t9Ui8nJz17Ex6vG72EVEvhSRpb7fxzMCUc+GEpFnRGS3iKyq47yIyMO+dq8QkRHNXcdgEapxGCwWB1sstjhscbhOqtpqHoAb2AD0ACKA5cCAg665CXjC93wK8Fqg6+1Qu8YDMb7nN4ZKu3zXxQNzgPnAqEDX28GfWW9gKdDGd9w+0PV2qF0zgBt9zwcAmwNd73q27XhgBLCqjvNnAB/iXZ/4aOD7QNe5JT5CNQ43oG0Wi1vIw+KwxeHDPVpbD/IYYL2qblTVMuBV4NyDrjkXeN73fCZwkohIM9axMY7YLlX9UlWLfIfz8W5T29LV5+cF8Cfg70BJc1bOT/Vp27XAY6qaDaCqu5u5jo1Rn3YpULW5RSKwvRnr12iqOgfYd5hLzgVeUK/5QJKIdGye2gWVUI3DYLE42GKxxWEvi8O1aG0JcmdgW43jDN9rtV6jqhVALpDcLLVrvPq0q6Zr8H7CaumO2C7f1yfpqvp+c1bMAfX5mfUB+ojIXBGZLyITm612jVefdv0RuExEMoAPgFubp2pNrqF/D1urUI3DYLE42GKxxWGLw3Xyeyc9E1xE5DJgFHBCoOviLxFxAQ8AUwNclaYShvfrvRPx9jLNEZHBqpoTyEo54BLgOVX9l4gcA7woIoNU1RPoihnTXCwWBw2Lw61Ua+tBzgTSaxyn+V6r9RoRCcP71UNWs9Su8erTLkTkZOAe4BxVLW2muvnjSO2KBwYBX4nIZrzjjWYFyeSQ+vzMMoBZqlquqpuAH/EG6pasPu26BngdQFXnAVFASrPUrmnV6++hCdk4DBaLgy0WWxzG4nBdWluCvBDoLSLdRSQC7+SPWQddMwu40vf8IuAL9Y38bsGO2C4RGQ48iTcgB8MYKjhCu1Q1V1VTVLWbqnbDO57vHFVdFJjqNkh9fhffwdtrgYik4P2qb2Mz1rEx6tOurcBJACLSH29g3tOstWwas4ArfLOojwZyVXVHoCvVAoVqHAaLxcEWiy0OY3G4ToGcjRiIB94Zjj/ineF5j++1e/H+ZQbvL8kbwHpgAdAj0HV2qF2fAbuAZb7HrEDX2Yl2HXTtVwTBzOkG/MwE79eWa4CVwJRA19mhdg0A5uKdWb0MODXQda5nu14BdgDleHuVrgFuAG6o8fN6zNfulcH0u9gCf0eCMg7Xs20Wi1vQw+KwxeG6HrbVtDHGGGOMMTW0tiEWxhhjjDHGHJYlyMYYY4wxxtRgCbIxxhhjjDE1WIJsjDHGGGNMDZYgG2OMMcYYU4MlyMYYY4wxxtRgCbIxxhhjjDE1WIJsTD2JSJqITD7otSdEZGxt54wxxjjPYrFpDpYgG1N/JwEjDnrtaLzbqtZ2zhhjjPMsFpsmZzvpmVZBRK4EpgPhQJ6qjmvg/eOAd4EcIB+4AIgE/g94+OBzqrrRqbobY0yosFhsgoUlyCbkiUg88D0wTFXLRCRJVXNqnP8GiK/l1ttV9bMa133ke22V7/g2IEdVnzn4nDHGmANZLDbBxBJkE/JEJAZYDcwGnlfVRY0sZxPQW1UrfMcfA1ep6vaDzxljjDmQxWITTMICXQFjmpqqFonIIOBsYIaIPKWqj1edr0+vhYikALk1AnIMkOQLyAec853/I9AGyFLVe5uqbcYYEywsFptgYgmyCXki0ltVfwJeFZEBQFTN86p6XD2K6QZsr3E8HviytnMi0hnv360cYGxj622MMaHEYrEJJpYgm9bgHhE5BijE+/XetY0oYx2QIiKrgOuA04GZdZybBvwcaAek+1l3Y4wJFRaLTdCwMcjGNIKILAGOUtXyWs79CkgAkoEfVPWR5q6fMca0BhaLTVOxBNkYY4wxxpgabKMQY4wxxhhjarAE2RhjjDHGmBosQTbGGGOMMaYGS5CNMcYYY4ypwRJkY4wxxhhjarAE2RhjjDHGmBosQTbGGGOMMaYGS5CNMcYYY4ypwRJkY4wxxhhjarAE2RhjjDHGmBosQTbGGGOMMaYGS5CNMcYYY4ypwRJkY4wxxhhjagjZBFlEnhGR3SKyyqHyKkVkme8xy4kyjTEmlDVBHO4iIp+IyFoRWSMi3Zwo1xhjDiaqGug6NAkROR4oAF5Q1UEOlFegqnH+18wYY1qHJojDXwF/VtVPRSQO8Khqkb/lGmPMwUK2B1lV5wD7ar4mIj1F5CMRWSwi34hIvwBVzxhjQp6TcVhEBgBhqvqpr+wCS46NMU0lZBPkOswAblXVkcDtwOMNuDdKRBaJyHwROa9JameMMaGvsXG4D5AjIm+JyFIRuV9E3E1WS2NMqxYW6Ao0F9/XcccCb4hI1cuRvnMXAPfWclumqp7me95VVTNFpAfwhYisVNUNTV1vY4wJFX7G4TDgOGA4sBV4DZgKPN20tTbGtEatJkHG21ueo6rDDj6hqm8Bbx3uZlXN9P250TcObjhgCbIxxtSfP3E4A1imqhsBROQd4GgsQTbGNIFWM8RCVfOATSJyMYB4Da3PvSLSRkSqejlSgLHAmiarrDHGhCB/4jCwEEgSkXa+4wlYHDbGNJGQTZBF5BVgHtBXRDJE5BrgUuAaEVkOrAbOrWdx/YFFvvu+BP6mqhaYjTHmMJyMw6paiXfM8ucishIQ4L9NU3NjTGsXssu8GWOMMcYY0xgh24NsjDHGWSLi9q0gMTvQdTHGmKYUcpP0UlJStFu3boGuhjHGHNbixYv3qmq7I1/ZovwcWAskHOlCi8XGmGBQVywOuQS5W7duLFq0KNDVMMaYwxKRLYGuQ0OISBpwJvBn4LYjXW+x2BgTDOqKxX4nyL6gOQXv+pSdgGJgFfA+8KGqevx9D2OMMYfXDLH4IeBOIP4wdbgOuA6gS5cufr6dMcYEjl9jkEXkWeAZoAz4O3AJcBPwGTAR+FZEjve3ksYYY+rW1LFYRM4Cdqvq4sNdp6ozVHWUqo5q1y7YRo8YY8x+/vYg/0tVV9Xy+irgLRGJAKwboQHKKz0UllaQX+J9FJRWUFBaXv28qLSSCf3b07NdXKCraoxpOZo6Fo8FzhGRM4AoIEFE/qeql/lRZsBt3lvIR6t34hYhzC2Eu12Eu4Uwl4vwMBfhLiHM91q420WYS3yvu0iMDqdLckygm2CMaSL+JsjldZ0QkbGqOhdY7+d7hJyisgp++/YqduSW+BLgqmS4nJLyI38L+uScDbx36zg6JkY3Q22NaRrl5eVkZGRQUlIS6Ko0qaioKNLS0ggPD2/Kt2nSWKyqdwN3+8o7Ebg92JNjgDvfXMGCTfsaff/1x/fg1xP74XLJkS82poWyWFw7fxPktSLyInCzqhYcdO4RYISf5YekWcu289bSTIZ3SSIlLoJuKbHERYYRHxVGXGRY9XPvcThxUftf25NfyuQn53HDi4t57fpjiAp3B7o5xjRKRkYG8fHxdOvWDZHQTDBUlaysLDIyMujevXtTvpXF4gb6fmMWCzbt47dn9mfy6HTKK5WKSg/lHqW8wkOFx0N5pVJe6dl/rlIp93ioqFS+WLebJ+dsZNPeQh6aMoyYiJCb825aCYvFtfP3b/RqIANYIiJXqOr8GudC8/+yA15ZsJW+qfG8deOxDf5lTE2I4oHJw7j+xcX89p1V3H/RkJD9hTahraSkJKQDMoCIkJyczJ49e5r6rZotFqvqV8BXTpYZCI9+uZ6UuAguPaor0REN72g4uX97+qTG8afZa7j4iXk8feVoOiRGNUFNjWlaFotr5+9GIeWqeg8wDXhJRH4vIlVl2hZ9tVi9PZflGblMGZPe6F/G0wZ2YPpJvZm5OIMX5gXVSlHGHCCUA3KVZmqjxeIGWLYth29+2su043o0KjkG78/1qrHdeerKUWzeW8i5j33Lqsxch2tqTPOwWHwoR3bSU9U5wEigP/CNiHRzotxQ9OqCbUSGuTh/eGe/yvnFSb05uX97/jR7Dd9vzHKodsaYYGaxuH4e/WI9idHhXHZ0V7/LmtAvlZk3HotbhIufmMfHq3c6UENjTKD5myBXp+OqmqOqlwAzgG8B/yNPiCkuq+SdpZmcMbgjSTERfpXlcgkPTB5Gl+QYbnppCdtzih2qpTEmCFksrqc12/P4bO0urh7bnbhIZ8YN9++YwDu3jKVPh3hu+N9invx6A6rWcW9MMPM3Qf7vwS+o6vPA8cAbfpYdcmav2E5+aQWXjHFm5buEqHBmXD6K0goP17+4mJLySkfKNcYEHYvF9fTYV+uJiwxj6rHdHC23fXwUr113NGcM6shfP1zHXW+upKzC9skyJlj5lSCr6uN1vL5RVW/wp+xQ9OrCbfRsF8vobm0cK7NX+zgenDyMlZm5/ObtldZrYUwDrF27lm7duuHxeBOZyspKTj31VF544YVGXRcoFovrZ/3uAj5YuYMrjulKYozzy+5Fhbt55JLh3DqhF68t2saVzywgt6jOFfiMMT4tMRb7u5Nevojk1fLIF5E8pyoZCn7clc/iLdlMGd3F8cHwpwxI5Rcn9+atJZk8991mR8s2JpT179+f/v37M3v2bADuuece+vbtyxVXXNGo6wLFYnH9PP7leiLDXFwzrumW3HO5hF+d2pcHJg1l8ZZszn98Lpv2FjbZ+xkTClpiLPZrAJaqxlc9F5Glqjrc/yqFplcWbCXC7eLCkWlNUv70Cb1ZvT2P+95fS78OCRzTM7lJ3seYUPPLX/6SBx98kPLycubOncsXX3zh13WBYLH4yLZkFfLu8u1MPbYbyXGRTf5+F4xII61NDNe/uIjzH5/LE5eN5OgeFpeNqUtLi8Xi1FfyIrJEVQO+GP2oUaN00aJFga7GAUrKKznqL59zXO8UHv1Z0/0vyi8p57zH5pJdVM6sW8aS1sa2QTUt19q1a+nfvz8A//featZsd7ajc0CnBP5w9sB6XTt48GBKS0uZM2cOHTp08Pu6g9VsaxURWayqo+pdSD1ZLK7d3W+t4M0lmXxz53hSE5pvveItWYVc/dxCtu4r4i/nD+biUenN9t7G1IfF4tpjsSPLvJnD+2jVTnKLy/mZQ5Pz6hIfFc6MK0ZRXuHhhv/ZpD1j6uvYY4/ltttuqw60hYWFXHnllVx77bW89NJLdV63ceNGrrnmGi666KKA1NvUz/acYmYuzmDyqPRmTY4BuibH8taNYxnTvS13zFzB3z9ah8djc0WMqU19Y+zB173zzjtce+21TJ48mU8++cSRuvg1xEJELqhxmHTQMar6lj/lh4pXFmyla3JMs3y91rNdHA9NGca0FxZx91sreWDS0FaxALgJbvXtXWgqa9as4aqrrqo+fuutt7jooos4++yzmTx5Mpdeemmt1/Xo0YOnn3464AmyxeLDmzFnI6pw/Qk9AvL+iTHhPHfVGH7/7mr+89UGtucU88+LhxLutj4q07K0tFhcV4w9+LrzzjuP8847j+zsbG6//XZOPfVUv+vi7yKQZ9d4/vVBxwq06qAMsGFPAd9v2sevJ/bD5WqeRPWk/qncdnIf/vXpjwzslMC04wLzj4IxwWL16tUMGjSo+jgjI4PBgwcD4Ha767yuBbFYXIfd+SW8smArF4zoHNBhZ+FuF385fxBpbaK5/+MfKC6r5JGfDScyrHE7+RkTiuobY+u67r777uPmm292pC7+TtK76shXtW6vLdxGmEu4qIkm59Xl5vG9WLU9l79+uI4BHRM4tldKs76/McFi27ZtJCUlERcXV/1aWloaGRkZDBs2rHo5odquayksFtft6W82UV7p4cYTewW6KogIN4/vRWyEmz++t4Zpzy9ixuWjGr3dtTGhpL4xtrbrVJW77rqL008/nREjnJmC4e8yb2kiMq7G8W0i8nvfI/DRKMBKKyqZuTiDUwak0i6+6WdN1+RyCf+aNIweKbHc/PIStu0ratb3NyZYpKens3HjxgNeu+CCC3jzzTe58cYbOfvss+u8LisrixtuuIGlS5fy17/+tdnqfDCLxbXLLizjxflbOHtoJ7qnxAa6OtWmju3OPy4cwtz1e7nymQXkl9haycbUN8bWdt0jjzzCZ599xsyZM3niiSccqY+/QyzuB16qcXw93u1NY4D/Ay493M0i8gxwFrBbVQ/pKxfv4Nl/A2cARcBUVV3iZ52bzadrdrGvsIwpTTw5ry5xkWHMuGIU5zz6Lde/uJg3bzzWeiqMqYfY2FieffbZI16XnJzsWDD2k1+xOFQ9O3cTRWWV3Dy+5X1GmDQ6negIN798bRmXPfU9z189hqSYiEBXy5gWpb4xdvr06UyfPt3R9/Z3hkBfVZ1d47hIVf+lqn8C6pMVPgdMPMz504Hevsd1wH8aW9FAeGXBVjonRXNcAIc3dE+J5eFLhrN2Zx53vbXCdtozJjT5G4tDTl5JOc9+t5mJAzvQJzX+yDcEwNlDO/HEZSNZuyOfKTPmsye/NNBVMsb4+JsgH7xezkk1nh8xK1TVOcC+w1xyLvCCes3HOzu7Y8Or2fy2ZBUyd30WU0anN9vkvLqM79ueX57ch3eXbeftpZkBrYsxpkn4FYtD0YvztpBfUsEtEw7fe/z4V+s5//G5/HrmCp76ZiNf/7iH7TnFzdaZcPKAVJ6ZOpotWUVMfnIe23OKm+V9jTGH5+8Qi3wR6aOqPwKo6j4AEekH5PtbOaAzsK3GcYbvtR01LxKR6/D2MNOlS8voLHl14TZcQotZFP7m8b345qc9/OHd1Yzu1pb0traJiDEhpKljcVApKqvgqW82Mr5vOwZ1Tjzstcu25rDU96gpLjKMXu3j6N0+jpMHpHLawPpvRtBQ43qn8OI1Y7jq2YVc/MQ8Xr72KLomt5wx08a0Rv72IP8BmC0iV4rIYN9jKjDLd65ZqOoMVR2lqqPatWvXXG9bp/JKD28symBCv1Q6JDbvovR1cbuEByYNQ4Ffvb6cSluo3rQArWHITzO1sUXE4pbipflbyS4q55YJvY947YBOCYzu1obE6PADXi8orWDZthzeWJxxSPL84cod3DlzOasycx2r86hubXn52qMpKqvg4ifm8dOuVve5xgSQxeJD+bvM20e+BenvBKpGR68CLlDVVf6U7ZMJ1OyCTfO91qJ9vnYXewtKuWRMy+g9rpLeNob/O2cgv3pjOTPmbOTGE3sGukqmFYuKiiIrK4vk5OSQ3cxGVcnKyiIqqmk/KDdDLA4aJeWVzPhmI2N7JTOya5tDzm/NKiIuKoy2sd4Jcb84uQ+/OLkPqsregjJ+2pXPT7sL+Gl3Pj/uKuCnXfn0bn/gslPfbcji9UUZvLkkk+uP78H0k3oTFe7/BOjBaYm8dv0xXPrU90yeMZ8Xrh5zxB5wY/xlsbh2/g6xwBd8r/C3nDrMAm4RkVeBo4BcVd1xhHsC7pUF2+iYGMUJfWrvzV62LYe/f7iO8koPEWEuIsNcvj/dBxwf1T2ZiYP2f6334658lm3L4ejuyXRJbtwQiQtGdObzdbt44NMfOK53igVfEzBVaw3v2bMn0FVpUlFRUaSlNf066E0ci4PG64u2sSe/lIenDD/kXFFZBdNeWEhBSQWPXTqC4V32J9AiQrv4SNrFRx6ybvzBW0OHuQWXQKVHefyrDXyyZhf3XzTkgPIaq09qPG/4kuRL/juf564aU2uib4xTLBbXzt+tpv8LPKyqK2s5FwtMBkpV9aVDbvZe8wpwIpAiIhl4vwoMB1DVJ4AP8C7xth7vMm8tfjH8jOwi5vy0h1sn9Casjm1Eo8PduF3CvI3ZRyyvZoL8zU97+dPsNYS7hUcuGXHAufoSEf583mAWb8nmF68tY/at4xzp+TCmocLDw+nevXugqxES/I3FoaKswsMTX21gVNc2HN2j7QHnVJV73l7Fj7sKAPhs7a56J7QHT7T+w9kDuXhkOnfMXM7q7Xms313Ahf/5jmvGdedXp/b1O6Z2S4nl9RuO4dL/zufyp7/nqStG2WZPpslYLK6dv2OQHwN+JyJrReQNEXlcRJ4RkW+A74B4YGZdN6vqJaraUVXDVTVNVZ9W1Sd8yTG+1StuVtWeqjpYVRf5Wd8m9/pC75zCyaPrHl7Rt0M8j106gjMGd2B0tzYMSUukb2o83VNi6ZQYRUpcBPGRYcRGHPj5pazCu6NXeaVy88tLeHdZ40abtImN4J8XD2X97gL+9uG6RpVhjGlR/IrFoeLtpRlszy3hlgm9Dvmq+OUFW6tX8TmmRzK/PLmPX+81oFMC79w8ljtO60uE24VH4b/fbOL0f3/Dgk2HW5ypfjonRfP69ceQ1iaaqc8t5It1u/wu0xhTf+LEwGwRiQNGAR2BYmCtqv7gd8GNMGrUKF20KDB5dEWlh3F//5J+HeN57qoxjpdfWFrBJ2t2ctebKymt8CACfz1/cKM3IvnjrNU8991mnr96TJ3DQYwxTUNEFqvqKIfLbJJYLCLpwAtAKqDADFX99+Huae5YXFHp4aQHviYhKpxZt4w9IEFemZHLhf/5jrJKD+3jI3l/+nGO7m7606587pi5gmXbcgA4rncKL15zlCNlZxeWccUzC1i3M48HJg3j7KGdHCnXGONVVyz2twcZAFUtUNWvVPUVVX0nUMlxoH31wx525pVwSR0J66rM3EPGsjVEbGQY5w9P4/mrxxAb4UYV7nprJc98u6lR5d11ej96t4/jjjeWk11Y1uh6GWNahiaMxRXAr1R1AHA0cLOIDHCobEfMXrGDLVlFh/Qe5xSVceNLiymr9OB2CY/+bISjyTFA79R43rzxWH57Zn+SYyP4y/mDHSu7TWwEL117FMPSk7j1laX87cN1VFR6HCvfGFM7RxJk4/Xqwq20i49kQr/2h5zLzCnmgv98xzmPfVvdy9BYR/dI5sVpR5EQ5R2Cce/sNTz25foGlxMV7uahKcPILirj7rdWtoplXowxDaeqO1R1ie95PrAW75r0LYLHozz65Xr6psZzSv/UA17/1evLycj2br5x18R+jOnetq5i/OJ2CdOO68G3v55wwDrzlR7lsS/Xk19S3uiyE6LC+d+0o/jZUV144usNXP70AvYW2K57xjQlS5AdsiO3mC/W7ebikWmE1zI5758f/0BZhYdVmXmOrEE8oksbXrnu6Oqliu7/+AcWb2n4uLeBnRL51al9+Wj1TmYuzvC7XsaY0CYi3YDhwPcBrkq1j1fvZP3uAm6e0OuACXUzvtnI5+t2A3DawFSmHdf0E5GiIw6coPf0txu5/+MfOO3BOXz1w+5GlxsZ5uYv5w/m/ouGsGRrNmc9/C1Lth55orcxpnEcT5BFxCUiCU6X29K9sSgDj8KU0YcOr1iZkVs9OeTMwR0dW7JnYKdEXr/+aNrHR3LHaX0Z2bVxPSPXHteDMd3b8sdZq9maVeRI3YwxgdUUsdg3xvlN4BeqmlfL+etEZJGILGrOJaP++81GuqfEcubgjge8fsqAVPqkxtEtOYb7Lx7a7Gu8qirzN3o7LrbnljD12YXc/sZycosa35t88ah03rrpWMLDhMlPzuOFeZvt2z9jmoAjCbKIvCwiCb7lhFYBa0TkDifKDgaVHuW1hdsY1yvlkPWJVZU/f7AGgHC3cOfEvo6+d6/28Xzyy+O5eXyvRpfh3WVvKC4Rbnt9mY1vMyZINWUsFpFwvMnxS6r6Vm3XBGJX07IKDyszc5k4qAPug5Zj69kujnduHsvzV48hISq8jhKajojw1BWj+PP5g4iL9A6Jm7k4g1Me/JpP1zR+VYqBnRKZfctxjOuVwu/fXc1try+nuKzSqWobY3CuB3mArzfhPOBDoDtwuUNlt3jf/LSHzJziWifnfb52d3UPwhXHdKNrcqzj758UE3HA8b7CMv7xkXcjkvpKaxPDvecNZNGWbJ74eoPTVTTGNI8micXi7Xp9Gu+qGA/4W56TftyVT3mlMqBj7Z3lMRFhTRJ368vlEi49qisf//J4jvetFrQ7v5RrX1jEz19d2ugJ0okx4Tx95WhuO6UP7yzL5PzH57J5b6GTVTemVXMqQQ739S6cB8xS1cZ/fxSEXlmwleTYCE4ZkHrA6+WVHv7y4VoAEqLCuHVC43t56yu3uJzLn/6ex7/awM0vLaG0ov69CucN68xZQzry0Gc/sSIjp+kqaYxpKk0Vi8fiTbQniMgy3+MMh8r2y5od3pEeAzt5E+T7P17Hy99vbXHDDjonRfP8VaP5x0VDiPdNsH532XamzJjf6NWNXC5h+km9ee6qMezMK+HsR7/1q2faGLOfUwnyk8BmIBaYIyJdgVyHym7RdueV8Pna3Vw0Mo2IsAP/d766cBsb93g/0U8/qfchPb1NQVWrv2b8ZM0urn1hcb2/eqvaZS8lLpJfvLbMvrIzJvg0SSxW1W9VVVR1iKoO8z0+8LdcJ6zZnkdMhJuuybF8tGoHj325gd+8vZJHv2j4yj5NTUSYNCqdz247gZP7e1c7uvWkXofs1NdQJ/Rpx3u3jKNbcizXvrCI+z9e58hkcGNaM6cS5PdUtbOqnqHej+1bgasdKrtFe2NxBhUePWTnPI9HeXaud33i9LbRXH5M12apT1JMBP+bdhSju3knAs75cQ9XPrug3ksMJcaE869JQ9m4p5C/fLC2KatqjHFeq4vFa3bk0a9DPFv3FXHHGysAiI8K45xhLXdDjdSEKP57xSheve7oQyYWrt6e26je7/S2MbxxwzFMGZ3OY19u4MpnFpBlS8EZ02hOJchv1jzwBeZXHSq7xfL4Jucd3aMtPdrFHXDO5RLeuvFYpo3rzm9O709kmLuOUpyXEBXO81ePYVyvFAAWbNrHZU8vIKeofmPdxvZK4Zpx3Xlx/ha+XNf4ZYmMMc2uVcViVWXt9jz6pMZx4/8Wk19aAcC/Lh4a0HHH9SEiHN0j+YCVNZZty+HsR77l2hcWsyuvpMFlRoW7+duFQ/jHhUNYsHkfZz/i/7r7xrRWfiXIItJPRC4EEkXkghqPqUCUIzVsweZtzGLrvqI6d85Liongt2cN4PSDegiaQ0xEGE9dOar6a7zl23KYMmN+vXsU7jitL31T47lj5grrhTCmhWutsTgju5j80gp+2lXIup35AFx/Qg9OHdghwDVrnL9/uA6Pwmdrd3HKA1/zxqJtjepNnjQ6nbduPBaXS5j0xDxenLfZr11cjWmN/O1B7gucBSQBZ9d4jACu9bPsFu+rH3YTEebitBYajKPC3fznspGcNcSboK/bmc+1LyyqV8Ct2mUvr7icu2yXPWNaulYZi1dv907QW+zbMGNM97bccaqzS2k2p8cuHcG5vqEheSUV3DFzBVOfXcj2nOIGlzWocyKzbx3HMT2T+d27qzn/8bl8vzHL6SobE7L8SpBV9V1VvQo4S1WvqvGYrqrfOVTHFmt5Ri4DOiYQFb5/+MSqzFz+8sFavxaCd1K428W/pwznguGdiYlwc8dp/eq9WH7/jgnccVpfPl2zq1FbWRtjmkdrjcVVK1iAdz33Ry4ZTlgtO5kGi7axEfx7ynD+e8Uo2sdHAvD1j3s49cE5jVqZIykmgmenjuaBSUPZnV/K5Bnzue6FRWzcU9AU1TcmpIQ5VM56EfkN0K1mmaoaspNDKj3KqsxcLh6ZVv2aqnLf+2uYv3Efby/NZM4d4w/ZdjQQ3C7hHxcN4cYTe9I7Nb5B914zrjurt+fyz09+pENiNBfVaK8xpsVpVbF4zfZcItwuyio9DE9PIjUhNEaTnDIglTHd2nLf+2t4Y3EGBaUV/ObtlXyyZifPTh3doB0BXS7hghFpnD6oI8/M3cTjX67n1AfncOlRXfj5yX1oG9v0qysZE4ycSpDfBb4BPgNaxdpg63cXUFRWydD0pOrXvli3f1OQs4Z0bBHJcZUwt+uQ5Hj97nzS2sQc0AN+MJdL+MdFQ9lTUMpdb66gfXxk9WL3xpgWp1XF4tWZufRsH0tidDjH9Q6tuJQYE879Fw/lzCEdufutlezILaFHSlyjt8uOjnBz8/heTBqVzkOf/cj/vt/KW0syuXlCL6Ye2+2w/w4Y0xo5lSDHqOqvHSorKCz3baQxJC0JgIpKT/WyaPFRYUyf0DtANaufJVuzufKZBYzs2oYnLx952FU2IsJcPHHZSCY9OZ8b/7eY164/hkGdE5uxtsaYemo1sTi7sIwdeaVMHdud60/oGejqNJkT+7bnk18ez4Of/sQNJ/Y44NyHK3fQuU109b9D9dEuPpI/nz+Yqcd2428fruNvH67jxXlbuHNiX84e0snvNZmNCRVODdaa3VJ2VWouKzJyiI8Mo0eKdymhVxduY4NvU5BbJ/SiTQv/2urxLzeQX1LBVz/s4daXlx5xW+r4qHCeu2o0STERXPXcQrbtK2qmmhpjGqDVxOK1vvHHAzrVvsV0KImPCuf3Zw+gffz+ISQFpRXc/fZKznl0Ltc8t5CVGQ3bD6Z3ajxPTx3Ny9OOIikmnJ+/uozzH5/Lgk37nK6+MUHJqQT553gDc4mI5IlIvojkHfGuILZ8Wy6DOificgn5JeU89NmPAKS1ieaKY7oFtnL18O8pwxjZ1buZyCdrdnHb68uPuPNSakIUz101mtLySq58dgHZhfVbV9kY02xaTSyumqDXv2PoJ8i1Wbh5H4W+dZ8/X7ebsx/9lmnPL2JVZsMS5WN7pfDeLeP418VD2ZVXyqQn53H9izaRzxhHEmRVjVdVl6pGqWqC7zhko1ZpRSXrduZVjz9+8uuN7C3wJot3TuwXFGO5YiPDePaq0QxJ8w6VeG/5du6cueKIa2X2To3nqStHk5FdzLQXFlFSHvLDHI0JGq0pFi/ctI+oMBdfrN1d702QQsn4vu358vYTuWRMF8J8wyI+W7uLsx75lmtfWMTq7fVPlF0u4cKRaXx5+4ncfmofvv1pL6c+OIc/zlpt3xaaVsuRBFm8LhOR3/mO00VkjBNlt0Rrd+RTXqkMTUtkR24x//1mIwBD05M4e0jzbwrSWAlR4bxw9Rj6dfBO3ntzSQa/e3fVEZcSGtO9LQ9NHsaSrdn8/NWlR+x5NsY0j9YUi5dl5FBS4eHON1ewI7fhu86FgrQ2Mfz1gsG+RDm9OlH+dM0uznz4W+59b02DyouOcHPLhN58dcd4Jo9O54V5mznuH18y6cl5vL5wG/klLWP5UmOag1NDLB4HjgF+5jsuAB5zqOwWZ7lv684h6UlkF5bT3TcO+Z4z+jd6hnGgJMVE8L9pR9GrvXer7Je+38p97689YpJ8xuCO/O7MAXy8ehf3vrfaNhIxpmVoFbG4pLyS3XneHT6TYyPo28DlK0NNetsY/nrBEL68/UQmj0rH7UuUGzs+u2oi3ze/nsAdp/Vlb34pd765glH3fcb0V5by9Y97rGPEhDynVrE4SlVHiMhSAFXNFpGWPUvND8szckiJi6RTYhSdk6J5f/pxzNuQxZjubQNdtUZJiYvkpWlHMenJeWzJKuLLdbuZflJvEqPDD3vf1eO6+3rQN9ExKZobQngmuTFBolXE4nU78qlKz47tlWIrL/ikt43h7xcN4ebxvXhpwRbO8+3KV+XKZxbQMTGKM4d05JgeyUfcVKVzUjQ3j+/FTSf2ZNm2HN5aksms5duZtXw77eMjOW94Zy4ckUbfDq37A4oJTU4lyOUi4gZvzBKRdsDhl0XwXjcR+DfgBp5S1b8ddH4qcD+Q6XvpUVV9yqE6N9qKjFyGpiVW9xa7XcK43ikBrpV/UhOiePnao/ndO6v424WDj5gcV7n79P7szCvlbx+uo2NiFOcO69zENTXGHEajYnGw+Xzdrurn43olB7AmLVOX5BjuPr3/Aa9tzSri6x/3AN5Vl5JjI5g4qANnDenEmO5tq3udayMiDO/ShuFd2vDbs/rz5brdvLkkk2e+3cSMORsZ2CmBC0akce6wTqTERTZp24xpLk4lyA8DbwPtReTPwEXAbw93gy+IPwacAmQAC0VklqoePGjqNVW9xaF6+i2/pJwNewo4e0inI18cZDonRfPM1NENusflEv558RD25Jdw+xvLSYmLZGyv4P6wYEwQa3AsDkZz1++tfm7xpn6Kyys5qV975vy0h/JKJauwjJe+38pL32+lfXwkZwzuyFlDOjKiS5vD9shHhrmZOKgjEwd1JKuglPeWb+etpZn8afYa/vLBWk7s044LRqQxoV/7FrVZljEN5UiCrKovichi4CRAgPNUde0RbhsDrFfVjQAi8ipwLtCwWQXNbGVmLqpQUl7Bz19dyoR+7TljcEfCj/BVVbB66fstVHr0sEvXRYa5efLyUUx6Yh43vLiY1284ptUuvWRMIDUyFged9bu9S5B1TY4hrU1MgGsTHPp28K57nFtczierdzJ7xQ7mrt9LhUfZnV/Kc99t5s0lGSz67clEuuqX2CbHRTJ1bHemju3Oj7vyeWtJJm8vzeDzdbsJdwuDOicyultbRnVtw6hubW1baxNU/EqQRSRBVfNEpC2wG3ilxrm2qnq4Fcc7A9tqHGcAR9Vy3YUicjzwI/BLVd128AUich1wHUCXLl0a3pAGWOFbjH3dzgK+/GE33/y0l7NCsDcZ4H/zt/Dbd1YBUFbh4Zpx3euchJgYHc6zV43mgse/Y+qzC3jrprF0Topuzuoa02r5GYuDSnFpBXkl3vV/rfe44RKjw7l4VDoXj0onu7CMj1bvZPaK7czbkMWpAzocsKvqpr2FPPn1BoalJzGsSxK928fXORSjT2o8d53ejztO68u8DVnM3bCXRZv38dzczcyY413pqVf7OEZ3a8Oorm0Z3a0t6W2jg25iu2k9/O1Bfhk4C1gM1JzSKr7jHrXd1ADvAa+oaqmIXA88D0w4+CJVnQHMABg1alSTTq1dkZFDWpsovt+UBcCJfdodduxWMBuWnkR8VBj5JRXc9/5a1mzP48/nD67za7NOSdE8d/VoLv7PPKY+s4CZNxxLYkz9xjIbY/zS1LG4xfho9c7q5+MsQfZLm9gILhnThUvGdGFvQekh69q/uyyTVxdu49WF3n6p2Ag3g9MSGZbexps0pyfRITHqgHuq5uRUzcspKa9kZWYuCzfvY9HmbN5fsYNXFnjLax8fyehubb1Jc7e29O+YELL/nprg41eCrKpn+f7s3ojbM4H0Gsdp7J+MV1V+Vo3Dp4B/NOJ9HLV8Wy6d28SQke3tkJnQv32Aa9R0BnVO5OVpR3Pdi4vYkVvCW0szWbcznycvH0l629q/1uzXIYEnrxjJ1GcWcu2Li3jh6jFBsXGKMcHMz1gcVMoqvXMOx/VK5pgeNkHPKbVNrtudX0pshJvCMm/iXFhWyfyN+5i/cf8XEqcNTOXJy0fVWW5UuNuXBHtXefJ4lB9357NwczaLNu9j4aZ9vL9yBwBxkWEM7pxIj3axdE+JpUe7WLolx5LeNiZkhzGalsuRMcgicj7wharm+o6TgBNV9Z3D3LYQ6C0i3fEmxlPYv3ZnVbkdVXWH7/AcIKBj6fYWlJKZU0xH3yfmMJdwXO92gaxSkxuclsh7t47j5peW8P2mfazZkcfZj37LI5cMr7Ptx/ZM4Z+ThjL9laVc+tT3PPazEYf0MhhjnNfIWBxUMrKLcbuEp64cbR++m9hfzh/Mn84dxPrdBSzbls2ybTks25bLDzvzqFoGuctBnSXvLsvkP19toH/HBNLbxpDeJpr0tjF0aRtDakIUbpfQr0MC/TokcPnRXQHIzCn2Jsub97EyM4/ZK3aQW7x/UxK3S+jSNobuKd7EuVtKLD18zzskRNkyf6ZJOLWKxR9U9e2qA1XNEZE/AO/UdYOqVojILcDHeJd5e0ZVV4vIvcAiVZ0FTBeRc4AKYB8w1aH6NsqKjBwAtvq23hzVrU29l0MLZilxkfxv2lH89YN1PDN3EzlF5Vz5zAJ+PbEf19ex9vE5QzvhEvj1zBWc+fA3/HvK8KBfCs+YINDgWBxsVm/Po1e7OEuOm4nbJfTtEE/fDvFMHu2d41NUVsHKjFyWbcthVLc2B1y/aHM263bms25n/iFlhbuFzknRnNQ/ld+dNaD69bYxERzfux3nDO1UPSY5u7CMjXsL2bS3kE17C9i8t4iNewv5bsNeSsr3r1wYFe6iW7K3pzk1IZKUuEjaxXsfVc9T4iKJCLMeaNMwTiXItf3mHbFsVf0A+OCg135f4/ndwN1+184hy7blIni/dgI4qV9qYCvUjMLdLn5/9gCGpify6zdXUFLuOeATfm3OGtKJfh0SuOmlxVz+zPf84qQ+3Dqhl33aN6bpNCoWB5M12/M4pqcNrQikmIgwjuqRzFG1DHHp0yGeY3sms2lvITvzSqi5yWp5pbI5q4h9hWUH3PPFut3c/PIS4iLD6JQURdvYCNrGRtAmxvtncmwkgzsnMnFQRzweZVd+CRv3FLBpbyGb9xaxOauQ9XsKmLcxq85/lxKjw33JcgTt4qNoFxdJSnwE7eIiSYwOJz4qnPioMBJ8f8ZHhR1xIxUT2pwKnItE5AH2b2l6M97JIiFlhW8HvT0F3gQ5lMcf1+XcYZ3p3T6eF+dv5len9j3i9b3ax/HOzWP57durePCzH1m8NZuHJg+z5X6MaRpNFouPtLFTc/jdO6vYmVdC/hE+nJvAufzortVDJ0orKsnMLmZbdjHb9hWxLbuIbfuKqscjV6n6VragtIIfdxXUWm6v9nFMHNQRl0vomBhNUVklVz23iLYxEbSJjaB9fCTdU2KJDHN5J/opeFQZ3b0tuUXl7CkoZU9+KRv3FLB5byE5ReWUVBx+D53ocHd1slxbAh0XGU5UuIvoCDdR4d5HdNUjwkVkmJvoiP2vRYW7iQxzWSdRkHAqQb4V+B3wmu/4U7yBOWSoKisycqn6ve6WHEOPlNjAVipABnRK4K8XDDngtayCUlZk5jK+76EfGmIiwvjXpKGM7t6WP8xazZkPf8Njl45gRJc2h1xrjPFLk8TiBmzs1KQ+W+vdQW97bklzvq1ppMgwNz3axdGjXdxhrzuudwphrv5syy5iR24JOUVl7CssI7uonOyiMlS9wzBqyi4so6zCw868Enbm1f37cP/FQw8YjtPvdx8eMETjYG4RpoxJp318FPkl5eSXVPDdxr38tCsfD6AepVKVSo9Wj8NuKLdLCHMJ4W4X8VFhhLtdRIS5ELwbuoS7hDC3izC397owt4sIl/fY7RK6p8QecD4zu5gwl+ByuQj3XVN1n1uEMLeQ1iaG+KgwXOI9tzuvhNJKj/c+3zVV59wuwe1ykRIXQXJcpPdYhJziMgpKKnD77vFe590wzO07jo4Io1Oid6y5iFBSXske37fuVSv6VQ2jqfqYIAIdEqIOWPJvd82fadV9vidVlyVEhTfp0BmnNgopBO5yoqyWKiO7mH2FZfzq1D4kRYcT5nbZ+o0+FZUebn1lKd9tyOLnJ/Xm5yf1PuQTsohwyZguDO6cyI0vLWbSE/P4zRn9uWpsN/v/aIxDmjAWB3xjpx25xezwJcYn9g3tydGtzaDOiQzqnFjruUqPkldcXr16SZXkuEiuO74H2YVlZBd5k+nC0gqKyip9jwpKKzxE1kigKj162OQYoFKVMwd35NgaSwheMmM+2/YVH/a+K4/pyuXHdKW4zENxeSWvLtzKW0sya7220uNNsBOiwxnXK4XySg9llR525ZXy0+7ae9BrWrYth0qPUu4rp7KxmXoTE/HmtvWpXru4CMLcLlwiiHhzriPpnhJLQlQYIoJLvJvhHNx55w9/Nwp5SFV/ISLvceDamwCo6jn+lN+SLPdN0DuxT3sGp9X+F7m1+nFXAcu35QDw789/YlVmLg9OGUZC1KETGAd1TmT2rcdx+xvLuXf2GhZt2cffLxxCfC3XGmPqpxlicb02dmrKTZvmrt+/6ucpA1rP/I/Wzu0S2tQyJK97Siy/OaP/Ye/1ePSADhgBZt5wDIVllRSXVVBYuj+RLq3wUFbhTVQPXsZ0dLc2xEaGUVbpoayikrIKD+WVSnmlhwpfgto1OZZe7eOr71m4eR+xEe7q8xW1ZIk9UmK5/+Kh1cfzNmRxyX/nH/H/yfI/nHpAu7rd9f4R77n/osEMSWtDhceDxwN3v7WCVdvzDnvP6YM6MHFQBzyqeDzeNcg/XbPrsPektYlm0qh0Kj2KqrJtXzFvL6v9g0JNE/q1R4FKDyhKRvaR70mMDicpJhyPer/lr7nJjRNEtfGfPERkhKouEZETajuvql83uvBGGjVqlC5atMjxcv/ywVqem7uZVf93ms2GrcVPu/K5/sXFbNxbCHiD15OXj6RPanyt16sq//1mI3//6Ae6tI3h8UtH2PbUplURkcWqWvcCsg0rq0ljsYhcBExU1Wm+48uBo1T1lrrucToW//K1Zby9NJMwl7DuTxNtApUJKqreIRkVHg8VlYpHvcl7XOT+fsqS8kqyCsvweLznPUp1olk1rEOVQ3rbF2/JBtSXKHrHXqvuf0+PKkPSEkmqMUxlydZssgu9w1fUVz/vnwDe+3u2jzvg3/Afdubzw6786vZQfb03qVX19uyf0Gf/Nzy780v4+oc9+z+117i+5v2TR6cfkPS/9P2Wg8qv/h9Zfc3JA1LpmOj/jr11xWJ/h1jcD5wEnKGqv/azrBZt2dZs+nSIt+S4Dr1T43nnlrHc9tpyPlu7i017Cznvsbnce+4gLhjeudYhF9cd35Nh6W245eUlnPfYXO47bxAXj0qv4x2MMYfR1LH4iBs7NSVV5dv1ewHvuruWHJtgIyK4BdwuN5F1ZF5R4W46JzU84RvZteHzeRozB6hqub+GaB8f1ah/1y89qmuD73Gav1Gmo4gcC5wjIsNFZETNhxMVbAkqPcryjFzWbM/lymcWsL4eY4Rao4SocGZcPpLbTumDCBSVVXL7G8s585Fv2bCn9v9nY7q35f3pxzGyaxvumLmCO2cuP2S7U2PMETV1LK7e2ElEIvBu7DTLgXLrZf3uguqJPqO72+ReY0zT87cH+fd4Z0ynAf9i/6RE8PaIT/Cz/BZhw54CSn3Lwcz5aU+r2ByksVwuYfpJvRnUOYE7Z65gb0EZu/NKSE2oeye9dvGRvHjNUTz02Y888sV6Vmbm8ejPhtPzCDOfjTHVmjQW17Wxkz9lNkRV7zHAWYM7NdfbGmNaMX8T5B2qerqI/F5V73WkRi1Q1QQ0gKFpSbSLP3TPenOgCf1S+fqO8Tw7dxPJcZEHjLPaW1DKztySA8ZRuV3Cr07ty4iubfjla8s49cE5nDusEzed2Ite7S1RNuYImjwW17axU3OpmqAnwLG2SYgxphn4O8TiYd+f5/lZTov23Yb9s6cn9Gt9m4M0VmxkGLdM6M0lYw6czf7oF+s565FvufnlJWw8aOjF+L7t+eQXxzP12G58uHInpzz4NTf+bzGrMnObs+rGBJuQjsX/mjSUnu1i6Z4Si9vGHxtjmoG/PcjlIjID6CwiDx98UlWn+1l+i/D9JkuQnZJXUs7ri7yrRb2/YgcfrdrJxSPTmH5Sbzr5Jie0T4jid2cN4KYTe/Ls3M08/91mPly1kxP7tuOW8b0YddAuTMaY0I7F8ZFh7MgtYZJN4jXGNBN/P4qfBXwBlODdzvTgR9ArrahkR453cfrUhEgGdrKlyPyREBXOB9OP49xhnRDxToB8deE2TvznV/xp9hqyfNt4g3e5mNtP68vcuydwx2l9WZGRy0VPzGPSk/OY8+Me/Fmi0JgQE9KxeMu+IorKKhlgS0EaY5qJXz3IqroXeFVE1qrqcofq1KIs25pTvf7ehH6ptuubA7qlxPLvKcO54YSe/OuTH/hs7W7KKjw8/e0mXl2wlWnH9eCWCb0I932VmhAVzs3je3HV2G68smAb/52zkSueWcDQtERuGt+LU/qn2t72plUL5VicW1zOGt+GBgOsg8IY00ycGsxVLCKfi8gqABEZIiK/dajsgHp3+fbq5za8wln9Oybw1JWjefPGYziqu3fYRGFZJXN+2kNYLQlvTEQY14zrztd3nshfLxhMdlE517+4mIn/nsM7SzOpqDz8FqLGtAIhFYuLyioYfd9n/P7dVbgEeqfahF1jTPNwKkH+L3A3UA6gqivwrpMZ9FZkeCeHRYS5GNvLZk83hZFd2/LqdUfz/NVjGNQ5gTtO63vIjjo3vbSYWcu3U1BaQWSYm0vGdOGLX53AQ5OHoQq/eG0ZJz3wNS/O38LuvJIAtsaYgAqpWLxg0z7KKj1kFZbRMTHK8a1kjTGmLv5O0qsSo6oLDhp+UOFQ2QFVWl7Jcb1TuPHEnsREOPW/yxxMRDihTzuO751yyDCWt5dksmhLNh+s3ElEmIsT+rTj9EEdOKl/KucN78w5QzvxyZpdPPblen73zip+984qBnVOYHzf9ozv156haUm4bQiGaR1CKhbXXEFoRCN2CzPGmMZyKuPbKyI98W2XLSIXATscKjtgCkorWL+ngDOHdOTYnimBrk6rcHByXOlRuiTH8MPOfPJLKyir8PDpml18umYX4W5hbK8UzhjUkVMHpnLawLGs2ZHHVz/s4ct1u3nsy/U88sV62sSEc0Kfdozv157je7ejTWxEHe9uTNALqVj87U/7NwgZmpYUuIoYY1odpxLkm4EZQD8RyQQ2AZc6VHbArMzIRRWGpicFuiqtltslPDBpGKUVlXy3PosPVu7g07W7yCkqp7xS+eqHPXz1wx4SokcycVAHBnZKZGCnRG44oSf5JeXM+WkvX63bzVc/7uGdZdtxCQzv0obxfdtxYt/2DOyUYBMvTSgJmVicVVDKmh151cc2Qc8Y05wcSZBVdSNwsojEAi5VzXei3EB7c7F3vV7ruQi8yDA34/t5h0yUV3qYvzGLD1ft5ONVOykur+TEvu0OuP74f3xJUkw4gzolMrxrGy49uivllZV8t2EfX/2wm39+8iP//ORH2sdHMr5ve07s244h6Ul0SoyyhNkErVCKxfM2Zh1wbEu8GWOakyMJsogkAn8Ajvcdfw3cq6pBu/3ZnvxSZi7JBGDWskymju0e4BqZKuFuF8f1bsdxvdvxp3MHsXFPAVHh+yfv7MorITOnmMycYlZvz+M138YkbpfQq10cAzsncHL/VBKiw1m4aR8frNpRfU1cZBh9UuPo2yGevqnx9PH9mRxn24ubli+UYvHc9d7hFW4RUhMiSYqxoVHGmObj1BCLZ4BVwCTf8eXAs8AFDpXf7L76YXf184GdEwNYE3M4bpfQOzX+kNevPa47KzNzWZ2ZR36pd45SpUf5YVc+P+zydqrNuWM8U4/tRnmlhxUZuTz59QbySsrJLixj9oodvFKyrbq8lLgI+qTGH5A490mNJy7SJm6aFiVkYvG3vgQ5MtxlMdgY0+yc+te9p6peWOP4/0RkmUNlB8RHq3YCEB3uYriNQQ4qqQlR3HPmAAA8HmVbdhGrMvNYtT2XVZneR6VHSW/r3do63O1iSFoin67dxcGb88VEuImLDMPtEn7Ymc+SrdmUlO9fb7lzUhRdk2PpkBBF+4QoUhMiSU2I8j0iaR8fRUSYU6spGnNEIRGLswpKySksB6DYdtAzxgSAUwlysYiMU9VvAURkLFDsUNnNrqzCw9wN3t6LkV3bEua2BCdYuVxC1+RYuibHcuaQjgCoKvsKyw4Ya7wnv7TW+4vKKikqq6w+fu+WsSTFRLBuZz4/7srnqW82smDTPsDbQ13b5tcJ0WF0TorxJs/xUbSJCadjUhQdEqNJiAonPiqMxOhwEqLCiYsKsyXpjD9CIhYnx0Wy9PenMHNxBne9tdIm6Bljmp1TCfKNwPO+8W8A2cDUI90kIhOBfwNu4ClV/dtB5yOBF4CRQBYwWVU3O1TnOi3cvK+6l/CcYZ2a+u1MMxORQ8YUd0qK5sf7TmdXXgnbc0rYkesdw7w9p5gdOd4xzTtyS+jcJoa2sRGkt43hlAGpPP/dZio8taXF+/XvkEB8VBi78kpZvT2vzmS8iluE2Eg3nZK8CXRCdBiVHiW3uJy4yDDiosKIDncTFe4mJsJNdLib2Mgw76TEzolEh7uJjnDjFqGwrIK4yDAiwtxEuF2EuQW3iG3NHboaFYtbojC3i0rfVzrWg2yMaW5OrWKxDBgqIgm+47zD3wEi4gYeA04BMoCFIjJLVdfUuOwaIFtVe4nIFODvwGQn6nw4n6/dP/741AGpTf12poUId7tIaxNDWpuYel2vqkwZ04W9BaXkFpeTW1RObnE5OcVl5BaVk1fiHft81djuTBzUofq+619cxMerd9VZbqUqyXGRdGkbQ15JOdtzStieW0xOUbl/DTyI+P4zqFMCMRFhRIS5CHe7WLh5H5UexSXg8iXTLpHqYxE4tmcK3VNicbsEt0uYtyGLjOwi3NXXeu9z17hnYKdExvZK8d0Da3fkM39jFm7feZfI/vtdIAjJcRFMHp1eXUZOUTlvLs5AxPtBp2adqt9X4IpjuhET4UZ8516ct4XSikrvtYjvfl8ZeJ+f3D+Vnu29WxmLwBdrd7M5qxDBe52w/x58r/XvGN+i1khvTCxuydZszyM+Koy0NtGBrooxppVxahWLvwD/UNUc33Eb4Feq+tvD3DYGWO9blggReRU4F6iZIJ8L/NH3fCbwqIiI6sEjRZ2jqny+1pu8pMRF2MxpUycR4bZT+tR5vtKj5JeUH7DCBsCFI9IY1CmR/NIKissqKS6vpLiskqKyiurnZwzuyPUn9Ky+56lvNnLf+2sPW5+0NtH89swBlJR7y9ySVcgTX2+s83r1/SfWN9GwqKyS8spyCksrOEKnOG8vzTz8BbVYsjWHF+dvafB9L8xr+D3PzN3c4Hse/OynBt8D3omis28dR/8W0MvZyFjcouzOLyG7sJw+qXGs2ZHHgI62Vrkxpvk5NcTidFX9TdWBqmaLyBnA4YJyZ2BbjeMM4Ki6rlHVChHJBZKBvTUvEpHrgOsAunTp0tg2ALBxbyFb9hUBMLKLbW1qGs/tklo/YJ06sAOnDuxQyx11u2Zcdy47umt1Ql1W4aG80kOp78/ySiUizMWwGhNKswvL6J4SS1mFh7JKpazCQ6XHQ4VHqfRo9Z+/PLkP0RH7k/jfvbOKwtKK6vPllR486n3uUfCoMv2k3ozs0qb6mvs/XseCTfvwqPeDQaUqHt85xXvP+H7tmTI6HY/He/zJmp28tnBbdZn4/lQFD94/OyZGcefEfqh63zszu5j7P/6BqtHeqr5HjWOA35zRj+iIMBTvh96/frCO4vL9Y8lrc96wTvTpEF9dxjtLM/lpd8Fh7xncOZHj+6SQHNdiPkg3Jha3KO8szeQvH6wjJS6CgpIKLjnKv5hujDGN4VSC7BaRSFUtBRCRaKDZFo5V1Rl4d49i1KhRfvUul1d6GJqWyPKMXM628cemhRARonzjjuv7sa1NbASTRzc8ufjTeYPqfW2Ebyzz788e2OD3GZqexB2n9Wvwfdce36PB91x2VNfqZLkqQFQl1lUJcbjbdcAEyWvGdT9g4uXB9wJEuF0HfLhoAQIai53w7XrvBiHhbhclFR4GdrIl3owxzc+pBPkl4HMRedZ3fBXw/BHuyQTSaxyn+V6r7ZoMEQkDEvFO1msy/TokcHSPZNZsz+OU/jb+2JhQsH9SYv2/qj94aEyQaEwsbjFKKypZsMkb4runxLIjt8Qm6BljAsKpSXp/F5HlwMm+l/6kqh8f4baFQG8R6Y43EZ4C/Oyga2YBVwLzgIuAL5py/HGV5Rk5DOiUQGRw/gNpjGmlGhmLW4ylW3OqVxCKjQwj3C308k2cNMaY5uTYNmCq+hHwUQOurxCRW4CP8S7z9oyqrhaRe4FFqjoLeBp4UUTWA/vwJtFNqtKjrMzI5YIRaU39VsYY47iGxuKWpGp7aYD8kgp6t4+3jXaMMQER0H1yVfUD4IODXvt9jeclwMXNVZ8nvt5AdmEZhWWVDLXd84wxBhG5HzgbKAM2AFdVrZLhtKrtpQd0TGD97gJO7NuuKd7GGGOOyD6a+1R6lCe/3sCTc7zLYg1Ns4khxhgDfAoMUtUhwI/A3U3xJnkl5SzflgPA8C5J7C0otfHHxpiAsQTZZ9m2HLJ9GzFEuIUe7WzcmzHGqOonqlrhO5yPd0K1477fuK96/e3UhCgA22LaGBMwTm0UshI4ePJcLrAIuE9Vm3TlCSd8sW7/zmaDOicesNyTMcYEg2aIxVcDr/lZRq2KyipIaxPNrrwS77rYWIJsjAkcp8YgfwhUAi/7jqcAMcBO4Dm849datKrtpQUY3a1tYCtjjDGN06hYLCKfAbXtXnOPqr7ru+YeoALvUnK18mfTpnOHdebcYZ3ZnVfCvbPXkN42moSo8AaVYYwxTnEqQT5ZVUfUOF4pIktUdYSIXObQezSZzJxi1u3MB7xdL0PSkgJaH2OMaaRGxWJVPbmucwAiMhU4CzjpcEttOrFpU/uEqOotpo0xJlCcGoPsFpExVQciMhrv0m3g7XFo0b5ct/uA46HpNkHPGBOUHI/FIjIRuBM4R1WL/K/i4RWWVrBpbyEDOlocNsYEjlM9yNOAZ0QkDu8ohTxgmojEAn916D2azBe+BDkqzEVMhJvOSdEBrpExxjRKU8TiR/FuV/2piADMV9UbnKhsbdbtzEfVxh8bYwLLqZ30FgKDRSTRd5xb4/TrTrxHUykuq6xenD4izMXQ9CR8/wgYY0xQaYpYrKq9nKhbfa3ZkQdYgmyMCSynVrGIBC4EugFhVQmmqt7rRPlNyeWCf08Zzserd/L20kwbf2yMCVrBHIurrNmeR2J0OJ0SowJdFWNMK+bUEIt38S4ltBgodajMZhEZ5mbioA4kxYTz9tJMhtkOesaY4BW0sbhK1QQ9+ybPGBNITiXIaao60aGyAmJFRg4AQ2wHPWNM8ArqWFxR6WHdjjwuP7proKtijGnlnFrF4jsRGexQWQGxPCOXzknRJMdFBroqxhjTWEEdizdnFVJa4bHxx8aYgHOqB3kcMFVENuH9Wk8AVdUhDpXf5JZvy7HhFcaYYBfUsXj1dpugZ4xpGZxKkE93qJyAyCooJSO72L7WM8YEu6COxWu25xHhdtGzXVygq2KMaeX8SpBFJEFV84B8h+oTECsyvSsh2QoWxphgFCqxeM2OPPp0iCPc7dToP2OMaRx/e5Bfxrv96GK8uzTXnHasQA8/y28WK7blIgKDbYKeMSY4BX0sVlXWbM/jpP7tA10VY4zxL0FW1bN8f3Z3pjqBsTwjh17t4oiLdGrEiTHGNJ9QiMW780vJKixjQEcbf2yMCTxHvscSkbG+rUwRkctE5AER6eJE2c3hghGduf6EnoGuhjHG+CWYY3GYS/j1xH6M650S6KoYY4xjy7z9BygSkaHAr4ANwIsOld3kzhrSiYtGpgW6GsYY46+gjcXJcZHceGJPerWPD3RVjDHGsQS5QlUVOBd4VFUfAyzKGWNM87JYbIwxDnBq0G2+iNwNXAYcLyIuINyhso0xxtSPxWJjjHGAUz3Ik/EuSn+Nqu4E0oD7HSrbGGNM/VgsNsYYB4j327jQISJ7gC2NuDUF2OtwdVqCUG0XhG7brF3BpbHt6qqq7ZyuTEthsfgQ1q7gEqrtgtBtm6Ox2K8EWUTy8a6xecgpvNubBs16PSKySFVHBboeTgvVdkHots3aFVxaQrssFrd81q7gEqrtgtBtm9Pt8ncdZJv8YYwxAWax2BhjnGX7eRpjjDHGGFODJcj7zQh0BZpIqLYLQrdt1q7gEqrtCpRQ/f9p7QouodouCN22OdqukJukZ4wxxhhjjD+sB9kYY4wxxpgaLEE2xhhjjDGmhlaXIIvIRBH5QUTWi8hdtZyPFJHXfOe/F5FuAahmg9WjXbeJyBoRWSEin4tI10DUs6GO1K4a110oIioiQbN0TX3aJiKTfD+31SLycnPXsTHq8bvYRUS+FJGlvt/HMwJRz4YSkWdEZLeIrKrjvIjIw752rxCREc1dx2ARqnEYLBYHWyy2OGxxuE6q2moegBvYAPQAIoDlwICDrrkJeML3fArwWqDr7VC7xgMxvuc3hkq7fNfFA3OA+cCoQNfbwZ9Zb2Ap0MZ33D7Q9XaoXTOAG33PBwCbA13verbteGAEsKqO82cAH+Jde/ho4PtA17klPkI1DjegbRaLW8jD4rDF4cM9WlsP8hhgvapuVNUy4FXg3IOuORd43vd8JnCSiEgz1rExjtguVf1SVYt8h/PxbkHb0tXn5wXwJ+DvQElzVs5P9WnbtcBjqpoNoKq7m7mOjVGfdilQtXFFIrC9GevXaKo6B9h3mEvOBV5Qr/lAkoh0bJ7aBZVQjcNgsTjYYrHFYS+Lw7VobQlyZ2BbjeMM32u1XqOqFUAukNwstWu8+rSrpmvwfsJq6Y7YLt/XJ+mq+n5zVswB9fmZ9QH6iMhcEZkvIhObrXaNV592/RG4TEQygA+AW5unak2uoX8PW6tQjcNgsTjYYrHFYYvDdfJrJz0TfETkMmAUcEKg6+IvEXEBDwBTA1yVphKG9+u9E/H2Ms0RkcGqmhPISjngEuA5Vf2XiBwDvCgig1TVE+iKGdNcLBYHDYvDrVRr60HOBNJrHKf5Xqv1GhEJw/vVQ1az1K7x6tMuRORk4B7gHFUtbaa6+eNI7YoHBgFfichmvOONZgXJ5JD6/MwygFmqWq6qm4Af8Qbqlqw+7boGeB1AVecBUUBKs9SuadXr76EJ2TgMFouDLRZbHMbicF1aW4K8EOgtIt1FJALv5I9ZB10zC7jS9/wi4Av1jfxuwY7YLhEZDjyJNyAHwxgqOEK7VDVXVVNUtZuqdsM7nu8cVV0UmOo2SH1+F9/B22uBiKTg/apvYzPWsTHq066twEkAItIfb2De06y1bBqzgCt8s6iPBnJVdUegK9UChWocBovFwRaLLQ5jcbhOgZyNGIgH3hmOP+Kd4XmP77V78f5lBu8vyRvAemAB0CPQdXaoXZ8Bu4BlvsesQNfZiXYddO1XBMHM6Qb8zATv15ZrgJXAlEDX2aF2DQDm4p1ZvQw4NdB1rme7XgF2AOV4e5WuAW4Abqjx83rM1+6VwfS72AJ/R4IyDtezbRaLW9DD4rDF4boettW0McYYY4wxNbS2IRbGGGOMMcYcliXIxhhjjDHG1GAJsjHGGGOMMTVYgmyMMcYYY0wNliAbY4wxxhhTgyXIxhhjjDHG1GAJsjHGGGOMMTVYgmxMPYlImohMPui1J0RkbG3njDHGOM9isWkOliAbU38nASMOeu1ovNuq1nbOGGOM8ywWmyZnO+mZVkFErgSmA+FAnqqOa+D944B3gRwgH7gAiAT+D3j44HOqutGpuhtjTKiwWGyChSXIJuSJSDzwPTBMVctEJElVc2qc/waIr+XW21X1sxrXfeR7bZXv+DYgR1WfOficMcaYA1ksNsHEEmQT8kQkBlgNzAaeV9VFjSxnE9BbVSt8xx8DV6nq9oPPGWOMOZDFYhNMwgJdAWOamqoWicgg4Gxghog8paqPV52vT6+FiKQAuTUCcgyQ5AvIB5zznf8j0AbIUtV7m6ptxhgTLCwWm2BiCbIJeSLSW1V/Al4VkQFAVM3zqnpcPYrpBmyvcTwe+LK2cyLSGe/frRxgbGPrbYwxocRisQkmliCb1uAeETkGKMT79d61jShjHZAiIquA64DTgZl1nJsG/BxoB6T7WXdjjAkVFotN0LAxyMY0gogsAY5S1fJazv0KSACSgR9U9ZHmrp8xxrQGFotNU7EE2RhjjDHGmBpsoxBjjDHGGGNqsATZGGOMMcaYGixBNsYYY4wxpgZLkI0xxhhjjKnBEmRjjDHGGGNqsATZGGOMMcaYGixBNsYYY4wxpgZLkI0xxhhjjKnh/wFscN3nCkk3GAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.clf();\n", + "fig = plt.figure(num=1);\n", + "fig.set_size_inches((10, 12))\n", + "\n", + "for i in range(3):\n", + " ax1 = plt.subplot(5, 2, i+1)\n", + " \n", + " plt.plot(s, ising_sw_dict[\"x_\"+str(i)]/2/np.pi, label=r\"$X_{0:d}$\".format(i), color=\"C0\")\n", + " plt.plot(s, ising_sw_dict[\"z_\"+str(i)]/2/np.pi, label=r\"$Z_{0:d}$\".format(i), color=\"C1\")\n", + " \n", + " plt.plot(s, ising_pwsw_dict[\"x_\"+str(i)]/2/np.pi, color=\"C0\", ls='--', lw=2.5 )\n", + " plt.plot(s, ising_pwsw_dict[\"z_\"+str(i)]/2/np.pi, color=\"C1\", ls='--', lw=2.5 )\n", + " \n", + " plt.xlabel(r\"$s=t/t_a$\"); plt.ylabel(r\"Ising coefficients (GHZ)\")\n", + " plt.legend()\n", + " \n", + "labels = [[0, 1], [1, 2]]\n", + "for i in range(2):\n", + " ax2 = plt.subplot(5, 2, i+5)\n", + " \n", + " plt.plot(s, ising_sw_dict[\"zz_\"+str(labels[i][0])+','+str(labels[i][1])]/2/np.pi, \n", + " label=r\"$Z_{0:d}Z_{1:d}$\".format(labels[i][0], labels[i][1]))\n", + " \n", + " plt.plot(s, ising_pwsw_dict[\"zz_\"+str(labels[i][0])+','+str(labels[i][1])]/2/np.pi, color=\"C0\", ls='--', lw=2.5 )\n", + " \n", + " \n", + " plt.xlabel(r\"$s=t/t_a$\"); plt.ylabel(r\"Ising coefficients (GHZ)\")\n", + " plt.legend()\n", + "\n", + " \n", + "labels = [[0, 1], [1, 2]]\n", + "for i in range(2):\n", + " ax2 = plt.subplot(5, 2, i+7)\n", + " \n", + " plt.plot(s, ising_sw_dict[\"xx_\"+str(labels[i][0])+','+str(labels[i][1])]/2/np.pi, \n", + " label=r\"$X_{0:d}X_{1:d}$\".format(labels[i][0], labels[i][1]))\n", + " \n", + " plt.plot(s, ising_pwsw_dict[\"xx_\"+str(labels[i][0])+','+str(labels[i][1])]/2/np.pi, color=\"C0\", ls='--', lw=2.5 )\n", + " \n", + " \n", + " plt.xlabel(r\"$s=t/t_a$\"); plt.ylabel(r\"Ising coefficients (GHZ)\")\n", + " plt.legend()\n", + "\n", + "\n", + "labels = [[0, 1], [1, 2]]\n", + "for i in range(2):\n", + " ax2 = plt.subplot(5, 2, i+9)\n", + " \n", + " plt.plot(s, ising_sw_dict[\"yy_\"+str(labels[i][0])+','+str(labels[i][1])]/2/np.pi, \n", + " label=r\"$Y_{0:d}Y_{1:d}$\".format(labels[i][0], labels[i][1]))\n", + " \n", + " plt.plot(s, ising_pwsw_dict[\"yy_\"+str(labels[i][0])+','+str(labels[i][1])]/2/np.pi, color=\"C0\", ls='--', lw=2.5 )\n", + " \n", + " \n", + " plt.xlabel(r\"$s=t/t_a$\"); plt.ylabel(r\"Ising coefficients (GHZ)\")\n", + " plt.legend()\n", + "\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using get_ising_sw_ho which generates all the ZZ couplings between any qubit pairs in the elements even the higher order ones" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 19min, sys: 2min 15s, total: 21min 16s\n", + "Wall time: 6min 26s\n" + ] + } + ], + "source": [ + "%%time\n", + "ising_sw_dict = circuit.get_ising_sw_ho(phi_dict, verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'points': 20,\n", + " 'x_0': array([6.08302365e+00, 4.04640775e+00, 2.48199427e+00, 1.43026011e+00,\n", + " 7.97642463e-01, 4.42373828e-01, 2.48697639e-01, 1.43490493e-01,\n", + " 8.56563723e-02, 5.31973942e-02, 3.45067657e-02, 2.34392886e-02,\n", + " 1.66989405e-02, 1.24855205e-02, 9.79517927e-03, 8.05629435e-03,\n", + " 6.93782268e-03, 6.24717511e-03, 5.87521645e-03, 5.76686166e-03]),\n", + " 'z_0': array([1.67386758e-13, 1.74758392e-01, 4.10427431e-01, 6.87923650e-01,\n", + " 9.90060801e-01, 1.30689461e+00, 1.63336400e+00, 1.96653889e+00,\n", + " 2.30436688e+00, 2.64523346e+00, 2.98779494e+00, 3.33089484e+00,\n", + " 3.67351381e+00, 4.01473980e+00, 4.35375219e+00, 4.68981256e+00,\n", + " 5.02225080e+00, 5.35043571e+00, 5.67372443e+00, 5.99139470e+00]),\n", + " 'x_1': array([6.05415981, 5.09452143, 4.2139517 , 3.42653073, 2.74160481,\n", + " 2.16220923, 1.68482439, 1.30055161, 0.9971647 , 0.76125073,\n", + " 0.57986774, 0.44152915, 0.33660404, 0.2573265 , 0.19759503,\n", + " 0.15268972, 0.11898411, 0.09369369, 0.07467885, 0.06030229]),\n", + " 'z_1': array([-1.18868534e-13, 7.83014719e-02, 1.72044552e-01, 2.79903030e-01,\n", + " 3.99994774e-01, 5.30211344e-01, 6.68480397e-01, 8.12985541e-01,\n", + " 9.62272574e-01, 1.11524025e+00, 1.27107022e+00, 1.42914738e+00,\n", + " 1.58899787e+00, 1.75025262e+00, 1.91263315e+00, 2.07595031e+00,\n", + " 2.24010394e+00, 2.40507338e+00, 2.57089526e+00, 2.73763362e+00]),\n", + " 'x_2': array([3.35139804, 2.08148322, 1.23545768, 0.71788488, 0.41674063,\n", + " 0.24514895, 0.14751215, 0.09136823, 0.05851095, 0.03886169,\n", + " 0.02683114, 0.01928792, 0.014451 , 0.01128895, 0.0091928 ,\n", + " 0.00779628, 0.00687608, 0.00629604, 0.00597569, 0.00587293]),\n", + " 'z_2': array([-5.05548928e-14, 2.13773009e-01, 4.68654494e-01, 7.50475053e-01,\n", + " 1.05006269e+00, 1.36199031e+00, 1.68283546e+00, 2.01020219e+00,\n", + " 2.34227310e+00, 2.67759534e+00, 3.01496222e+00, 3.35333837e+00,\n", + " 3.69180810e+00, 4.02953725e+00, 4.36574346e+00, 4.69967172e+00,\n", + " 5.03057360e+00, 5.35768915e+00, 5.68023086e+00, 5.99736893e+00]),\n", + " 'zz_0,1': array([-3.48815557e-04, -4.12430785e-02, -1.06764080e-01, -2.02703937e-01,\n", + " -3.33506637e-01, -5.03975557e-01, -7.20163645e-01, -9.89367721e-01,\n", + " -1.31992279e+00, -1.72076431e+00, -2.20039845e+00, -2.76489179e+00,\n", + " -3.41458462e+00, -4.13957515e+00, -4.91479712e+00, -5.69663448e+00,\n", + " -6.42381318e+00, -7.02468669e+00, -7.43051222e+00, -7.59107223e+00]),\n", + " 'zz_0,2': array([1.18937054e-06, 2.60277223e-05, 1.57596792e-04, 5.19047019e-04,\n", + " 1.29846118e-03, 2.76296976e-03, 5.27491108e-03, 9.31273463e-03,\n", + " 1.55010778e-02, 2.46473496e-02, 3.77707687e-02, 5.60968659e-02,\n", + " 8.09764161e-02, 1.13679522e-01, 1.55031080e-01, 2.04913275e-01,\n", + " 2.61758660e-01, 3.22240068e-01, 3.81360318e-01, 4.33041551e-01]),\n", + " 'zz_1,2': array([-2.68442210e-04, -3.30555865e-02, -8.01826990e-02, -1.43119181e-01,\n", + " -2.23138633e-01, -3.21548653e-01, -4.39680105e-01, -5.78898158e-01,\n", + " -7.40664371e-01, -9.26588899e-01, -1.13843704e+00, -1.37809563e+00,\n", + " -1.64752743e+00, -1.94874268e+00, -2.28379118e+00, -2.65472026e+00,\n", + " -3.06336818e+00, -3.51082763e+00, -3.99648061e+00, -4.51666091e+00])}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ising_sw_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAD7CAYAAAB3/zV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABgsElEQVR4nO3dd3hUZdrH8e+dDqQAKbQQEiChIyUUKTaKWBDFhhUVRVfd1VVfV9e1l9V17R17RxcVQVhRUMRC7016gNAJvaTf7x8zuDEmIZCZOVPuz3XNNXPmPJnzmwzcmeec8zxHVBVjjDHGGGOMMTUX5nQAY4wxxhhjjAkW1sEyxhhjjDHGGA+xDpYxxhhjjDHGeIh1sIwxxhhjjDHGQ6yDZYwxxhhjjDEeYh0sY4wxxhhjjPGQCKcDeENSUpKmp6c7HcMYA8ydO3enqiY7ncNbrN4Y4z+s3hhjfKmymhOUHaz09HTmzJnjdAxjDCAi653O4E1Wb4zxH1ZvjDG+VFnNsVMEjTHGGGOMMcZDrINljDHGGHOcRGSQiKwQkdUiclcF66NF5BP3+pkiku5+/jIRWVDmVioinXyd3xjjedbBMsYYY4w5DiISDrwEnAG0BS4Rkbblmo0AdqtqS+AZ4AkAVf1QVTupaifgCmCdqi7wVXZjjPc4OgZLRAYBzwHhwBuq+ni59dHAe0BXIA+4WFVzfJ3TmONRVFREbm4u+fn5TkfxiZiYGFJTU4mMjHQ6SqWs5phgFko1x4/qTXdgtaquBRCR0cAQYFmZNkOAB9yPxwAvioioqpZpcwkw+ngChNLnDn712RtTKcc6WGX2+gwAcoHZIjJOVcsWpd/2+ojIMFx7fS72fVpjjl1ubi5xcXGkp6cjIk7H8SpVJS8vj9zcXDIyMpyOUyGrOSbYhUrN8bN60wTYWGY5F+hRWRtVLRaRvUAisLNMm4txdcT+QERGAiMB0tLS/rA+VD538LvP3phKOXmK4G97fVS1ENeem/LFZQjwrvvxGKCfeKh6/H7HkTGel5+fT2JiYtD/wQMQERITE/19D6pjNae01OqN8b5QqTkBUm+qTUR6AIdUdUlF61V1lKpmq2p2cvIfZ6APlc8dgu+zN/4nv6iEwuLSGr+Ok6cIemqvz3G58NXp5OQdIik2iuS4aJJjo0mKiyYpNoqk2GiS46JJinXd6teJIjws+AuX8bxQ+IN3RAC8V8dqzoezNvDk17/SpF5tmtStRWo91831uDZN6tWiXu3IQPgdGj8XKv+G/Oh9bgKalllOdT9XUZtcEYkAEnCdgnzEMODjmoTwo9+H14XSezW+99bP6/hwxgYm/qUvCbWP/zTUoLkO1tEOoZc3qH1DVm8/wM4DBew4UMjaHQfZeaCAggp6rWECjRJqkZ5Um/TEOmQkuW7pSXVoWq82URE2V4gxoeRY601WSizndm7Cpt2H2bjrEDPW5nGgoPh3bWpFhtPE3fFKq1+brAZxtG4YR1bDOOJjbKyBMX5qNpApIhm4OlLDgEvLtRkHDAemAxcA3x0ZfyUiYcBFQF+fJTbGVOhgQTGvT1vLCU3r1qhzBc52sDyx1+c3qjoKGAWQnZ191PNxru3bvKLX4EBBMTv2F7DzQCE7DxS4OmD7C8jdfZi1Ow/y1aIt7D1c9NvPhIcJTerW+l+nK7E2bRrF0yE1gdpRQdN/NSYYeKzmHGu96dE8kR7NE8v+PPsOF7Nx9yE27TnMpt2Hyd19mE17XMtzcnb/rgPWpG4tWjWMo1VDV6erVcM4mifF2s4dYxzmPtJ9MzAJ1+Q5b6nqUhF5CJijquOAN4H3RWQ1sAtXJ+yIk4CNRybJMMY4573p69l9qIhb+mXW+LWc7AHUaK+PN4gIcTGRxMVE0vyPpzn/ZvfBQtblHWTdjoPk5B1k3U7X/ZycXRwsLAFcR72yGsTROa0uJ6TWpVNaXTJT4uxUQ+NzV199NfPnz/9teevWrRQWFrJr164atQ1AflNzRISE2pEk1E6gfZOEP6xXVTbtOcyKrfv5det+Vrhv01buoNg9nisiTGiRHEu7xvF0Ta9Ht/T6tEyOJcxqjHFYqNUcVZ0ITCz33H1lHucDF1bys1OBnt7M5yuh9rmb4HKwoJjXf1zLyVnJdE6rV+PXc6yD5YG9Po6pVyeKenWi6FLuA1BVduwvYMnmvSzYsIcFuXuZuHgrH89yDfuoHRVOhyYJdGpal05N63JC07o0rlvLibdgQsjbb7/92+N169bRt29fRo0aVeO2gSaQao6IkFqvNqn1atOvTYPfni8sLmXdzoP8unXf/zpdq3by+XzXgbiEWpFkN6tHdnp9umfUo32TBKIjwp14CyaEWc0JTfa5m0D2wYz17DpYyC39a370Chweg1WTvT7+SERIiY/htPgYTmvt+lKkquTkHWLBxt0s3LiX+Rv38PbPORSWuMZ6ZSTV4ZRWyZzaKoUezevblyHjNTt37mTQoEHce++9nHPOOR5rG0gCveZERYT9dqrgEarKhl2HmJ2zm9nrdjF7/S6m/Lr9t/adUuuS7T7C1TW9no3nMj5jNSc02eduAs2hwmJGTVvLSVnJfzh4crxskJCXichv47PO65wKQEFxCcu37Gfe+t1MW7WDj2Zu4O2fc6gVGU7vlkmc2trV4bKjW8HjwfFLWbZ5n0dfs23jeO4f3K5abQ8dOsTgwYO56KKLuP766z3W1jhPRGiWWIdmiXW4oKurxuQdKGDO+t3MydnF7JzdjJq2lpenriEiTOiWXp9+bVLo16YBGUl1HE5vvMVqTmiyz92YY/fBjPXkHSz0yNirI6yD5YDoiPDfThO8pk8GhwtLmLE2j+9+3c53v25n8vJtALRuGMcprVI4tVUyXZvVIyLcBrSbY1dSUsKwYcNo3bo1Dz/88G/PHzx4kBtvvJGoqChOOeUULrvsskrbrl27lkcffZS9e/cyZswYJ96GOQaJsdGc3q4hp7drCMDhwhLmb9zNT6t2MmX5dh6ZsJxHJiyneVId+rVJ4bTWDchOr0ek1RjjAcdSRyprO3bsWCZMmMC+ffsYMWIEAwcO9Pn7MMfGE39r7HM3vnaosJjXflhL38wkujbzzNErAAnGC+5mZ2frnDlznI5xXFSVNTsO8P2vO/ju1+3MztlFcakSHxPBGe0bcWF2Kl2b1bPrQASA5cuX06ZNG6djcP3117NhwwbGjx9PRMT/9qm8//771K1bl8GDB3PxxRfzySefVNr2iAsuuKDKDlZF71lE5qpqtufekX8JxHqzcdchvvt1O1N+3c6MNXkUlpQSHxPBya1S6Nc6hVNaJVO3dpTTMc0x8veac0TZOnK0trt37+aOO+7gzTff/MM6qzcu/v65H8/fmqo+d/Cf92wC3+vT1vLoxOWMueFEstPrH/PPV1Zz7AiWnxERWqbE0TIljutOas7+/CJ+Xr2Tb5ZtY/yizXwyZyPNk+pwftdUzu+SSsOEGKcjGz/24IMPMnfuXKZOnfqHP2K5ubl06NABgPDw8CrbmuDStH5thvdKZ3ivdA4UFLuPbG3j+xXbGb9wM2ECPZsnMrRLKoPaNyQ22v49mOo5ljpSnbaPPPIIN910kzeiGg/y9N8a+9yNLxwuLOG1aWvo0zLpuDpXVbG/mn4uLiaSQe0bMah9Ix4eUsyExVsYMzeXJyet4KlvVtA3M5kLs1Pp36YBMZE2QYb5n5ycHB544AHS09Pp06fPb8+3atWKTz75hNTUVHJzc+nUqROlpaVVtjXBKzY6gkHtGzKofUNKS5WFuXuYsnw74xdt5o7/LOTesUsY1L4h53VuQu+WSXapCVOpo9WcY2mrqtx1112cccYZdOnSxWfvwRw7T/6tsc/d+NKHM9ez84DnZg4syzpYAaROdAQXZTflouym5Ow8yGfzcvlsbi43fzSfhFqRnHNCYy7MTqVDkwQ7hdCQnp5OVacADx06lJtvvpkJEyYwePBgRo8eXWnbvLw87rnnHubPn88///lP7r77bm9ENg4LCxM6p9Wjc1o9bh+YxbwNu/ls3ia+WriZL+ZvokF8NOd2asLQLqm/m8nQGDh6zSlbRz7++OMq277wwgtMnjyZvXv3snr1am644QZvRDYe4Mm/Nfa5G185XFjCqz+spVeLRLp5+OgV2BisgFdSqvyyZif/mZPLpKVbKSgupVWDOEb0yeDczk2IirBB604JxXPEbUxEcMovKuG7X7fz+bxcpq5wXey4XeN4hnZJ5ZwTGpMcF+10REPo1RyrNy6h9rlDaL5n41lv/rSOh79axicje9KjeeJxv46NwQpS4WFC38xk+mYms/dwEeMXbuajmRu487NFPDt5Jdef3IKLuzW10weNMcctJjKcMzs04swOjdh5oIDxCzfz+bxNPPzVMh6buJz+bVK4pncG3TPq29FzY4wxfi2/qIRXf1jDic0Ta9S5qop1sIJIQq1ILu/ZjMt6pDF15Q5e+m41949bygvfrWJEn+Zc3jONOLvIqDGmBpJio7m6dwZX985g5bb9fDY3l0/mbGTS0m20bxLPNb0zOLtjYzt6bowxxi99NHMDO/YX8MIlnb22DfsLGIREhFNbpfCfG05k9MietGkUzxNf/0rvx7/j6W9XsvtgodMRjTFBIKtBHHef2Ybpd/Xj0fPac7iwhNs+XUifJ77jxe9WsctqjTHGGD+SX1TCKz+soWfz+vT00tErsCNYQU1E6Nk8kZ7NE1m4cQ8vfb+a56es4o0f13J5z2Zc2yeDlHib5t2bVDVkTpkKxvGcpnpqRYVzWY9mXNItjWmrdvDmT+v49zcreeG71Qzt0oRremeQ2cAmxfCFUKk5Vm9+L1Q+d7DP3tTMx7NcR6+eH+a9o1dgHayQcULTuoy6MpsVW/fz8tTVvPHjWt75JYeLs5vyl36ZNkjdC2JiYsjLyyMxMTHo//CpKnl5ecTEWIc9lIWFCae0SuGUVims3Laft35ax2fzNvHxrI2clJXMiD4ZnJSZFPT/H5wSKjXH6s3vhcrnDvbZm5rJLyrhlalr6J5RnxNbeO/oFdgsgiErZ+dBXpu2hjFzc4mJDOe2AVlc0bMZEeF21qinFBUVkZubS35+vtNRfCImJobU1FQiI38/zi8UZ/Uy/5N3oICPZm7gvRnr2bG/gLaN4rnj9CxObZUS9F8GfS2Uao7Vm/8Jpc8dKv/sjTmad35exwPjl/HRtT3o1TLJI69ZWc2xDlaIW7PjAA+MW8qPq3bSumEcDw1pT/cMz18PwISuUPzCY/6ooLiEcQs288J3q9mw6xBd0upyx+mt6NXCM3/kjAGrN8aYiuUXlXDyk9/TrH4dPrm+p8d28FVWc+xwRYhrkRzLe9d059XLu7A/v5iLXpvOXz9ZwPZ9obEnzBjjG9ER4VyY3ZQpt5/Mo+e1Z/OefC59fSaXvTGDeRt2Ox3PGGNMEPtk9ka27Svglv6ZPjl7wjpYBhFhUPtGTL7tZG4+tSUTFm3htKd+4I0f11JUUup0PGNMEIkMD+OyHs2Y+n+n8I+z2vDrlv0MffkXrn13Nss273M6njHHTEQGicgKEVktIndVsD5aRD5xr58pIull1nUUkekislREFouIDS4yxsMKil1jr7Kb1aOXl8deHWEdLPObWlHh3HF6Kyb99SSy0+vxyITlnPX8j0xfk+d0NGNMkImJDOfavs2Zduep3DEwi5nrdnHm8z9y80fzWLPjgNPxjKkWEQkHXgLOANoCl4hI23LNRgC7VbUl8AzwhPtnI4APgBtUtR1wClDko+jGhIz/zMll6758bu2f5bOxv9bBMn+QkVSHt6/qxqgrunKosIRLXp/Bnz+ez9a9dtqgCUwiUl9EvhWRVe77epW0+1pE9ojIV77OGKrqREdw82mZ/HTnadx8aku++3U7A57+gf/7z0I27znsdDxjjqY7sFpV16pqITAaGFKuzRDgXffjMUA/cX3LGwgsUtWFAKqap6olPsptTEgoLVXe+nkdHZok0Lulb45egXWwTCVEhIHtGjL5tpO5pV8mk5Zupd9TU/lsbq7T0Yw5HncBU1Q1E5jiXq7Ik8AVPktlfpNQO5I7Tm/FtDtP5ereGXy5cDP9nvqBV6auobDYTlU2fqsJsLHMcq77uQrbqGoxsBdIBLIAFZFJIjJPRO70QV5jQsq0VTtYu+Mg1/RJ9+nMtdbBMlWKiQznrwOymPzXk2nXJIHb/7OQ2z5ZwIGCYqejGXMsyu5Bfhc4t6JGqjoF2O+jTKYCSbHR3Ht2W6bcdjJ9M5N44utfOeO5afyyeqfT0YzxtAigD3CZ+/48EelXvpGIjBSROSIyZ8eOHb7OaExAe/vnHJLjojmrQ2Ofbtc6WKZa0hJr8/F1Pbm1fyZjF2xi8As/sWTTXqdjGVNdDVR1i/vxVqBBTV7MvvB4X9P6tRl1ZTZvXZVNUYly6Rsz7VRl4482AU3LLKe6n6uwjXvcVQKQh+to1zRV3amqh4CJQJfyG1DVUaqararZycnJXngLxgSn1dsP8MPKHVzeoxlREb7t8lgHy1RbeJhwa/8sPrquJ4cLSxj68i+8/fM6gvFaaibwiMhkEVlSwe134yHU9Q+2Rv9o7QuP75zWugHf/PUkbu3/v1OVbYZT40dmA5kikiEiUcAwYFy5NuOA4e7HFwDfuevQJKCDiNR2d7xOBpb5KLcxQe+dX9YRFR7GZT3TfL5tRzpY1RlwLiKdykxdukhELnYiq/mjns0TmXhLX/pmJvHg+GVc994cdh8sdDqWCXGq2l9V21dw+xLYJiKNANz3251Na45FTGQ4t/Z3narco3nibzOczlhrM5waZ7nHVN2Mq7O0HPhUVZeKyEMico672ZtAooisBm7DPQZUVXcDT+PqpC0A5qnqBB+/BWOC0t5DRXw2dxPndGpMUmy0z7fv1BGs6gw4PwRc6Z66dBDwrIjU9V1EU5X6daJ4Y3g29w9uy7SVOznjuR+ZaV92jP8quwd5OPClg1nMcUpLrM2bw7N5/cpsDhaUMGzUDNeF0ffbaYPGOao6UVWzVLWFqj7qfu4+VR3nfpyvqheqaktV7a6qa8v87Aeq2s69M8gmuTDGQz6Zs4HDRSVc3Tvdke071cE66oBzVV2pqqvcjzfj2uNs5+L4ERHh6t4ZfH5jL2pFhXPJ6zN4dvJKSkrtlEHjdx4HBojIKqC/exkRyRaRN440EpEfgf/gmkY5V0ROdyStqZSIMKBtAybfdjJ/Ps11YfR+//6Bj2dtsNOVjTHGUFxSyru/rKdHRn3aNU5wJINTHaxjGnAuIt2BKGBNFW1s0LlD2jdJYPyf+3BupyY8O3kVl74+wwaiG7/ivr5MP1XNdJ9KuMv9/BxVvbZMu76qmqyqtVQ1VVUnOZfaVKVWVDi3D3RdGL1DagJ3f76Ya9+dY0ezjDEmxH27bBub9hzm6t4ZjmXwWgfLUwPO3eMl3geuVtVKRzXboHNnxUZH8PTFnXjqwhNYvGkvZzw3jbnrdzkdyxgT5DKS6vDBiB7cP7gtP63eyaBnf+TrJVudjmWMMcYhb/+cQ2q9WgxoW6MJg2vEax0sTww4F5F4YAJwj6rO8FZW4znnd01l/J/7kFArkktfn8mkpfZFxxjjXWFhrtOVJ/ylD43rxnDDB3O54z8L2Z9f5HQ0Y4wxPrRk015m5eziql7phIf57sLC5Tl1iuBRB5y7pzv9AnhPVcf4MJupoRbJsXz2p160bhTPnz6Yy/vTc5yOZIwJAS1T4vj8T73582kt+XxeLoOetcl3jDEmlLz18zpqR4VzYXbTozf2Iqc6WNUZcH4RcBJwlYgscN86OZLWHLPE2Gg+vq4Hp7ZK4d4vl/Kvr3+1AejGGK+Ligjj9oGt+M8NvYgMF4a9PoN/TlxOQXGJ09GMMcZ40Y79BXy1cAsXdk0loVako1kiqlopIqm4LprXF2gMHAaW4Dpt779VjYmqiqrmAf0qeH4OcK378QfAB8fz+sY/1I6K4LUrunLvl0t4eeoatu7L54nzOxIZbte3NhXzVs0xoadrs3pMvKUvj05YzmvT1vLDyh08c3En2jSKdzqa8TNWd4wJDh/OXE9hSSnDe6U7HaXyI1gi8jbwFlAIPAFcAtwITMZ1XaqfROQkX4Q0gSsiPIzHzuvAbQOy+HzeJq55ZzYHCoqdjmX8kNUc42m1oyJ49LwOvH1VN/IOFjLkxZ959Yc1dikJ8xurO8YEh4LiEj6YsZ5TWyXTPDnW6ThVHsF6SlWXVPD8EuBz9xipNO/EMsFERPhLv0waxEfz9y+WcPFr03n76m6kxMU4Hc34F6s5xitObZ3CpFtP4p4vFvP4f39l+po8nhvWibq1o5yOZpxndceYIPDVwi3sPFDINX2cm5q9rKrO1ap0+iUR6a2qhaq62guZTJC6uFsab1yZzdodBxn68i+s2XHA6UjGv1jNMV5Tv04UL1/WhcfO68D0NXkMfvEnlm3e53Qs4zyrO8YEOFXlrZ/XkZkSS5+WSU7HAaruYC0XkXdFpKLjbC94K5AJbqe2TmH0yJ4cLizh/Fd+Ye763U5HMv7Dao7xKhHh0h5pfHJ9T4qKlaGv/MzY+ZucjmWcZXXHmAA3O2c3Szfv46re6Yg4NzV7WVV1sJYCucA8EelZbp1/pDcB6YSmdfn8xl7ua2XN4Bu7VpZxsZpjfKJzWj3G/7kPJ6TW5dZPFvDg+KUUldg8BiHK6o4xAe7tn9eRUCuSoZ1TnY7ymypPEVTVe3DN6vehiNwnIkfa2whhUyPNEuu4rpXVMI4/fTjPLkhswGqO8aHkuGg+uLYHI/pk8PbPOVz2+ky27893OpbxPas7xgSw3N2HmLR0K5d0T6NWVLjTcX5z1PmyVXUa0BVoA/woIuneDmVCQ1JsNB9e15MOTRL480fz+Xn1TqcjGT9gNcf4SmR4GPee3ZbnhnVi0aY9DH7hJzttOURZ3TEmML03fT0iwpUnNnM6yu9U1cH67dC4qu5R1UuAUcBPgH+9CxOwYqMjeOfqbmQk1eG69+bYl5vQZjXHOGJIpyZ8cWNvoiPCGTZqOh/MWG8XRg8dVneMCVCHCosZPWsDg9o3pHHdWk7H+Z2qOlivl39CVd8FTgL+47VEJuTUrR3F+yO6kxwXzdVvz7KZvUKX1RzjmDaN4hl/cx96t0ziH2OXcOeYReQXlTgdy3if1R1jAtRn8zaxL7+Ya3qnOx3lDyrtYKnqy5U8v1ZVb/BeJBOKUuJj+GBED+pER3DlWzNZt/Og05GMj1nNMU5LqB3JW8O78Zd+mfxnbi4XvjqdrXttXFYws7pjTGAqLVXe+XkdJ6Qm0CWtntNx/qDSDpaI7BeRfRXc9ouIHWIwHte0fm3eH9GDUoXL35jJpj2HnY5kfMhqjvEHYWHCbQOyeOPKbNbtPMjQl39m1bb9TscyXmJ1x5jA9OPqnazZcZCre2f4zdTsZVV1BCtOVeNVNR5Yc+Txked9mNGEkJYpsbx3TXf2HS7iijdmsvNAgdORjI9YzTH+pH/bBq7rZZUqF7w6ndk5u5yOZLzAE3VHRAaJyAoRWS0id1WwPlpEPnGvn3lkAg0RSReRwyKywH171bPvzpjg9c7P60iOi+bMDo2cjlKho84i6GajfY3PtG+SwFtXd2Pz3sNc+eYs9h4ucjqS8T2P1hwRqS8i34rIKvf9H84nEJFOIjJdRJaKyCIRudiTGUzgadc4gc//1IvE2Cguf2MmXy+xy0kEuWOuOyISDrwEnAG0BS4Rkbblmo0AdqtqS+AZ4Iky69aoaif3zU5JNKYacnYeZOrKHVzaPY2oiOp2ZXzLP1OZkNctvT6vXZHNqu37uead2RwqLHY6kglsdwFTVDUTmOJeLu8QcKWqtgMGAc+KSF3fRTT+qGn92oy5oRdtG8fzpw/n8v70HKcjGf/SHVjtHrNVCIwGhpRrMwR41/14DNBP/PGcJmMCxPsz1hMuwmU90pyOUqmIylaIyNAyi3XLLaOqn3stlTHAyVnJPD+sMzd9NI/r35/LG8OziY7wn4vIGc/ycs0ZApzifvwuMBX4W7nXX1nm8WYR2Q4kA3tqsF0TBOrXieKja3vy54/nce+XS9m6L587Brbyy/P+zbHxQN1pAmwss5wL9KisjaoWi8heING9LkNE5gP7gH+o6o8VZBwJjARIS/PfL5TG+MLBgmI+nbORMzs0IiU+xuk4laq0gwUMLvP4h3LLClgHy3jdGR0a8fj5HblzzCJu+XgBL17amYhwO/AapLxZcxqo6hb3461Ag6oai0h3IApYU8l6+8ITYmpFhfPq5V2598slvPT9GrbtK+CfQzsQafUo0Dn5XWcLkKaqeSLSFRgrIu1U9XeTa6jqKFzX5iI7O9uGbJiQ9sX8TezPL2Z4r3Sno1Sp0g6Wql7tyyDGVOai7KYcyC/moa+Wcdfni3nygo625zgI1bTmiMhkoGEFq+4ptx0VkUq/pIhII+B9YLiqllaS1b7whKCI8DAeO68DDeNr8czklew8UMBLl3ahTnRV+yqNP/PAd51NQNMyy6nu5ypqkysiEUACkKeuq1kXuHPMFZE1QBYwp4aZjAlKqsp703No3ySeLml1nY5TpapOEUwF0lX1J/fybUCse/VHqrraB/mMAeCaPhnsPVzEc1NW0bphHNf2be50JONhNa05qtq/itfeJiKNVHWLuwO1vZJ28cAE4B5VnXE878MENxHhlv6ZNIiP5u9fLOaS12fw1lXdSIqNdjqaOQ4e+K4zG8gUkQxcHalhwKXl2owDhgPTgQuA79w7epKBXapaIiLNgUxgrSfelzHBaPqaPFZuOxAQO9qrOrfhSaBumeXrgYO4Dpk/6MVMxlTo1v6ZnNG+IY9NXM7Pq3c6Hcd4njdrzpEvOLjvvyzfQESigC+A91R1TA23Z4LcsO5pvH5lNiu37eeCV35hfZ5dHD1A1ajuqGoxcDMwCVgOfKqqS0XkIRE5x93sTSBRRFYDt/G/SXZOAhaJyAJck1/coKp2PQBjKvHu9Bzq14li8AmNnY5yVFV1sFqp6ldllg+p6lOq+jBggw6Mz4kIT154Ai2SY7n5o3ls3HXI6UjGs7xZcx4HBojIKqC/exkRyRaRN9xtLsL1heeqMtel6VTD7Zog1q9NAz66rid7Dxdx/iu/sHyLXZc2ANW47qjqRFXNUtUWqvqo+7n7VHWc+3G+ql6oqi1VtbuqrnU//5mqtnNP0d5FVcd7+s0ZEyxydx/i22XbGNatKTGR/j/hWVUdrPJTc/Qr8zjJC1mMOarY6AhGXZlNcaly/ftzOVxY4nQk4zleqzmqmqeq/VQ1U1X7H9lLrKpzVPVa9+MPVDWyzDVpOqnqgpps1wS/Lmn1GPOnXkSGh3HZGzP5dat1sgKMfdcxJgB8MGMDIsLlPZs5HaVaqupg7ReRrCMLR76QiEhrYH9NN1ydC3+WaRsvIrki8mJNt2sCX0ZSHZ4b1onlW/dx9+eLcI0TNkHAqzXHGG9pkRzLx9f1JCo8jEtft05WgLG6Y4yfyy8qYfTsDQxs24DGdWs5Hadaqupg3Q98JSLDRaSD+3YVrrEM93tg29W58OcRDwPTPLBNEyROa92A2/pnMXbBZt76OcfpOMYzvF1zjPGa9KQ6jB7Zk8hw4dLXZ7Jiq303DxBWd4zxc+MWbGbPoSKuPDHd6SjVVmkHS1W/BobiOlz+jvt2KjBUVf/rgW2XvbL5u8C5FTVyXxuiAfCNB7ZpgshNp7ZkYNsGPDZxOb+ssUkvAp0Pao4xXuXqZJ3o7mTNYOU262T5O6s7xvg3VeWdX3Jo1SCOns3rOx2n2qq8QqKqLlHVK1W1q/s2XFWXeGjbR73wp4iEAU8Bd3homyaIhIUJT1/ciYykOtz80Xxyd9ukF4HOyzXHGK/LSKrDx9f1JDzM1claZZ0sv2d1xxj/NXf9bpZt2cfwXul+PzV7WZV2sETkdRHpUMm6OiJyjYhcVtWLi8hkEVlSwW1I2Xbui+1VNJDmRmCiquYe7Y2IyEgRmSMic3bs2HG05iZIxEZH8NoVXSkqLuWGD+aSX2STXgQqT9QcY/xB8+RYPh7ZkzARLrFOll+zumOMf3vnlxziYyI4t7P/T81eVlWXn38JuNddeJYAO3DNtpMJxANvAR9W9eIeuPDniUBfEbkR14X/okTkgKr+YbyWqo4CRgFkZ2fbrAchpEVyLM9c3Ilr35vD3Z8v5umLTgiovRzmNzWuOcb4ixbuTtawUTO45PWZjB7Zg5YpcU7HMn9kdccYP7VtXz5fL9nK1b3TqR1VVZfF/1Sa1j098UUiEgtkA42Aw8ByVV3hgW0fufDn41Ry4U9V/W2vkXvQaXZFnStj+rdtwF/7Z/HM5JV0TE3g6t4ZTkcyx8gHNccYnzoyu+Alr89g2CjrZPkjqzvG+K8PZ6ynRJUreqY7HeWYHbU7qKoHgKle2PbjwKciMgJYj+sin4hINq6rmV/rhW2aIPbn01qyeNNeHpmwnNYN4zmxRaLTkcxx8GLNMcbnWqa4OlnDRh3pZPWkZUqs07FMOVZ3jPEvBcUlfDRrA6e1SiEtsbbTcY5ZlZNceFN1LvxZrv07qnqz75OaQBEWJjxz8Qk0S6zNzR/NY9Oew05HMsYYWqbEMnpkD0C55PUZrN5+wOlIxhjj1/67eCs7DxQyvFe601GOi2MdLGO8IS4mklFXZFNQXMqNH8ylqKTU6UjGGEPLlDg+vq4nqq5O1oY8m/XUGGMq884vOTRPrkOflklORzkux9TBEpEwEYn3VhhjPKFlSiz/uqAjC3P38sKUVU7HMTVgNccEk8wGcXx0XU8Ki0sZ/vYsdh0sdDqSqYDVHWOctXDjHhZs3MPwE9MJCwvMScuO2sESkY9EJF5E6uCaYWeZiPyf96MZc/zO7NCIoZ2b8NLUNczbsNvpOOYYWM0xwSyrQRxvDs9m857DXPPObA4X2qUl/IHVHWP8x7u/5BAbHcH5XVOdjnLcqnMEq62q7gPOBf4LZABXeDOUMZ7wwJB2NIyP4bZPFnCosNjpOKb6rOaYoJadXp/nhnVmYe4e/vzxPIrtVGZ/YHXHGD+w80ABXy3awvldmhAbHVhTs5dVnQ5WpIhE4io641S1yLuRjPGM+JhInrywIzl5h3hs4nKn45jqs5pjgt6g9g158Jx2TF6+nXu/XIKqXb7RYVZ3jPEDH8/cQGFJKVcG6OQWR1Sng/UakAPUAaaJSDNgrzdDGeMpvVokcW2fDD6YsYHvV1R0LWvjh6zmmJBw5Ynp3HhKCz6etZEXvlvtdJxQZ3XHGIcVlZTy4cwN9M1MokVyYF/OojodrPGq2kRVz1TXLrYNwDVezmWMx9xxeiuyGsRy55hF7LZB5YHAao4JGf93eiuGdmnC09+u5NM5G52OE8qs7hjjsK+XbGXrvnyuCvCjV1C9DtZnZRfchWe0d+IY43kxkeE8c3En9hwq5J6xi+1UHP/n8ZojIvVF5FsRWeW+r1dBm2YiMk9EFojIUhG5oSbbNKY6RIQnzu9I38wk7v58sR1pd4591zHGQarKGz+upXlSHU5tleJ0nBqrtIMlIq1F5HwgQUSGlrldBcT4LKExHtCucQJ/HZDFxMVbGbtgk9NxTAW8XHPuAqaoaiYwxb1c3hbgRFXtBPQA7hKRxjXcrjFHFRkexiuXd6V1wzhu/GAeCzfucTpSyPBE3RGRQSKyQkRWi8gfaouIRIvIJ+71M0Ukvdz6NBE5ICJ3eOI9GROIZq3bxcLcvYzomxGwU7OXVdURrFbA2UBdYHCZWxfgOq8nM8bDrj+pBdnN6nHf2KVs2nPY6Tjmj7xZc4YA77ofv4trIPvvqGqhqha4F6OxC7EbH4qNjuDtq7uRGBvFNe/MZn3eQacjhYoa1R0RCQdeAs4A2gKXiEjbcs1GALtVtSXwDPBEufVP45q50JiQ9fqPa6lfJ4rzuwTu1OxlVTr/oap+CXwpIieq6nQfZjLGK8LDhKcv6sQZz03jjk8X8uG1PYJiL0mw8HLNaaCqW9yPtwINKmokIk2BCUBL4P9UdbOHcxhTqZS4GN69pjvnv/ILw9+axWd/6kVibLTTsYKaB+pOd2C1qq4FEJHRuHboLCvTZgjwgPvxGOBFERFVVRE5F1gHWI/ahKzV2w8wefl2bu2fSUxkuNNxPKI6E8yvFpG/A+ll26uqDf40ASctsTb3nt2Wuz5fzFs/r+Pavs2djmT+6LhqjohMBhpWsOqesgvuLzUVDsRT1Y1AR/epgWNFZIyqbqtgWyOBkQBpaWlVvxtjjkGL5FjeHN6NS1+fwTXvzuHj63pQOypwrwUTQI73u04ToOzsJLm4TjGusI2qFovIXiBRRPKBvwEDgEpPD7R6Y4Ldmz+tIzoijCt6NnM6isdUp2p/CfwITAbskvMm4F3crSmTl2/jX5NWcFJWMlkN4pyOZH7vuGqOqvavbJ2IbBORRqq6RUQaAVXOJKCqm0VkCdAX1x7n8utHAaMAsrOzbdYU41Fdm9XjhUs6c8MHc7n5o/m8fmU24Xa03duc+K7zAPCMqh4QqfzztXpjgtnOAwV8Ni+XC7qmBtUR++p0sGqr6t+8nsQYHxER/jm0I4Oencatoxcw9qbeREXYcBs/4o2aMw4YDjzuvv+yfAMRSQXyVPWwe5bBPrjGSxjjcwPbNeTBIe25d+wS/jXpV+4+o43TkYLd8dadTUDTMsup7ucqapMrIhFAApCH60jXBSLyL1xjwEpFJF9VXzyOHMYEpPemr6eopJQRfTKcjuJR1flW+ZWInOn1JMb4UHJcNP8c2oFlW/bx3JSVTscxv+eNmvM4MEBEVgH93cuISLaIvOFu0waYKSILgR+Af6vqYg/nMKbarujZjMt6pPHaD2sZv9CGA3rZ8dad2UCmiGSISBQwDNcOnbKO7OABuAD4Tl36qmq6qqYDzwKPWefKhJLDhSW8Pz2H/m0aBPyFhcurzhGsW4C/i0ghUAgIrmEM8V5NZoyXDWzXkIuyU3ll6hpOa51C12b1nY5kXDxec1Q1D+hXwfNzgGvdj78FOh7vNozxhvsHt2PF1v3cOWYRLZJjadvY/vR6yXHVHfeYqpuBSUA48JaqLhWRh4A5qjoOeBN4X0RWA7twdcKMCXlj5uWy+1AR1wXhePijHsFS1ThVDVPVGFWNdy9bhTdB4b7B7WhSrxa3f7qQ/CIbYugPrOYY8z9REWG8fHkX4mtFcP0Hc9h9sNDpSEGpJnVHVSeqapaqtlDVR93P3efuXKGq+ap6oaq2VNXuR2YcLPcaD6jqvz37rozxXyWlyls/reOEpnXpll7P6Tged9QOlrhcLiL3upebikh370czxvtioyP453kdyck7xMtT1zgdx2A1x5jyUuJiePXyrmzbW8BfRs+nuKTU6UhBx+qOMb41efk21u08yMi+zalqkpdAVZ0xWC8DJwKXupcP4LqonjFBoU9mEkM6NebVqWtYs+OA03GM1Rxj/qBzWj0ePrcdP67ayZOTVjgdJxhZ3THGh16ftpam9WtxersKL0sZ8KrTweqhqjcB+QCquhuI8moqY3zsH2e1JSYyjHu+WIyqzYLrMKs5xlTg4m5pXN4zjdem2aQXXmB1xxgfmbt+N3PW7+aa3hlEhAfnLM7VeVdFIhIOKICIJAN2foIJKslx0fztjNbMWLuLz+eVn2HX+JjVHGMqcd/Z7eiWXo87xyxi2eZ9TscJJlZ3jPGRN35cS3xMBBdlNz164wBVnQ7W88AXQIqIPAr8BDzm1VTGOOCSbml0SavLoxOX20ByZ1nNMaYSURFhvHRZFxJqRdqkF55ldccYH1ifd5BJS7dyec9m1ImuzmTmgak6swh+CNwJ/BPYApyrqv+pyUZFpL6IfCsiq9z3FU4fIiJpIvKNiCwXkWUikl6T7RpTlbAw4bGhHdh3uIh//ne503FCljdqjjHBJCUuhlcu72KTXniQ1R1jfOOtn9YRHiZc1Svd6SheVWkHS0Ti3ff1ge3Ax8BHwDb3czVxFzBFVTOBKe7lirwHPKmqbYDu7hzGeE3rhvGM6JvBp3NymbVul9NxQoqXa44xQcUmvfAMqzvG+M7ug4V8OieXIZ2akBIf43Qcr6rq2NxHwNnAXNznJLuJe7kmVwUbApzifvwuMBX4W9kGItIWiHBf/BNVtendjE/c0i+TrxZu4e9fLGbiX/oSFRGcAzD9kDdrjjFB5+JuaSzetJfXpq2lXZMEzjmhsdORApHVHWN85MOZ6zlcVBKUFxYur9IOlqqe7b7P8MJ2G6jqFvfjrUBFczRmAXtE5HMgA5gM3KWqFV4NVkRGAiMB0tLSPJ/YhIzaURE8fG47rnlnDq//uJabTm3pdKSQ4OWaY0xQuu/sdqzYup87xyykZXIsbRvbNbmPhdUdY3yjoLiEd35Zz8lZybRqGOd0HK+rzoWGzxORhDLLdUXk3Gr83GQRWVLBbUjZduqaE7uiebEjgL7AHUA3XHuRrqpse6o6SlWzVTU7OTn5aPGMqdJprRtwRvuGPD9lFevzDjodJ6Qcb80xJhQdmfSibq0orv9gDnsPFzkdKSBZ3THGu76cv5mdBwoYeVLwH72C6s0ieL+q7j2yoKp7gPuP9kOq2l9V21dw+xLXuc2NANz3FY2tygUWqOpaVS0GxgJdqpHXGI+4f3A7IsPDuPfLpXZtLN86rppjTKhKiYvh5cu7sHlPPv8Yu8Tq1fGxumOMl5SWKqN+XEubRvH0apHodByfqE4Hq6I2NZ1XcRww3P14OPBlBW1mA3Xd16IAOA1YVsPtGlNtDRNiuGNgFtNW7uCrRVuO/gPGU7xRc4wJal3S6nHbgCzGL9zMmLm5TscJRFZ3jPGSH1buYPX2A4w8KQMRcTqOT1SngzVHRJ4WkRbu29O4BoPWxOPAABFZBfR3LyMi2SLyBoB7rNUdwBQRWYxrwOnrNdyuMcfkihPT6ZiawIPjl9mpN77jjZpjTNC74eQW9Gxen/vHLWXtDpsX6hhZ3THGS0ZNW0vD+BjO7hg6E/FUp4P1Z6AQ+MR9KwBuqslGVTVPVfupaqb7VMJd7ufnqOq1Zdp9q6odVbWDql6lqnZFReNT4WHCY+d1YNfBAp6c9KvTcUKFx2uOMaEgPEx49uLOREWEccvoBRQW2/WxjoHVHWO8YOHGPUxfm8c1fdKJDA+dWZmPevhbVQ9S+XWqjAl67ZskMLxXOu/8ksP5XVLpnFbhdbGNh1jNMeb4NUyI4V/nd2Tk+3P59zcr+PuZbZyOFBCs7hjjHU9/u5J6tSO5pHtozfBdaQdLRJ5V1VtFZDwVzPKnqud4NZkxfuT2ga347+Kt/P2LJYy/uTcRIbQXxles5hjjGQPbNeTynmmMmraWPi2TOCnLZtatjNUdY7xnds4ufli5g7vPaE1cTKTTcXyqqiNY77nv/+2LIMb4s9joCB44py03fDCPt3/O4boQmWbUx7xWc0SkPq7TftKBHOAiVd1dSdt4XBPqjFXVmz2dxRhf+MdZbZm1bhe3fbqQr2/tS1JstNOR/JV91zHGC1SVf09aQVJsNFeemO50HJ+rajf8k+77M1X1h/I3X4Qzxp+c3q4hp7VO4dnJK9m+L9/pOMHImzXnLmCKqmYCU6j6VKCHgWk13J4xjoqJDOf5SzqzL7+I//vPQpu6vXI1rjsiMkhEVojIahH5Q20RkWgR+cS9fqaIpLuf7y4iC9y3hSJynufeljHO+mVNHjPX7eKmU1tQKyrc6Tg+V1UHq5GI9ALOEZHOItKl7M1XAY3xFyLCvWe3pbCklH9NWuF0nGDkzZozBHjX/fhd4NyKGolIV6AB8E0Nt2eM41o3jOcfZ7Xh+xU7ePvnHKfj+Ksa1R0RCQdeAs4A2gKXiEjbcs1GALtVtSXwDPCE+/klQLaqdgIGAa+JiE0NbwKeqvLvb1bQKCEm5MZeHVHVf+T7gHuBVOApXNOkH6G4rktlTEjJSKrDNX0yeO2HtVzesxmdmtZ1OlIw8WbNaaCqRy5mthVXJ+p3RCTMvd3LcV0+olIiMhIYCZCWFpp/PExguKJnM6at3Mnj//2VHs3r065xgtOR/E1N6053YLWqrgUQkdG4duiUvW7nEOAB9+MxwIsiIqp6qEybGCoYA2ZMIPp+xXbmb9jDY+d1ICYy9I5eQdVHsLao6hnAk6p6mqqeWuZmnSsTsv58WibJcdE8MG4ppaX299CDalRzRGSyiCyp4DakbDt1nStV0Qd3IzBRVY96lVZVHaWq2aqanZxsEwgY/yUi/OuCjtSrE8lfPp7PocJipyP5m5p+12kCbCyznOt+rsI2qloM7AUSAUSkh4gsBRYDN7jXGxOwVJWnvllJWv3aXJid6nQcx1TVwXrefX+uD3IYEzBioyP426DWLNi4hy/mb3I6TjCpUc1xX1OvfQW3L4FtItIIwH2/vYKXOBG4WURycA14v1JEHj+eLMb4k/p1onjmok6s3XmQh79advQfCC2OftdR1Zmq2g7oBtwtIjHl24jISBGZIyJzduzY4fuQxhyDSUu3snTzPm7plxlS170qr6pTBItEZBTQRESeL79SVf/ivVjG+LehnZvw/oz1PP71r5zeviGx0XbavAd4s+aMA4YDj7vvv6zg9S878lhErsI1NsKui2OCQq+WSdxwcgtembqGvpnJnNmhkdOR/EVN684moGmZ5VT3cxW1yXWPsUoA8sptZ7mIHADaA3PKrRsFjALIzs620yaM3yopVZ7+diUtkutwbufyB3JDS1Vdy7OB74B8YG4FN2NCVliY8MDgtuzYX8BL3692Ok6w8GbNeRwYICKrcI2vehxARLJF5I0avrYxAeG2AVmc0LQud322iE17Djsdx1/UtO7MBjJFJENEooBhuHbolHVkBw/ABcB3qqrun4kAEJFmQGtcl5EwJiB9tWgzK7cd4K8DsggPk6P/QBCrdLe7qu4ERovIclVd6MNMxgSEzmn1OL9LKm/+uI6Ls5uSnlTH6UgBzZs1R1XzgH4VPD8HuLaC598B3vFkBmOcFhkexvPDOnHW8z/x19ELGD2yJ2Eh/iWopnVHVYtF5GZgEhAOvKWqS0XkIWCOqo4D3gTeF5HVwC5cnTCAPsBdIlIElAI3uvMYE3CKS0p55tuVtG4Yx5nt7Qh5dU6OPCwiU0RkCYCIdBSRf3g5lzEB4W+DWhEZLjwyYbnTUYKJ1RxjvKRZYh0eOKcds3J28d70HKfj+JPjrjuqOlFVs1S1hao+6n7uPnfnClXNV9ULVbWlqnY/MuOgqr6vqu1UtZOqdlHVsV56b8Z43efzNpGTd4jbB7YK+R03UL0O1uvA3UARgKou4n97X4wJaSnxMdx8WiaTl29j2kobfOwhVnOM8aLzuzThlFbJPPH1CjbuOnT0HwgNVneMOU4FxSU8N2UVJ6Qm0L9NitNx/EJ1Oli1VXVWuedsGlFj3K7pk056Ym0e+moZRSWlTscJBlZzjPEiEeGx8zoQHib87bNFuK5cEPKs7hhznD6dvZFNew5z+8BWiNjRK6heB2uniLTAfd0YEbkA2FL1jxgTOqIjwvnHWW1Zvf0A701f73ScYGA1xxgva1y3Fn8/sw2/rMlj9OyNR/+B4Gd1x5jjkF9UwgvfraZ7en36ZiY5HcdvVKeDdRPwGtBaRDYBtwI3eDOUMYGmX5sUTspK5tnJK8k7UOB0nEBnNccYH7ike1N6tUjk0QnL2WyzClrdMeY4fDBjPdv3F3D7wCw7elXGUTtYqrpWVfsDyUBrVe2jqrab3pgyRIT7zm7D4cIS/v3NSqfjBDSrOcb4hojw+NCOlJQq93yxOKRPFbS6Y8yxO1hQzMtT19A3M4kezROdjuNXjtrBEpEEEXka+AH4XkSeEpEE70czJrC0TInjyhPTGT17A0s27XU6TsCymmOM76Ql1ubOQa34fsUOvphf/vq4ocPqjjHH7p1fcth1sJDbBmQ5HcXvVOcUwbeA/cBF7ts+4G1vhjImUN3SP5P6taN4cPzSkN4bXENWc4zxoeEnppPdrB4Pjl/G9v35TsdxitUdY47B3sNFvPbDGvq1TqFzWj2n4/id6nSwWqjq/e7D52tV9UGgubeDGROIEmpFcsfprZids5vxi2x89HGymmOMD4WFCU9c0JHDRSXcO3ZJqO4csrpjzDF488e17Msv5q929KpC1b3QcJ8jCyLSGwj50bDGVOai7Ka0axzPPycu51ChzfJ7HKzmGONjLZJjuW1AFpOWbmPi4q1Ox3GC1R1jqmnH/gLe/GkdZ3ZoSPsmdiZtRarTwfoT8JKI5IhIDvAiHphZR0Tqi8i3IrLKfV/h8UUR+ZeILBWR5SLyvNgUJcbPhYcJD5zTji1783l16hqn4wQir9QcY0zVru2TQcfUBO77cgm7DhY6HcfXrO4YU02PTlhGYUkptw1o5XQUv1WdWQQXqOoJQEego6p2VtWFHtj2XcAUVc0EpriXf0dEegG93dtuD3QDTvbAto3xqm7p9TnnhMa8Nm0tubsPOR0noHix5hhjqhARHsa/LujIvvwiHhy/1Ok4PmV1x5jq+WnVTsYu2MyfTm5By5RYp+P4rerMIviYiNRV1X2quk9E6onIIx7Y9hDgXffjd4FzK2ijQAwQBUQDkcA2D2zbGK+764zWiMDj//3V6SgBxYs1xxhzFK0bxnPzqZl8uWAz3y4LnT+3VneMObr8ohLu/XIJ6Ym1ufHUlk7H8WvVOUXwDFXdc2RBVXcDZ3pg2w1U9cgsAFuBBuUbqOp04HtcV1PfAkxS1eUe2LYxXte4bi1uOLkFXy3awqx1u5yOE0i8VXOMMdXwp1Na0LphHPd8sZi9h4ucjuMrVneMOYqXp65h3c6DPHJuB2Iiw52O49eq08EKF5HoIwsiUgvX0aSjEpHJIrKkgtuQsu3UNWXRH6YtEpGWQBsgFWgCnCYifSvZ1kgRmSMic3bs2FGdeMZ43fUntaBxQgwPjl9KSWlIzsx1PI675hhjai4qIownLziBvIOFPDphmdNxfMXqjjFVWL39AK9MXc2QTo3pk5nkdBy/V50O1ofAFBEZISIjgG/536l9VVLV/qravoLbl8A2EWkE4L7fXsFLnAfMUNUDqnoA+C9wYiXbGqWq2aqanZycXJ14xnhdrahw7jqzDUs372PM3I1OxwkUx11zjDGe0SE1getPas6nc3KZtjIkdlpa3TGmEqrKPV8splZkOP84q63TcQJCdSa5eAJ4BNeRpDbAw6r6Lw9sexww3P14OPBlBW02ACeLSISIROKa4MJOETQBZXDHRmQ3q8eTk1awPz9kTrc5bt6oOccwa2mJiCxw38bVZJvGBLq/9MukRXId7v58MYcLS5yO41Ve/K5jTMD7bN4mZq7bxd/OaE1ynB3YrY7qHMFCVb9W1Tvct0ke2vbjwAARWQX0dy8jItki8oa7zRhgDbAYWAgsVNXxHtq+MT4hItw/uB15Bwt58bvVTscJCF6oOUedtdTtsKp2ct/O8cB2jQlYMZHhPHZeBzbtOcwrU4O/dnnpu44xAW33wUIem7icLml1uaRbmtNxAka1OljeoKp5qtpPVTPdpxLucj8/R1WvdT8uUdXrVbWNqrZV1ducymtMTXRITeDCrqm89fM61u086HScUFSdWUuNMeX0aJ7IuZ0a8+q0teRY7TIm5Pzzv8vZd7iIx4Z2ICzMLkVbXY51sIwJNXec3oroiHAenWBnuTrgqLOWusW4J8uZISLn+iaaMf7t72e2ISo8jAfHL8U1J5UpS0QGicgKEVktIhVd0zNaRD5xr58pIunu5weIyFwRWey+P83n4Y2pwsy1eXw6J5cRfTNo3TDe6TgBxTpYxvhISlwMN5/WksnLt/HjqpAYNO5TNZ211K2ZqmYDlwLPikiLSrZls5aakJESH8Ot/TP5fsUOJi+vaD6q0CUi4cBLwBlAW+ASESk/C8AIYLeqtgSeAZ5wP78TGKyqHXCNRX/fN6mNObrC4lLuGbuEJnVrcUu/TKfjBJyIozUQkcX88cvIXmAO8Iiq5nkjmDHB6Ore6Xw8awMPjV/Gf2/pS0S47eMo73hrjqr2r+I1t4lII1XdUsWspajqJvf9WhGZCnTGNQ60fLtRwCiA7Oxs26Vvgt7wXul8OmcjD45fSt/MpKC7Bk4Nvut0B1ar6lr364zGdUpy2fnthwAPuB+PAV4UEVHV+WXaLAVqiUi0qhbU6M0Y4wGjpq1h9fYDvHVVNrWjjtpdMOVU59vdf4EJwGXu23hcBWcr8I7XkhkThKIjwrnnzDas2n6AD2ducDqOv/JGzTnqrKUiUu/IdXBEJAnoze+/JBkTsiLDw3hoSHtydx/m5al/2OcQDI637jQByl6DI9f9XIVtVLUYV8ctsVyb84F5FXWu7Ii58bX1eQd54bvVnNG+Iae1ruyMelOV6nRJ+6tqlzLLi0Vknqp2EZHLvRXMmGA1oG0DerdM5OlvV3LOCY2pVyfK6Uj+xhs153HgU/f1bdYDF4Fr1lLgBvfEOm2A10SkFNfOp8dV1TpYxrj1bJ7IkE6NefWHNZzfpQnNEus4HcmTHPuuIyLtcJ02OLCi9XbE3PiSqvKPsUuIDA/j/sHtnI4TsKpzBCtcRLofWRCRbsCRcwOKvZLKmCAmItx3djv25xfx7OSVTsfxRx6vOdWctfQXVe2gqie479+s6RsxJtj8/cw2RIYJD4wLugkvjrfubAKalllOdT9XYRsRiQASgDz3cirwBXClqgbloUETWMYv2sKPq3Zyx8AsGibEOB0nYFWng3Ut8KaIrBORHOBN4DoRqQP805vhjAlWrRrGcXnPZnwwcwMrt+13Oo6/sZpjjJ9qEB/DXwdkBeOEF8dbd2YDmSKSISJRwDBcpySXVfYU5QuA71RVRaQurtMS71LVnz33Vow5PnsPF/HQ+GV0TE3gihPTnY4T0I7awVLV2e4ZbjoBJ6hqR1WdpaoHVfVTryc0Jkj9tX8WsdERPPzVsmDbE1wjVnOM8W/De6WT1SCWB8cvJb+oxOk4HnG8dcc9pupmYBKwHPhUVZeKyEMicuRi5W8CiSKyGriN/13o/GagJXCfiCxw31K88w6NObp/ff0ruw4W8Nh5HQi3a17VSHVmEYzGNfgyHYgQcf3CVfUhryYzJsjVqxPFX/tn8sD4ZUxevp0BbW0gKVjNMcbfRYaH8eA57bnk9Rm8MnUNfx2Q5XSkGqtJ3VHVicDEcs/dV+ZxPnBhBT/3CPBITXIb4ynf/7qdj2Zt4Kpe6bRvkuB0nIBXnVMEv8Q1xWgxcLDMzRhTQ5f1bEbLlFgenbCMguLg2BPsAVZzjPFzJ7ZI5JwTGvPKD2tYnxcU/z2t7piQtT7vILeMnk+bhvHceXprp+MEherMIpiqqoO8nsSYEBQZHsa9Z7dl+FuzeOunHP50SoXXtQ01VnOMCQD3nNWGKcu38dD4Zbx5VTen49SU1R0Tkg4XlnD9+3MREV67oiu1ooLrGndOqc4RrF9EpIPXkxgTok7OSmZg2wY8P2UVubsPOR3HH1jNMSYANIiP4db+WUz5dTuTl21zOk5NWd0xIUdVufvzRazYtp/nhnWiaf3aTkcKGtXpYPUB5orIChFZJCKLRWSRt4MZE0ruP6cdInD/l0E39fHxsJpjTIC4qnc6mSmxPPhVwE94YXXHhJx3f8lh7ILN3NY/i1Na2fwqnlSdUwTP8HoKY0Jck7q1+Gv/LB6duJxJS7cxqH1DpyM5yWqOMQEiMjyMB4e049LXZwb6hBdWd0xImZ2zi0cmLKd/mxRuOrWl03GCTqVHsEQk3v1wfyU3Y4wHXd07nTaN4nlg3FIOFITeNbyt5hgTmHq1SGKwe8KLDXmBdZqz1R0Tirbvy+fGD+eRWq8WT13UiTCbkt3jqjpF8CP3/Vxgjvt+bpllY4wHRYSH8eh57dm2P59nvl3pdBwnWM0xJkDdc2YbIsOEh75a5nSUY2V1x4SUopJSbvpoHgfyi3ntimwSakU6HSkoVXqKoKqe7b7P8F0cY0Jbl7R6XNo9jbd/Xsd5nZuE1LUorOYYE7gaJsRw02kt+dfXK5i+Jo8TWyQ6HalarO6YUPPohOXMztnN85d0plXDOKfjBK2jTnIhIr1FpI778eUi8rSIpHk/mjGh6c5BralfJ4p7vlhMSWnoTXhhNceYwHRN7wwaJ8Tw2MTllAZY7bK6Y0LBF/NzeeeXHEb0yeCcExo7HSeoVWcWwVeAQyJyAnA7sAZ436upjAlhCbUiuffstizM3ctHM9c7HccJVnOMCUAxkeHccXorFm/ay/hFm52Oc6ys7pigtmzzPu7+fDHdM+pz1xl2MWFvq04Hq1hd80YPAV5U1ZcAO6ZojBedc0Jj+rRM4l9fr2D7vnyn4/ia1RxjAtS5nZrQrnE8//p6RaBN2251xwStvYeKuOGDuSTUiuSlS7sQGV6dr/+mJqrzG94vIncDlwMTRCQMsBFxxniRiPDwue0pKCkNxEHjNWU1x5gAFRYm/P3MNmzac5h3f8lxOs6xsLpjglJpqXLrJ/PZsvcwr1zeleS4aKcjhYTqdLAuBgqAEaq6FUgFnvRqKmMMGUl1uOmUlny1aAs/rNzhdBxfsppjTADr3TKJU1sl8+L3q9l9sNDpONVldccEpee/W8X3K3Zw3+B2dEmr53SckHHUDpaqblXVp1X1R/fyBlV9ryYbFZELRWSpiJSKSHYV7Qa5r6q+WkTuqsk2jQlEN5zSnOZJdbh37JJAO93muHmj5hhjfOvuM9twsKCYF75b7XSUarG6Y4LRmz+t49nJqzi/SyqX97A5W3ypqgsN7xeRfRXc9ovIvhpudwkwFJhWxfbDgZdwXV29LXCJiLSt4XaNCSjREeE8cl57Nuw6xIsB8kXleHmz5ohIfRH5VkRWue8r3I0nImki8o2ILBeRZSKSXpPtGhOqshrEcVF2U96fkcP6vINOx6mUl7/rGOOYl75fzcNfLeOM9g3559AOiNjFhH2p0g6WqsapanwFtzhVja/s56pDVZer6oqjNOsOrFbVtapaCIzGNfjUmJDSq0USQzs34bVpa1i9fb/TcbzGmzUHuAuYoqqZwBT3ckXeA55U1Ta4atD2Gm7XmJB124AsIsLC+NfXR/tz7xwv1x1jfE5VefrblTw5aQVDOjXmhUs6ExVhk1r4mj//xpsAG8ss57qfq5CIjBSROSIyZ8eOkBqvYkLA389qQ+2oCO75Ygmuia7MMRoCvOt+/C5wbvkG7iPkEar6LYCqHlDVQz5LaEyQSYmPYeRJzZmweAtz1+92Oo4xQU9VefzrX3l+yiouyk7l6Ys6EWEzBjrCa791EZksIksquHnlKJSqjlLVbFXNTk5O9sYmjHFMUmw0d53RmpnrdjFmbq7TcQJRA1Xd4n68FWhQQZssYI+IfC4i80XkSfepyn9gO3SMqZ6RJzUnOS6axyYut51DxniRqvLg+GW89sNaLu+ZxuNDOxIeZqcFOsVrHSxV7a+q7Su4fVnNl9gENC2znOp+zpiQdHF2U7o2q8djE5cH0sxcPlPdnTrua91U9E0vAugL3AF0A5oDV1W0LduhY0z11ImO4LYBWcxdv5tJS7c6HccrjjYhl4hEi8gn7vUzj4ztFJFEEfleRA6IyIs+D26CRmmpcs/YJbzzSw4j+mTw8JD2hFnnylH+fNxwNpApIhkiEgUMA8Y5nMkYx4SFCY+e1579+cXcM3ax7Q0u5yg7dbaJSCMA931FY6tygQXucZ/FwFigi8/egDFB6sKuqWSmxPL4f3+lsLjU6TgeVc0JuUYAu1W1JfAM8IT7+XzgXlw7dYw5LiWlyv+NWcRHMzdw06kt+MdZbWxCCz/gSAdLRM4TkVzgRFwX9Jvkfr6xiEwEcH/BuRmYBCwHPlXVpU7kNcZftG4Yzx2nt2Li4q28P2O903ECyThguPvxcKCiI+mzgboicuSQ1GlAyF3l2RhPiwgP4+4zW5OTd4iPZgZd3arOhFxlx4COAfqJiKjqQVX9CVdHy5hjVlRSyq2fLOCzebncNiCL/zu9tXWu/IQjHSxV/UJVU1U1WlUbqOrp7uc3q+qZZdpNVNUsVW2hqo86kdUYfzOyb3NObZXMI18tZ3HuXqfjBIrHgQEisgro715GRLJF5A0AVS3BtSd5iogsBgR43aG8xgSVU1ulcGLzRJ6bsop9+UVOx/Gk6kzI9Vsb987jvUBidTdgYz5NRQqKS7j5o3mMX7iZu89ozV/6ZTodyZThz6cIGmMqEBYmPHVRJxJjo7jpo3nB9mXFK1Q1T1X7qWqm+1TCXe7n56jqtWXafauqHVW1g6pe5d4jbYypIRHhnrPasPtQEa9MXeN0nIBiYz5NeflFJdzw/lwmLd3GA4Pbcv3JLZyOZMqxDpYxAah+nSheuKQzm/Yc5q7PFtl4LGOM32vfJIHzOjfhzZ/WsWnPYafjeEp1JuT6rY2IRAAJQJ5P0pmgs31fPle9PYupK3fw2HkduKp3htORTAWsg2VMgMpOr8//2XgsY0wAuX1gFgBPTfLfiw8fo+pMyFV2DOgFwHdqe8XMcZi8bBuDnvuRBRv38MxFnbi0R5rTkUwlrINlTACz8VjGmECSWq821/TO4IsFm1iyKfBrVmUTconIQyJyjrvZm0CiiKwGbgN+m8pdRHKAp4GrRCS3ghkIjeFwYQn/GLuYa9+bQ8P4GL76cx/O7Vx+qJ/xJ9bBMiaA2XgsY0ygufHUFtStFckTX//qdBSPqGhCLlW9T1XHuR/nq+qFqtpSVbur6toyP5uuqvVVNdY9+ZfNXGp+Z+nmvQx+8Sc+mLGB6/pm8MVNvWiZEud0LHMU1sEyJsDZeCxjTCCJj4nkplNb8uOqncxYa0ORjKlIaanyxo9rOe+lX9h3uIgPRvTgnrPaEh0R7nQ0Uw3WwTImCNh4LGNMILm8ZzNS4qJ5+puVtlPImHK27cvnyrdm8ciE5ZzcKpmvbz2JPplJTscyx8A6WMYECRuPZYwJFDGR4fz5tJbMytnFj6t2Oh3HGL8xaelWBj07jTnrd/HYeR0YdUVX6teJcjqWOUbWwTImSNh4LGNMILmoW1Oa1K3FU9+ssKNYJuQdKizm7s8Xc/37c2lSrxZf/bkvl/ZIQ0ScjmaOg3WwjAki9etE8eKlNh7LGOP/oiPC+Uu/lizM3cvk5dudjmOMI4pLSvnPnI0MfGYao2dv4PqTm/P5n3rTMiXW6WimBqyDZUyQ6dqsPnfaeCxjTAAY2iWV9MTaPPXNCkpLbYeQCR0lpcrY+ZsY8Mw0/m/MIurVjuKja3ty9xltiIqwr+eBzj5BY4LQdX2bc1rrFB75ajmzc3Y5HccYYyoUGR7Grf2z+HXrfiYu2eJ0HGO8rrRU+WrRZk5/dhq3frKA6IgwRl3RlXE39+bEFolOxzMeYh0sY4JQWJjw1IUn0LhuDFe8OZMpy7c5HckYYyo0+ITGZKbE8vS3KykuKXU6jjFeoapMWrqVM5//kZs/mg/AS5d2YeJf+jKwXUMbaxVkrINlTJCqVyeKMX/qRWZKHCPfn8unszc6HckYY/4gPEy4bUAWa3cc5MsFm52OY4xHqSrf/bqNwS/+xPXvz6WguJTnhnVi0q0ncVbHRoSFWccqGEU4HcAY4z1JsdGMHtmTGz6Yy52fLWL7/nxuOrWl7SkzxviV09s1pF3jeJ6dspJzOjUmMtz2/5rAVlhcytQV23l56hoWbNxD0/q1+PeFJ3Bup8ZE2L/voGcdLGOCXJ3oCN4c3o2/fbaIf3+zku37C7h/cDvCba+ZMcZPhIUJtw/M4pp35vCfOblc2iPN6UjGHLPSUmXuht2Mnb+JCYu3sOdQEY0TYvjn0A5c0DXVdhyEEOtgGRMCoiLCeOrCE0iOi2bUtLXsPFDA0xd1IiYy3OloxhgDwKmtUuicVpcXvlvF0C5NrD6ZgLFq237GLtjE2Pmb2bTnMDGRYQxo25BzOzXmpKxk61iFIOtgGRMiwsKEv5/ZhpS4aB6ZsJy8A7MYdWU2CbUinY5mjDGICHcMbMVlb8zk41kbuLp3htORjKnU1r35jFvo6lQt27KPMIE+mcncPjCLge0aEhttX7FDmX36xoSYa/s2Jzkumjv+s5CLX5vOu9d0p0F8jNOxvEpE6gOfAOlADnCRqu4u1+ZU4JkyT7UGhqnqWN+kNMb0apFIz+b1een7NVzcrSm1o+xrivEPpaXKr1v3M2tdHt8s28b0tXmowglN63L/4Lac3bExyXHRTsc0fsIqlzEhaEinJtSvE8UN789l6Mu/8O413YP9qvF3AVNU9XERucu9/LeyDVT1e6AT/NYhWw184+OcxoQ0EeH2ga248NXpvDd9PTec3MLpSCZEFRaXsnjTXmbn7GLWul3MydnFvvxiADKS6vCX0zI5t3MTMpLqOJzU+CPrYBkTovpmJjN65Ilc/c4sLnz1F968qhtd0uo5HctbhgCnuB+/C0ylXAernAuA/6rqIe/GMsaU1y29PidnJfPqD2u4rEcacTF2GrPxvkOFxczfsIdZ61wdqvkbd5Nf5LouW4vkOpzVsTE9MurTLaM+TerWcjit8XeOdLBE5ELgAaAN0F1V51TQpinwHtAAUGCUqj7ny5zGBLsOqQl89qdeXPnWLC59fQbDuqVxXucmdExNCLap3Buo6hb346246kpVhgFPV7ZSREYCIwHS0my2M2M87faBWZzz4s+89VMOt/TPdDqOCSKHCotZu+Mga3YcYM2Og6zZfoA1Ow6wevsBikuVMIG2jeO5pHsaPTLqk51en6RYO/XPHBunjmAtAYYCr1XRphi4XVXniUgcMFdEvlXVZT5JaEyIaJZYhzE39OKB8Uv5aOYG3vklh4ykOgzp1JhzOzUhPUBOfxCRyUDDClbdU3ZBVVVEtIrXaQR0ACZV1kZVRwGjALKzsyt9LWPM8emYWpeBbRvwxo9rGd6rGXVrRzkdqVIiMgh4DggH3lDVx8utj8a1w7grkAdcrKo57nV3AyOAEuAvqlpp3THVl19Uwo79BWzac/i3ztORztSmPYd/axcmkFa/Ni2SYzmtdQrdM+rTtVk9O2pqasyRDpaqLgeq3EPu3tu8xf14v4gsB5oA1sEyxsOS46J56dIu7D1cxNdLtjB2/maem7KKZyev4oSmdTm3U2O/H8Crqv0rWyci20SkkapucXegtlfxUhcBX6hqkcdDGmOq7baBWZzx3I+MmraWOwe1djpOhUQkHHgJGADkArNFZFy5ncEjgN2q2lJEhgFPABeLSFtcR8vbAY2BySKSpaolvn0XgaGguIQD+cXsOVzE9n0FbN+fz479BWzfX8D2ffmue/fjI2OljqgVGU6LlDpkp9djWHJTWqTE0iI5lmaJte1yAMYrAmIMloikA52BmQ5HMSaoJdSK5OJuaVzcLY0tew8zfuFmvpi/mQfHL+ORCcvp0zKJczs3ZmDbhtQJrCloxwHDgcfd919W0fYS4G5fhDLGVK51w3jO7tiYt3/O4Zo+Gf56mlZ3YLWqrgUQkdG4xnyW7WANwTUsAmAM8KK49jAPAUaragGwTkRWu19vuo+yV4uqogqlqihQUqqumyolJUpxqVKq7vtS131JqVJcWkphcSkFxaUUFJVSWFJCQZF7ubiEguL/rT9cWMKBgmL25xezP7+I/fnF7uUiDhQUsy+/mMLi0grzRUWEkRIXTUpcNC2TY+nVItG9HEPDhBhapMTSKD6GsLCgOu3d+DmvfUOq6nQdVa3qy03514kFPgNuVdV9VbSzMRHGeFCjhFqMPKkFI09qwcpt+xk7fxNfLtjMXz9ZSK3IJYy6sit9M5OdjlldjwOfisgIYD2uo1SISDZwg6pe615OB5oCPziU0xhTxq39M5mwaDOvTF3DvWe3dTpORZoAG8ss5wI9KmujqsUishdIdD8/o9zPNqlpoF0HC+nzxHe/LWu5k5hd3SR+t15dK37rROlv9zVNUz0iEBsdQXxMJHExEcRGR5AUG0V6Uh3iYiJct+gI4mIiia8VQUpczG+dqPhaEcE2ZtgEAa91sKo6Xae6RCQSV+fqQ1X9/CjbszERxnhJVoM47hzUmjsGtmLO+t2MXbCJdo0TnI5VbaqaB/Sr4Pk5wLVllnPwwBccY4xntEiO5db+WbRtFO90FMcc6w7k6IgwLuvx+3blOyB/6I4IhIkguDo7ghDmXhDc68T1c+HhQkSYECau+/DwMMKPPC5ziwgToiLCiI4IJzoyjKjwMKIjXcuu5123qAjXOuskmWDit+f4uA+fvwksV9VKZ/MyxvhOWJjQPaM+3TPqOx3FGBMi/tLPr2cR3ITrqPcRqe7nKmqTKyIRQAKuyS6q87PHvAO5TnQE95zll0f7jAkZYU5sVETOE5Fc4ERggohMcj/fWEQmupv1Bq4AThORBe7bmU7kNcYYY4ypwGwgU0QyRCQK16QV48q1OTIGFFzX2PtOVdX9/DARiRaRDCATmOWj3MYYL3JqFsEvgC8qeH4zcKb78U9UcBTbGGOMMcYfuMdU3Yzrsg7hwFuqulREHgLmqOo4XGfjvO+exGIXrk4Y7naf4poQoxi4yWYQNCY4+O0pgsYYY4wx/k5VJwITyz13X5nH+cCFlfzso8CjXg1ojPE5R04RNMYYY4wxxphgZB0sY4wxxhhjjPEQ62AZY4wxxhhjjIdYB8sYY4wxxhhjPETUV5fp9iER2QGsr0bTJGCnl+PUVCBkhMDIGQgZIfhyNlPVZG+HcUqQ1RsIjJyBkBECI2cgZASrN8Ax1RsIjM82EDJCYOQMhIwQGDmPJWOFNScoO1jVJSJzVDXb6RxVCYSMEBg5AyEjWM5gFSi/r0DIGQgZITByBkJGCJyc/iQQfmeBkBECI2cgZITAyOmJjHaKoDHGGGOMMcZ4iHWwjDHGGGOMMcZDQr2DNcrpANUQCBkhMHIGQkawnMEqUH5fgZAzEDJCYOQMhIwQODn9SSD8zgIhIwRGzkDICIGRs8YZQ3oMljHGGGOMMcZ4UqgfwTLGGGOMMcYYj7EOljHGGGOMMcZ4SEh0sERkkIisEJHVInJXBeujReQT9/qZIpLuhxlvE5FlIrJIRKaISDNfZ6xOzjLtzhcRFRGfT8VZnYwicpH797lURD7ydUZ3hqN95mki8r2IzHd/7mc6kPEtEdkuIksqWS8i8rz7PSwSkS6+zuhvAqHeuHP4fc0JhHrj3r7f1xyrN8HJ6o3vMpZpZ/WmhhlDot6oalDfgHBgDdAciAIWAm3LtbkReNX9eBjwiR9mPBWo7X78J19nrG5Od7s4YBowA8j2t4xAJjAfqOdeTvHH3yWuQZZ/cj9uC+Q4kPMkoAuwpJL1ZwL/BQToCcz0dUZ/ugVCvTmGnI7WnECoN8fwu3S05li9Cc6b1RvfZnS3s3rjmYxBX29C4QhWd2C1qq5V1UJgNDCkXJshwLvux2OAfiIi/pRRVb9X1UPuxRlAqg/zHVGd3yXAw8ATQL4vw7lVJ+N1wEuquhtAVbf7OCNUL6cC8e7HCcBmH+ZzBVCdBuyqoskQ4D11mQHUFZFGvknnlwKh3kBg1JxAqDcQGDXH6k1wsnrjw4xuVm88kzHo600odLCaABvLLOe6n6uwjaoWA3uBRJ+kK7d9t4oyljUCV6/a146a030ItamqTvBlsDKq87vMArJE5GcRmSEig3yW7n+qk/MB4HIRyQUmAn/2TbRjcqz/doNdINSb32Vw88eaEwj1BgKj5li9CU5WbzzH6o3nWL0BIjwex3iViFwOZAMnO52lPBEJA54GrnI4ytFE4DqEfgquvWTTRKSDqu5xMlQFLgHeUdWnRORE4H0Raa+qpU4HM6HDX2tOANUbCIyaY/XGOM7qjUdYvfEDoXAEaxPQtMxyqvu5CtuISASuw5V5PklXbvtuFWVERPoD9wDnqGqBj7KVdbSccUB7YKqI5OA6Z3WcjweCVud3mQuMU9UiVV0HrMRVjHypOjlHAJ8CqOp0IAZI8km66qvWv90QEgj15ncZ3Pyx5gRCvYHAqDlWb4KT1RvPsXrjOVZvICQmuYgA1gIZ/G+wXbtybW7i94NAP/XDjJ1xDRrM9OffZbn2U/H9JBfV+V0OAt51P07CdQg40Q9z/he4yv24Da5zlMWBzz2dygeBnsXvB4HO8nU+f7oFQr05hpyO1pxAqDfH8Lt0tOZYvQnOm9Ub32Ys197qTc0yBn298ekbceqGayaQle7/vPe4n3sI114ScPWc/wOsBmYBzf0w42RgG7DAfRvnj7/Lcm2dKkBH+10KrkP9y4DFwDB//F3imlnnZ3dxWgAMdCDjx8AWoAjXXrERwA3ADWV+ly+538NiJz5vf7sFQr2pZk7Ha04g1Jtq/i4drzlWb4LzZvXGdxnLtbV6U7OMQV9vxP0ixhhjjDHGGGNqKBTGYBljjDHGGGOMT1gHyxhjjDHGGGM8xDpYxhhjjDHGGOMh1sEyxhhjjDHGGA+xDpYxxhhjjDHGeIh1sIwxxhhjjDHGQ6yDZfyaiKSKyMXlnntVRHpXtM4YY2rCao4xxles3gQv62AZf9cP6FLuuZ7AjErWGWNMTVjNMcb4itWbIGUXGjZeIyLDgb8AkcA+Ve1zjD/fB/gS2APsB4YC0cCDwPPl16nqWk9lN8YEHqs5xhhfsXpjqmIdLOMVIhIHzAQ6qWqhiNRV1T1l1v8IxFXwo3eo6uQy7b52P7fEvXwbsEdV3yq/zhgTuqzmGGN8xeqNORrrYBmvEJHawFLgK+BdVZ1znK+zDshU1WL38iTgalXdXH6dMSZ0Wc0xxviK1RtzNBFOBzDBSVUPiUh7YDAwSkTeUNWXj6yvzt4dEUkC9pYpPLWBuu7C87t17vUPAPWAPFV9yFvvzRjjf6zmGGN8xeqNORrrYBmvEJFMVV0FjBaRtkBM2fWq2rcaL5MObC6zfCrwfUXrRKQJrn/Pe4Dex5vbGBOYrOYYY3zF6o05GutgGW+5R0ROBA7iOox+3XG8xq9AkogsAUYCZwBjKll3LXALkAw0rWF2Y0zgsZpjjPEVqzemSjYGywQMEZkH9FDVogrW3Q7EA4nAClV9wdf5jDHBxWqOMcZXrN4EF+tgGWOMMcYYY4yH2IWGjTHGGGOMMcZDrINljDHGGGOMMR5iHSxjjDHGGGOM8RDrYBljjDHGGGOMh1gHyxhjjDHGGGM8xDpYxhhjjDHGGOMh1sEyxhhjjDHGGA+xDpYxxhhjjDHGeIh1sIwxxhhjjDHGQ/4f6I0kRKvPyOIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.clf();\n", + "fig = plt.figure(num=1);\n", + "fig.set_size_inches((12, 10))\n", + "\n", + "labels = [[0, 1], [1, 2],[0, 2]]\n", + "for i in range(3):\n", + " ax2 = plt.subplot(3, 3, i+1)\n", + " \n", + " plt.plot(s, ising_sw_dict[\"zz_\"+str(labels[i][0])+','+str(labels[i][1])]/2/np.pi, \n", + " label=r\"$Z_{0:d}Z_{1:d}$\".format(labels[i][0], labels[i][1]),ls=\"-\")\n", + " \n", + " plt.xlabel(r\"$s=t/t_a$\"); plt.ylabel(r\"Ising coefficients (GHZ)\")\n", + " plt.legend()\n", + "\n", + "\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check if the warning about $\\phi_z$ is working" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "phi_dict = {}; pts = 20;\n", + "s = np.linspace(0, 1, pts)\n", + "phi_dict[\"points\"] = pts\n", + "\n", + "phi_dict[\"phix_0\"] = np.linspace(0.73, 1, pts)*2*np.pi\n", + "phi_dict[\"phix_1\"] = np.linspace(0.5, 1, pts)*2*np.pi\n", + "phi_dict[\"phix_2\"] = np.linspace(0.73, 0.85, pts)*2*np.pi\n", + "phi_dict[\"phix_3\"] = np.linspace(0.5, 0.85, pts)*2*np.pi\n", + "phi_dict[\"phix_4\"] = np.linspace(0.75, 1, pts)*2*np.pi\n", + "\n", + "## Let's increase phi_z for qubits \n", + "phi_dict[\"phiz_0\"] = np.linspace(0.0, 0.02, pts)*2*np.pi\n", + "phi_dict[\"phiz_1\"] = np.linspace(0, 0, pts)*2*np.pi\n", + "phi_dict[\"phiz_2\"] = np.linspace(0, 0.02, pts)*2*np.pi\n", + "phi_dict[\"phiz_3\"] = np.linspace(0, 0, pts)*2*np.pi\n", + "phi_dict[\"phiz_4\"] = np.linspace(0, 0.02, pts)*2*np.pi" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/vinay/Dropbox (Lidar group)/Personal/USC/CAS/CAS/cas/circuit.py:487: UserWarning: Maximum allowed Phi_z for qubit 0 is 0.0133 x 2π\n", + " warnings.warn(\"Maximum allowed Phi_z for qubit {0} is {1:.4f} x 2π\".format(i,phi_z_cutoff/2/np.pi))\n", + "/Users/vinay/Dropbox (Lidar group)/Personal/USC/CAS/CAS/cas/circuit.py:487: UserWarning: Maximum allowed Phi_z for qubit 1 is 0.0133 x 2π\n", + " warnings.warn(\"Maximum allowed Phi_z for qubit {0} is {1:.4f} x 2π\".format(i,phi_z_cutoff/2/np.pi))\n", + "/Users/vinay/Dropbox (Lidar group)/Personal/USC/CAS/CAS/cas/circuit.py:487: UserWarning: Maximum allowed Phi_z for qubit 2 is 0.0133 x 2π\n", + " warnings.warn(\"Maximum allowed Phi_z for qubit {0} is {1:.4f} x 2π\".format(i,phi_z_cutoff/2/np.pi))\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 20min 18s, sys: 1min 37s, total: 21min 56s\n", + "Wall time: 6min 10s\n" + ] + } + ], + "source": [ + "%%time\n", + "ising_sw_dict = circuit.get_ising_sw(phi_dict, verbose=True, XX_YY=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}