forked from Yiangos01/ADE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestingCleansing.py
479 lines (414 loc) · 20.6 KB
/
testingCleansing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# -*- coding: utf-8 -*-
import nltk
import string
import csv
# coding=utf-8
import math, re, string, requests, json
from itertools import product
from inspect import getsourcefile
from os.path import abspath, join, dirname
import pandas as pd
import re
import string
##Constants##
# (empirically derived mean sentiment intensity rating increase for booster words)
B_INCR = 0.293
B_DECR = -0.293
# (empirically derived mean sentiment intensity rating increase for using
# ALLCAPs to emphasize a word)
C_INCR = 0.733
N_SCALAR = -0.74
# for removing punctuation
REGEX_REMOVE_PUNCTUATION = re.compile('[%s]' % re.escape(string.punctuation))
PUNC_LIST = [".", "!", "?", ",", ";", ":", "-", "'", "\"",
"!!", "!!!", "??", "???", "?!?", "!?!", "?!?!", "!?!?"]
NEGATE = \
["aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt",
"ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't",
"dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither",
"don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't",
"neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere",
"oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent",
"oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't",
"without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite"]
# booster/dampener 'intensifiers' or 'degree adverbs'
# http://en.wiktionary.org/wiki/Category:English_degree_adverbs
BOOSTER_DICT = \
{"absolutely": B_INCR, "amazingly": B_INCR, "awfully": B_INCR, "completely": B_INCR, "considerably": B_INCR,
"decidedly": B_INCR, "deeply": B_INCR, "effing": B_INCR, "enormously": B_INCR,
"entirely": B_INCR, "especially": B_INCR, "exceptionally": B_INCR, "extremely": B_INCR,
"fabulously": B_INCR, "flipping": B_INCR, "flippin": B_INCR,
"fricking": B_INCR, "frickin": B_INCR, "frigging": B_INCR, "friggin": B_INCR, "fully": B_INCR, "fucking": B_INCR,
"greatly": B_INCR, "hella": B_INCR, "highly": B_INCR, "hugely": B_INCR, "incredibly": B_INCR,
"intensely": B_INCR, "majorly": B_INCR, "more": B_INCR, "most": B_INCR, "particularly": B_INCR,
"purely": B_INCR, "quite": B_INCR, "really": B_INCR, "remarkably": B_INCR,
"so": B_INCR, "substantially": B_INCR,
"thoroughly": B_INCR, "totally": B_INCR, "tremendously": B_INCR,
"uber": B_INCR, "unbelievably": B_INCR, "unusually": B_INCR, "utterly": B_INCR,
"very": B_INCR,
"almost": B_DECR, "barely": B_DECR, "hardly": B_DECR, "just enough": B_DECR,
"kind of": B_DECR, "kinda": B_DECR, "kindof": B_DECR, "kind-of": B_DECR,
"less": B_DECR, "little": B_DECR, "marginally": B_DECR, "occasionally": B_DECR, "partly": B_DECR,
"scarcely": B_DECR, "slightly": B_DECR, "somewhat": B_DECR,
"sort of": B_DECR, "sorta": B_DECR, "sortof": B_DECR, "sort-of": B_DECR}
# check for special case idioms using a sentiment-laden keyword known to VADER
SPECIAL_CASE_IDIOMS = {"the shit": 3, "the bomb": 3, "bad ass": 1.5, "yeah right": -2,
"cut the mustard": 2, "kiss of death": -1.5, "hand to mouth": -2}
##Static methods##
def negated(input_words, include_nt=True):
"""
Determine if input contains negation words
"""
neg_words = []
neg_words.extend(NEGATE)
for word in neg_words:
if word in input_words:
return True
if include_nt:
for word in input_words:
if "n't" in word:
return True
if "least" in input_words:
i = input_words.index("least")
if i > 0 and input_words[i-1] != "at":
return True
return False
def normalize(score, alpha=15):
"""
Normalize the score to be between -1 and 1 using an alpha that
approximates the max expected value
"""
norm_score = score/math.sqrt((score*score) + alpha)
if norm_score < -1.0:
return -1.0
elif norm_score > 1.0:
return 1.0
else:
return norm_score
def allcap_differential(words):
"""
Check whether just some words in the input are ALL CAPS
:param list words: The words to inspect
:returns: `True` if some but not all items in `words` are ALL CAPS
"""
is_different = False
allcap_words = 0
for word in words:
if word.isupper():
allcap_words += 1
cap_differential = len(words) - allcap_words
if cap_differential > 0 and cap_differential < len(words):
is_different = True
return is_different
def scalar_inc_dec(word, valence, is_cap_diff):
"""
Check if the preceding words increase, decrease, or negate/nullify the
valence
"""
scalar = 0.0
word_lower = word.lower()
if word_lower in BOOSTER_DICT:
scalar = BOOSTER_DICT[word_lower]
if valence < 0:
scalar *= -1
#check if booster/dampener word is in ALLCAPS (while others aren't)
if word.isupper() and is_cap_diff:
if valence > 0:
scalar += C_INCR
else: scalar -= C_INCR
return scalar
class SentiText(object):
"""
Identify sentiment-relevant string-level properties of input text.
"""
def __init__(self, text):
if not isinstance(text, str):
text = str(text.encode('utf-8'))
self.text = text
self.words_and_emoticons = self._words_and_emoticons()
# doesn't separate words from\
# adjacent punctuation (keeps emoticons & contractions)
self.is_cap_diff = allcap_differential(self.words_and_emoticons)
def _words_plus_punc(self):
"""
Returns mapping of form:
{
'cat,': 'cat',
',cat': 'cat',
}
"""
no_punc_text = REGEX_REMOVE_PUNCTUATION.sub('', self.text)
# removes punctuation (but loses emoticons & contractions)
words_only = no_punc_text.split()
# remove singletons
words_only = set( w for w in words_only if len(w) > 1 )
# the product gives ('cat', ',') and (',', 'cat')
punc_before = {''.join(p): p[1] for p in product(PUNC_LIST, words_only)}
punc_after = {''.join(p): p[0] for p in product(words_only, PUNC_LIST)}
words_punc_dict = punc_before
words_punc_dict.update(punc_after)
return words_punc_dict
def _words_and_emoticons(self):
"""
Removes leading and trailing puncutation
Leaves contractions and most emoticons
Does not preserve punc-plus-letter emoticons (e.g. :D)
"""
wes = self.text.split()
words_punc_dict = self._words_plus_punc()
wes = [we for we in wes if len(we) > 1]
for i, we in enumerate(wes):
if we in words_punc_dict:
wes[i] = words_punc_dict[we]
return wes
class SentimentIntensityAnalyzer(object):
"""
Give a sentiment intensity score to sentences.
"""
def __init__(self, lexicon_file="vader_lexicon.txt"):
_this_module_file_path_ = abspath(getsourcefile(lambda:0))
lexicon_full_filepath = join(dirname(_this_module_file_path_), lexicon_file)
with open(lexicon_full_filepath) as f:
self.lexicon_full_filepath = f.read()
self.lexicon = self.make_lex_dict()
def make_lex_dict(self):
"""
Convert lexicon file to a dictionary
"""
lex_dict = {}
for line in self.lexicon_full_filepath.split('\n'):
(word, measure) = line.strip().split('\t')[0:2]
lex_dict[word] = float(measure)
return lex_dict
def polarity_scores(self, text):
"""
Return a float for sentiment strength based on the input text.
Positive values are positive valence, negative value are negative
valence.
"""
sentitext = SentiText(text)
#text, words_and_emoticons, is_cap_diff = self.preprocess(text)
sentiments = []
words_and_emoticons = sentitext.words_and_emoticons
for item in words_and_emoticons:
valence = 0
i = words_and_emoticons.index(item)
if (i < len(words_and_emoticons) - 1 and item.lower() == "kind" and \
words_and_emoticons[i+1].lower() == "of") or \
item.lower() in BOOSTER_DICT:
sentiments.append(valence)
continue
sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments)
sentiments = self._but_check(words_and_emoticons, sentiments)
valence_dict = self.score_valence(sentiments, text)
return valence_dict
def sentiment_valence(self, valence, sentitext, item, i, sentiments):
is_cap_diff = sentitext.is_cap_diff
words_and_emoticons = sentitext.words_and_emoticons
item_lowercase = item.lower()
if item_lowercase in self.lexicon:
#get the sentiment valence
valence = self.lexicon[item_lowercase]
#check if sentiment laden word is in ALL CAPS (while others aren't)
if item.isupper() and is_cap_diff:
if valence > 0:
valence += C_INCR
else:
valence -= C_INCR
for start_i in range(0,3):
if i > start_i and words_and_emoticons[i-(start_i+1)].lower() not in self.lexicon:
# dampen the scalar modifier of preceding words and emoticons
# (excluding the ones that immediately preceed the item) based
# on their distance from the current item.
s = scalar_inc_dec(words_and_emoticons[i-(start_i+1)], valence, is_cap_diff)
if start_i == 1 and s != 0:
s = s*0.95
if start_i == 2 and s != 0:
s = s*0.9
valence = valence+s
valence = self._never_check(valence, words_and_emoticons, start_i, i)
if start_i == 2:
valence = self._idioms_check(valence, words_and_emoticons, i)
# future work: consider other sentiment-laden idioms
# other_idioms =
# {"back handed": -2, "blow smoke": -2, "blowing smoke": -2,
# "upper hand": 1, "break a leg": 2,
# "cooking with gas": 2, "in the black": 2, "in the red": -2,
# "on the ball": 2,"under the weather": -2}
valence = self._least_check(valence, words_and_emoticons, i)
sentiments.append(valence)
return sentiments
def _least_check(self, valence, words_and_emoticons, i):
# check for negation case using "least"
if i > 1 and words_and_emoticons[i-1].lower() not in self.lexicon \
and words_and_emoticons[i-1].lower() == "least":
if words_and_emoticons[i-2].lower() != "at" and words_and_emoticons[i-2].lower() != "very":
valence = valence*N_SCALAR
elif i > 0 and words_and_emoticons[i-1].lower() not in self.lexicon \
and words_and_emoticons[i-1].lower() == "least":
valence = valence*N_SCALAR
return valence
def _but_check(self, words_and_emoticons, sentiments):
# check for modification in sentiment due to contrastive conjunction 'but'
if 'but' in words_and_emoticons or 'BUT' in words_and_emoticons:
try:
bi = words_and_emoticons.index('but')
except ValueError:
bi = words_and_emoticons.index('BUT')
for sentiment in sentiments:
si = sentiments.index(sentiment)
if si < bi:
sentiments.pop(si)
sentiments.insert(si, sentiment*0.5)
elif si > bi:
sentiments.pop(si)
sentiments.insert(si, sentiment*1.5)
return sentiments
def _idioms_check(self, valence, words_and_emoticons, i):
onezero = "{0} {1}".format(words_and_emoticons[i-1], words_and_emoticons[i])
twoonezero = "{0} {1} {2}".format(words_and_emoticons[i-2],
words_and_emoticons[i-1], words_and_emoticons[i])
twoone = "{0} {1}".format(words_and_emoticons[i-2], words_and_emoticons[i-1])
threetwoone = "{0} {1} {2}".format(words_and_emoticons[i-3],
words_and_emoticons[i-2], words_and_emoticons[i-1])
threetwo = "{0} {1}".format(words_and_emoticons[i-3], words_and_emoticons[i-2])
sequences = [onezero, twoonezero, twoone, threetwoone, threetwo]
for seq in sequences:
if seq in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[seq]
break
if len(words_and_emoticons)-1 > i:
zeroone = "{0} {1}".format(words_and_emoticons[i], words_and_emoticons[i+1])
if zeroone in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[zeroone]
if len(words_and_emoticons)-1 > i+1:
zeroonetwo = "{0} {1} {2}".format(words_and_emoticons[i], words_and_emoticons[i+1], words_and_emoticons[i+2])
if zeroonetwo in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[zeroonetwo]
# check for booster/dampener bi-grams such as 'sort of' or 'kind of'
if threetwo in BOOSTER_DICT or twoone in BOOSTER_DICT:
valence = valence+B_DECR
return valence
def _never_check(self, valence, words_and_emoticons, start_i, i):
if start_i == 0:
if negated([words_and_emoticons[i-1]]):
valence = valence*N_SCALAR
if start_i == 1:
if words_and_emoticons[i-2] == "never" and\
(words_and_emoticons[i-1] == "so" or
words_and_emoticons[i-1] == "this"):
valence = valence*1.5
elif negated([words_and_emoticons[i-(start_i+1)]]):
valence = valence*N_SCALAR
if start_i == 2:
if words_and_emoticons[i-3] == "never" and \
(words_and_emoticons[i-2] == "so" or words_and_emoticons[i-2] == "this") or \
(words_and_emoticons[i-1] == "so" or words_and_emoticons[i-1] == "this"):
valence = valence*1.25
elif negated([words_and_emoticons[i-(start_i+1)]]):
valence = valence*N_SCALAR
return valence
def _punctuation_emphasis(self, sum_s, text):
# add emphasis from exclamation points and question marks
ep_amplifier = self._amplify_ep(text)
qm_amplifier = self._amplify_qm(text)
punct_emph_amplifier = ep_amplifier+qm_amplifier
return punct_emph_amplifier
def _amplify_ep(self, text):
# check for added emphasis resulting from exclamation points (up to 4 of them)
ep_count = text.count("!")
if ep_count > 4:
ep_count = 4
# (empirically derived mean sentiment intensity rating increase for
# exclamation points)
ep_amplifier = ep_count*0.292
return ep_amplifier
def _amplify_qm(self, text):
# check for added emphasis resulting from question marks (2 or 3+)
qm_count = text.count("?")
qm_amplifier = 0
if qm_count > 1:
if qm_count <= 3:
# (empirically derived mean sentiment intensity rating increase for
# question marks)
qm_amplifier = qm_count*0.18
else:
qm_amplifier = 0.96
return qm_amplifier
def _sift_sentiment_scores(self, sentiments):
# want separate positive versus negative sentiment scores
pos_sum = 0.0
neg_sum = 0.0
neu_count = 0
for sentiment_score in sentiments:
if sentiment_score > 0:
pos_sum += (float(sentiment_score) +1) # compensates for neutral words that are counted as 1
if sentiment_score < 0:
neg_sum += (float(sentiment_score) -1) # when used with math.fabs(), compensates for neutrals
if sentiment_score == 0:
neu_count += 1
return pos_sum, neg_sum, neu_count
def score_valence(self, sentiments, text):
if sentiments:
sum_s = float(sum(sentiments))
# compute and add emphasis from punctuation in text
punct_emph_amplifier = self._punctuation_emphasis(sum_s, text)
if sum_s > 0:
sum_s += punct_emph_amplifier
elif sum_s < 0:
sum_s -= punct_emph_amplifier
compound = normalize(sum_s)
# discriminate between positive, negative and neutral sentiment scores
pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments)
if pos_sum > math.fabs(neg_sum):
pos_sum += (punct_emph_amplifier)
elif pos_sum < math.fabs(neg_sum):
neg_sum -= (punct_emph_amplifier)
total = pos_sum + math.fabs(neg_sum) + neu_count
pos = math.fabs(pos_sum / total)
neg = math.fabs(neg_sum / total)
neu = math.fabs(neu_count / total)
else:
compound = 0.0
pos = 0.0
neg = 0.0
neu = 0.0
sentiment_dict = \
{"neg" : round(neg, 3),
"neu" : round(neu, 3),
"pos" : round(pos, 3),
"compound" : round(compound, 4)}
return sentiment_dict
##BeingMaryJane LiveEvents, #BlackAdam news, #CCR17 news,#CookSchoolGBC liveEvents
#['#2Awesome','#bbcaq','#bbcfootball','#BeerBods','#BeingMaryJane','#BernieEcclestone','#Bett2017','#bettchat','#BigWeekend','#BlackAdam','#CCR17',
#'#CheckatradeTrophy','#Concentrix','#CookSchoolGBC'
if __name__ == '__main__':
exclude2=['#4HSepang','#Advtravelconf','#AJBellNBL','#All80sHour','#andersonprog','#arcgap','#archantawards','#BBCIntroducingOnRadioWales','#BestFans2017',
'#bloggersbookfeast','#botchedupbodies','#brainwashingstacey','#BritainsBenefitTenants','#C4PopUp','#CBBStacey','#ccvideo','#cdfcouncil','#cfginvest17',
'#CleggQMUL','#cmawards16','#CookSchoolGBC','#covhour','#creativeshootout17','#CremeEggHuntingSeason','#diaries17','#DisruptionSWT','#diversetv','#DolanTwinsNewVideo',
'#eastawardsni','#ENLScores','#ESRCRacisms','#FashionRules','#Fidelio','#FreedomsRoad','#GetYourTattsOut','#GSFestivals','#heavenclubspa','#homelesssunday',
'#IAmLegend','#ifgdirector','#insecttunage','#InspireMBG2017','#itsgoneviral','#ITVBoxing','#kimcarnival','#LateJunction','#loudertogetherlaunch','#LoveSpecies',
'#MakeSomeoneSmelly','#MarioKart101','#MarstonGreen','#midlandshour','#MSFTBurnsSupper','#Muskedragons','#NapaSplash2017','#NiNoKuni2','#nogutsnoglory',
'#ODEONScreenUnseen','#ODIFridays','#oneshow','#PoemsAboutTrumpAndMay','#producttank','#r4mediashow','#RLhfctor','#RoadsPolice2017','#RSAeducation','#RSALies',
'#schoolfunding','#seeyouinthefields','#SGTNN2','#ShakespeareSunday','#silvertowntunnel','#socinnpolicy','#Sportscene','#StDwynwensDay','#stereounderground','#SuperSunday',
'#sussexgrad','#TheBigQuestions','#TheresaAndDonald','#ThisMorning','#TrapNominatedLIVE','#TuringLecture','#TW3Awards','#UKCA17','#USdebate','#WesternSecurity','#windinthewillows','#WoolfWorks',
'#WordsByCamila','#worldwideawards','Adama Traore','Airdrie Savings Bank','Alex Bray','Andy Welsh','Annie Power','Article 50','Bart McQueen','Cammy Smith','Chris Clements','Danny Murphy','Don Bersy','Fashion Business','Future Islands','Gail Porter','Handsworth','Highs of 5C','Howard Webb','James Bree','Jamie Hanson','Joel Matip','Josh Windass','Kasim','Keith Curle','Lazar Markovic','Leon Barrett-Hazle','Liz Carr','Lord Bracadale','Luke Amos','Marcus Haber','Marston Green','Mason Mount','Members of Muirfield','Michael Bowditch','Munster v Toulouse','Napoli','Niall Keown','Pascal Lamy','Paul Hunter','Premier Bond','Ravel Morrison','Reigate','Sam Billings','Samoa','Scottish Event Campus','Serena Williams','Sir Patrick Coghlin','Str8 Grove','Stuart Findlay','Tommy Fleetwood','Tsonga','Wasps','West Indies in March','Young Progress Makers','HALF TIME']
exclude=['DON\'T GO TO SLEEP','Emmanuel Adebayor']
analyzer = SentimentIntensityAnalyzer()
tweets = pd.read_csv('data.csv',sep='\t')
print 'name\tcategory\tid\ttweet_id\tuser_id\ttweet_text\thashtags_count\turl_count\tis_retweeted\tlang\tretweet_count\tfavorite_count\tdate\ttime\ttopic\tneg\tneu\tpos\tcompound\tquest\texla\tlength'
for tweet in tweets.values:
to_lang="en"
if tweet[14] not in exclude:
if 'hour' not in tweet[14].lower():
vs = analyzer.polarity_scores(tweet[5])
exla=0
if "!" in tweet[5]:
exla=1
# Question
quest=0
if "?" in tweet[5]:
quest=1
# Length
length=len(tweet[5])
print '\t'.join(str(x) for x in list(tweet))+"\t"+str(vs['neg'])+"\t"+str(vs['neu'])+"\t"+str(vs['pos'])+"\t"+str(vs['compound'])+"\t"+str(quest)+"\t"+str(exla)+"\t"+str(length)