Skip to content

Commit a5fb76d

Browse files
committed
reordered lemmas
1 parent e3af393 commit a5fb76d

File tree

1 file changed

+14
-15
lines changed

1 file changed

+14
-15
lines changed

LeanCommAlg/Basic.lean

Lines changed: 14 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -23,21 +23,6 @@ noncomputable def height [h : I.IsPrime] : WithBot ℕ∞ :=
2323

2424
#check height
2525

26-
27-
-- Minimal prime proof
28-
theorem minimal_prime_IsMin
29-
(I : Ideal R) (P : Ideal R) (Pmin : P ∈ Ideal.minimalPrimes I) : IsMin P := by
30-
rw [Ideal.minimalPrimes] at Pmin
31-
rcases Pmin with ⟨hPrime, hMinimal⟩
32-
intros Q hQ
33-
have QPrime : Q.IsPrime := by
34-
sorry
35-
have IleQ : I ≤ Q := by
36-
sorry
37-
specialize hMinimal ?_
38-
apply Q; simp [IleQ, QPrime];
39-
exact hMinimal (by assumption)
40-
4126
lemma singleton_of_minimal_prime [h : I.IsPrime] :
4227
I ∈ minimalPrimes R → {J : PrimeSpectrum R | J.asIdeal ≤ I} = {⟨I, h⟩} := by
4328
intro hmin
@@ -53,6 +38,20 @@ lemma singleton_of_minimal_prime [h : I.IsPrime] :
5338
apply le_antisymm hJ this
5439
. intro hJ
5540
apply le_iff_lt_or_eq.mpr; right; apply hJ
41+
42+
-- Minimal prime proof
43+
theorem minimal_prime_IsMin
44+
(I : Ideal R) (P : Ideal R) (Pmin : P ∈ Ideal.minimalPrimes I) : IsMin P := by
45+
rw [Ideal.minimalPrimes] at Pmin
46+
rcases Pmin with ⟨hPrime, hMinimal⟩
47+
intros Q hQ
48+
have QPrime : Q.IsPrime := by
49+
sorry
50+
have IleQ : I ≤ Q := by
51+
sorry
52+
specialize hMinimal ?_
53+
apply Q; simp [IleQ, QPrime];
54+
exact hMinimal (by assumption)
5655

5756
lemma height_zero_of_minimal_prime [h : I.IsPrime] :
5857
I ∈ minimalPrimes R → height I = 0 := by

0 commit comments

Comments
 (0)