@@ -23,21 +23,6 @@ noncomputable def height [h : I.IsPrime] : WithBot ℕ∞ :=
2323
2424#check height
2525
26-
27- -- Minimal prime proof
28- theorem minimal_prime_IsMin
29- (I : Ideal R) (P : Ideal R) (Pmin : P ∈ Ideal.minimalPrimes I) : IsMin P := by
30- rw [Ideal.minimalPrimes] at Pmin
31- rcases Pmin with ⟨hPrime, hMinimal⟩
32- intros Q hQ
33- have QPrime : Q.IsPrime := by
34- sorry
35- have IleQ : I ≤ Q := by
36- sorry
37- specialize hMinimal ?_
38- apply Q; simp [IleQ, QPrime];
39- exact hMinimal (by assumption)
40-
4126lemma singleton_of_minimal_prime [h : I.IsPrime] :
4227 I ∈ minimalPrimes R → {J : PrimeSpectrum R | J.asIdeal ≤ I} = {⟨I, h⟩} := by
4328 intro hmin
@@ -53,6 +38,20 @@ lemma singleton_of_minimal_prime [h : I.IsPrime] :
5338 apply le_antisymm hJ this
5439 . intro hJ
5540 apply le_iff_lt_or_eq.mpr; right; apply hJ
41+
42+ -- Minimal prime proof
43+ theorem minimal_prime_IsMin
44+ (I : Ideal R) (P : Ideal R) (Pmin : P ∈ Ideal.minimalPrimes I) : IsMin P := by
45+ rw [Ideal.minimalPrimes] at Pmin
46+ rcases Pmin with ⟨hPrime, hMinimal⟩
47+ intros Q hQ
48+ have QPrime : Q.IsPrime := by
49+ sorry
50+ have IleQ : I ≤ Q := by
51+ sorry
52+ specialize hMinimal ?_
53+ apply Q; simp [IleQ, QPrime];
54+ exact hMinimal (by assumption)
5655
5756lemma height_zero_of_minimal_prime [h : I.IsPrime] :
5857 I ∈ minimalPrimes R → height I = 0 := by
0 commit comments