@@ -294,20 +294,6 @@ function zeta_function(f; S=[-1], verbose=false, givefrobmat=false, algorithm=:c
294294 (9 < verbose) && println (" Basis of cohomology is $Basis " )
295295
296296 (hodge_polygon, r_m, N_m, M) = precision_information (f,Basis,verbose)
297- # print(find_Ssmooth_model(f, M, S, params))
298- # hodge_polygon = hodgepolygon(Basis, n)
299- # hodge_numbers = hodge_polygon.slopelengths
300- # (9 < verbose) && println("Hodge numbers = $hodge_numbers")
301-
302- # k = sum(hodge_numbers) # dimension of H^n
303- # (9 < verbose) && println("There are $k basis elements in H^$n")
304-
305- # r_m = calculate_relative_precision(hodge_polygon, n-1, p)
306- # #r_m = relative_precision(k, p)
307- # #N_m = series_precision(r_m, p, n) # series precision
308- # #M = algorithm_precision(r_m, N_m, p)
309- # N_m = series_precision(p,n,d,r_m)
310- # M = algorithm_precision(p,n,d,r_m,N_m)
311297
312298 (9 < verbose) && println (" We work modulo $p ^$M , and compute up to the $N_m -th term of the Frobenius power series" )
313299 (0 < verbose) && println (" algorithm precision: $M , series precision: $N_m " )
@@ -325,6 +311,14 @@ function zeta_function(f; S=[-1], verbose=false, givefrobmat=false, algorithm=:c
325311 S = collect (0 : n)
326312 end
327313
314+ if (0 < verbose)
315+ println (" Starting linear algebra problem" )
316+ @time f, pseudo_inverse_mat_new = find_Ssmooth_model (f, M, S, params)
317+ else
318+ # pseudo_inverse_mat_new = pseudo_inverse_controlled_lifted(f,S,l,M,params)
319+ f, pseudo_inverse_mat_new = find_Ssmooth_model (f, M, S, params)
320+ end
321+
328322 #=
329323 BasisTLift = []
330324 for i in basis
@@ -369,12 +363,6 @@ function zeta_function(f; S=[-1], verbose=false, givefrobmat=false, algorithm=:c
369363 # end
370364 l = d * n - n + d - length (S)
371365
372- if (0 < verbose)
373- println (" Starting linear algebra problem" )
374- @time pseudo_inverse_mat_new = pseudo_inverse_controlled_lifted (f,S,l,M,params)
375- else
376- pseudo_inverse_mat_new = pseudo_inverse_controlled_lifted (f,S,l,M,params)
377- end
378366
379367 MS = matrix_space (precisionring, nrows (pseudo_inverse_mat_new), ncols (pseudo_inverse_mat_new))
380368 pseudo_inverse_mat = MS ()
0 commit comments