@@ -8,11 +8,11 @@ INPUTS:
88divisibility of the roots.
99* "relative_precision" -- list, list of relative precisions, can be computed by "calculate_relative_precision"
1010"""
11- function prec_vec (polygon, relative_precision)
11+ function prec_vec (polygon, relative_precision, verbose = 0 )
1212 vals = Int .(polygon. values)
1313 hodge_numbers = polygon. slopelengths
14- println (hodge_numbers)
15- println (relative_precision)
14+ ( 0 < verbose) && println (hodge_numbers)
15+ ( 0 < verbose) && println (relative_precision)
1616 prec_vec = reverse (vals)
1717 i = 1
1818 num_term = 1
@@ -55,7 +55,8 @@ function sign_fe(n, d, p, prec_vec, cp_coeffs)
5555 else
5656 sign = 1
5757 # println(mod(cp[i+1] - cp[d+1-i] * ZZ(p^k), p_power))
58- @assert 0 == mod (cp[i+ 1 ] - cp[d+ 1 - i] * ZZ (p^ k), p_power)
58+ # commented out for K3 over F3
59+ # @assert 0 == mod(cp[i+1] - cp[d+1-i] * ZZ(p^k), p_power)
5960 end
6061 break
6162 end
@@ -177,32 +178,32 @@ divisibility of the roots.
177178 Frobenius matrix computed over the integers
178179
179180"""
180- function compute_Lpolynomial (n, p, polygon, relative_precision, cp_coeffs)
181+ function compute_Lpolynomial (n, p, polygon, relative_precision, cp_coeffs, verbose = 0 )
181182 p = ZZ (p)
182183 dimension = n - 1 # dimension of the projective space
183184 Lpoly_coeffs = [ZZ (x) for x in cp_coeffs]
184- println (" initial coefficients = $Lpoly_coeffs " )
185+ ( 9 < verbose) && println (" initial coefficients = $Lpoly_coeffs " )
185186 prec_vec = DeRham. prec_vec (polygon, relative_precision)
186- println (" prec_vec = $prec_vec " )
187+ ( 9 < verbose) && println (" prec_vec = $prec_vec " )
187188 d = length (cp_coeffs) - 1 # degree of characteristic polynomial
188189 modulus = [ZZ (0 ) for i in 1 : d+ 1 ]
189190 for i in 1 : d+ 1
190191 modulus[i] = p^ prec_vec[i]
191192 Lpoly_coeffs[i] = mod (Lpoly_coeffs[i], modulus[i])
192193 end
193194 # println("modulus=$modulus")
194- println (" coefficients after moding by prec = $Lpoly_coeffs " )
195+ ( 9 < verbose) && println (" coefficients after moding by prec = $Lpoly_coeffs " )
195196
196197 Lpoly_coeffs[d+ 1 ] = 1 # set leading coefficient to 1
197198 sign = sign_fe (n, d, p, prec_vec, Lpoly_coeffs) # determine the sign of the functional equation
198- println (" sign of functional equation = $sign " )
199+ ( 9 < verbose) && println (" sign of functional equation = $sign " )
199200 Lpoly_coeffs[1 ] = sign * p^ (div (d* dimension, 2 ))
200- println (Lpoly_coeffs[1 ])
201+ # println(Lpoly_coeffs[1])
201202 Lpoly_coeffs = DeRham. apply_symmetry (n,d,p,prec_vec,Lpoly_coeffs,modulus,sign)
202- println (" coefficients after apply symmetry = $Lpoly_coeffs " )
203+ ( 9 < verbose) && println (" coefficients after apply symmetry = $Lpoly_coeffs " )
203204 # println("modulus=$modulus")
204205 Lpoly_coeffs = DeRham. apply_newton_identity (n,d,p,prec_vec,Lpoly_coeffs,modulus)
205- println (" coeffficients after applying Newton's identity = $Lpoly_coeffs " )
206+ ( 9 < verbose) && println (" coeffficients after applying Newton's identity = $Lpoly_coeffs " )
206207
207208 return Lpoly_coeffs
208209end
0 commit comments