@@ -32,7 +32,7 @@ INPUTS:
3232* "Reductions" -- output of computeReductionOfTransformLA
3333* "T" -- output of computeT
3434"""
35- function compute_frobenius_matrix (n, p, d, N_m, Reductions, T, Basis, termorder)
35+ function compute_frobenius_matrix (n, p, d, N_m, Reductions, T, Basis, termorder, verbose )
3636 verbose && println (" Terms after controlled reduction: $Reductions " )
3737 println (T)
3838 R = parent (T[1 ,1 ])
@@ -253,7 +253,7 @@ function zeta_function(f; verbose=false, givefrobmat=false, algorithm=:costachun
253253 end
254254 ev = gen_exp_vec (n+ 1 ,n* d- n- 1 ,termorder)
255255 verbose && println (convert_p_to_m ([Reductions[1 ][1 ][1 ],Reductions[2 ][1 ][1 ]],ev))
256- FM = compute_frobenius_matrix (n, p, d, N_m, Reductions, T, Basis, termorder)
256+ FM = compute_frobenius_matrix (n, p, d, N_m, Reductions, T, Basis, termorder, verbose )
257257 verbose && println (" The Frobenius matrix is $FM " )
258258
259259 # reductions_verbose = convert_p_to_m([Reductions[1][1][1],Reductions[2][1][1]],ev)
@@ -329,13 +329,12 @@ include("Frobenius.jl")
329329include("FinalReduction.jl")
330330include("ZetaFunction.jl")
331331verbose = false
332- n = 2
332+ n = 3
333333d = 4
334334p = 7
335- R = GF(p,1)
336- PR, Vars = polynomial_ring(R, ["x$i" for i in 0:n])
337- x,y,z = Vars
338- f = x^4 + y^4 + z^4
339- S = [0,1,2]
335+ F = GF(p)
336+ R, (x,y,z,w) = polynomial_ring(F, ["x$i" for i in 0:n])
337+
338+ f = x^4 + y^4 + z^4 + w^4
340339@time DeRham.zeta_function(f)
341340=#
0 commit comments