-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_kmeans.py
413 lines (348 loc) · 18.9 KB
/
train_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Modification of code from Original 3D Gaussian Splat repo
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
# Apply k-Means based vector quantization to color and covariance parameters
import os
import sys
import pdb
from os.path import join
import datetime
import json
import time
from bitarray import bitarray
import numpy as np
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, l2_loss
from gaussian_renderer import render, network_gui
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from scene.kmeans_quantize import Quantize_kMeans
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, args):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
num_gaussians_per_iter = []
# k-Means quantization
quantized_params = args.quant_params
n_cls = args.kmeans_ncls
n_cls_sh = args.kmeans_ncls_sh
n_cls_dc = args.kmeans_ncls_dc
n_it = args.kmeans_iters
kmeans_st_iter = args.kmeans_st_iter
freq_cls_assn = args.kmeans_freq
if 'pos' in quantized_params:
kmeans_pos_q = Quantize_kMeans(num_clusters=n_cls_dc, num_iters=n_it)
if 'dc' in quantized_params:
kmeans_dc_q = Quantize_kMeans(num_clusters=n_cls_dc, num_iters=n_it)
if 'sh' in quantized_params:
kmeans_sh_q = Quantize_kMeans(num_clusters=n_cls_sh, num_iters=n_it)
if 'scale' in quantized_params:
kmeans_sc_q = Quantize_kMeans(num_clusters=n_cls, num_iters=n_it)
if 'rot' in quantized_params:
kmeans_rot_q = Quantize_kMeans(num_clusters=n_cls, num_iters=n_it)
if 'scale_rot' in quantized_params:
kmeans_scrot_q = Quantize_kMeans(num_clusters=n_cls, num_iters=n_it)
if 'sh_dc' in quantized_params:
kmeans_shdc_q = Quantize_kMeans(num_clusters=n_cls_sh, num_iters=n_it)
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
if iteration > 3100:
freq_cls_assn = 100
if iteration > (opt.iterations - 5000):
freq_cls_assn = 5000
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# quantize params
if iteration > kmeans_st_iter:
if iteration % freq_cls_assn == 1:
assign = True
else:
assign = False
if 'pos' in quantized_params:
kmeans_pos_q.forward_pos(gaussians, assign=assign)
if 'dc' in quantized_params:
kmeans_dc_q.forward_dc(gaussians, assign=assign)
if 'sh' in quantized_params:
kmeans_sh_q.forward_frest(gaussians, assign=assign)
if 'scale' in quantized_params:
kmeans_sc_q.forward_scale(gaussians, assign=assign)
if 'rot' in quantized_params:
kmeans_rot_q.forward_rot(gaussians, assign=assign)
if 'scale_rot' in quantized_params:
kmeans_scrot_q.forward_scale_rot(gaussians, assign=assign)
if 'sh_dc' in quantized_params:
kmeans_shdc_q.forward_dcfrest(gaussians, assign=assign)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
# Optionally, use opacity regularization - from iter 15000 to max_prune_iter
if args.opacity_reg:
if iteration > args.max_prune_iter or iteration < 15000:
lambda_reg = 0.
else:
lambda_reg = args.lambda_reg
L_reg_op = gaussians.get_opacity.sum()
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image)) + (
lambda_reg * L_reg_op)
else:
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
psnr = training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
psnr_train, psnr_test = psnr['train'], psnr['test']
if (iteration in saving_iterations):
print(args.model_path)
# print(f'PSNR Train: {psnr_train}, PSNR Test: {psnr_test}')
print("\n[ITER {}] Saving Gaussians".format(iteration))
# Save only the non-quantized parameters in ply file.
all_attributes = {'xyz': 'xyz', 'dc': 'f_dc', 'sh': 'f_rest', 'opacities': 'opacities',
'scale': 'scale', 'rot': 'rotation'}
save_attributes = [val for (key, val) in all_attributes.items() if key not in quantized_params]
if iteration > kmeans_st_iter:
scene.save(iteration, save_q=quantized_params, save_attributes=save_attributes)
# Save indices and codebook for quantized parameters
kmeans_dict = {'rot': kmeans_rot_q, 'scale': kmeans_sc_q, 'sh': kmeans_sh_q, 'dc': kmeans_dc_q}
kmeans_list = []
for param in quantized_params:
kmeans_list.append(kmeans_dict[param])
out_dir = join(scene.model_path, 'point_cloud/iteration_%d' % iteration)
save_kmeans(kmeans_list, quantized_params, out_dir)
else:
scene.save(iteration, save_q=[])
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Prune Gaussians every 1000 iterations from iter 15000 to max_prune_iter if using opacity regularization
if args.opacity_reg and iteration > 15000:
if iteration <= args.max_prune_iter and iteration % 1000 == 0:
print('Num Gaussians: ', gaussians._xyz.shape[0])
size_threshold = None
gaussians.prune(0.005, scene.cameras_extent, size_threshold)
print('Num Gaussians after prune: ', gaussians._xyz.shape[0])
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
num_gaussians_per_iter.append(gaussians.get_xyz.shape[0])
print("Number of Gaussians at the end: ", gaussians._xyz.shape[0])
np.save(f'{scene.model_path}/num_g_per_iters.npy', np.array(num_gaussians_per_iter))
def dec2binary(x, n_bits=None):
"""Convert decimal integer x to binary.
Code from: https://stackoverflow.com/questions/55918468/convert-integer-to-pytorch-tensor-of-binary-bits
"""
if n_bits is None:
n_bits = torch.ceil(torch.log2(x)).type(torch.int64)
mask = 2**torch.arange(n_bits-1, -1, -1).to(x.device, x.dtype)
return x.unsqueeze(-1).bitwise_and(mask).ne(0)
def save_kmeans(kmeans_list, quantized_params, out_dir):
"""Save the codebook and indices of KMeans.
"""
# Convert to bitarray object to save compressed version
# saving as npy or pth will use 8bits per digit (or boolean) for the indices
# Convert to binary, concat the indices for all params and save.
bitarray_all = bitarray([])
for kmeans in kmeans_list:
n_bits = int(np.ceil(np.log2(len(kmeans.cls_ids))))
assignments = dec2binary(kmeans.cls_ids, n_bits)
bitarr = bitarray(list(assignments.cpu().numpy().flatten()))
bitarray_all.extend(bitarr)
with open(join(out_dir, 'kmeans_inds.bin'), 'wb') as file:
bitarray_all.tofile(file)
# Save details needed for loading
args_dict = {}
args_dict['params'] = quantized_params
args_dict['n_bits'] = n_bits
args_dict['total_len'] = len(bitarray_all)
np.save(join(out_dir, 'kmeans_args.npy'), args_dict)
centers_dict = {param: kmeans.centers for (kmeans, param) in zip(kmeans_list, quantized_params)}
# Save codebook
torch.save(centers_dict, join(out_dir, 'kmeans_centers.pth'))
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok=True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
# psnr_test = -1.
psnr_out = {'train': -1., 'test': -1}
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
psnr_out[config['name']] = psnr_test
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
return psnr_out
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[5_000, 7_000, 10_000, 15_000, 20_000,
25_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument('--total_iterations', type=int, default=30000,
help='Total iterations of training')
# Compress3D parameters
parser.add_argument('--kmeans_st_iter', type=int, default=30000,
help='Start k-Means based vector quantization from this iteration')
parser.add_argument('--kmeans_ncls', type=int, default=4096,
help='Number of clusters in k-Means quantization')
parser.add_argument('--kmeans_ncls_sh', type=int, default=4096,
help='Number of clusters in k-Means quantization of spherical harmonics')
parser.add_argument('--kmeans_ncls_dc', type=int, default=4096,
help='Number of clusters in k-Means quantization of DC component of color')
parser.add_argument('--kmeans_iters', type=int, default=1,
help='Number of assignment and centroid calculation iterations in k-Means')
parser.add_argument('--kmeans_freq', type=int, default=100,
help='Frequency of cluster assignment in k-Means')
parser.add_argument('--grad_thresh', type=float, default=0.0002,
help='threshold on xyz gradients for densification')
parser.add_argument("--quant_params", nargs="+", type=str, default=['sh', 'dc', 'scale', 'rot'])
# Opacity regularization parameters
parser.add_argument('--max_prune_iter', type=int, default=20000,
help='Iteration till which pruning is done')
parser.add_argument('--opacity_reg', action='store_true', default=False,
help='use opacity regularization during training')
parser.add_argument('--lambda_reg', type=float, default=0.,
help='Weight for opacity regularization in loss')
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
args.test_iterations = list(np.arange(0, args.total_iterations + 1, 100))
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
outfile = join(args.model_path, 'train_args.json')
os.makedirs(os.path.dirname(outfile), exist_ok=True)
with open(outfile, 'w') as fp:
json.dump(vars(args), fp, indent=4, default=str)
print('Quantized Params: ', args.quant_params)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations,
args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args)
# All done
print("\nTraining complete.")