-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmem_atk.py
222 lines (193 loc) · 9.54 KB
/
mem_atk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torchvision
import argparse
import numpy as np
import logging
import time
import os
import random
import timm
import copy
from tqdm import tqdm
from sam import SAM
from torch import nn, optim
from torch.nn.parameter import Parameter
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from itertools import accumulate
from torch.utils.data import Subset
from models.wideresnet import *
from torch.autograd import Variable
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset
class reProgrammingNetwork(nn.Module):
def __init__(self,args, input_size=224, patch_H_size=192, patch_W_size=192, channel_out=3, device="cpu") -> None:
super().__init__()
self.device = device
self.channel_out = channel_out
self.input_size = input_size
if args.model_name == 'wideresnet':
self.pre_model = torchvision.models.wide_resnet50_2(pretrained=True)
elif args.model_name == 'resnet50':
self.pre_model = torchvision.models.resnet50(pretrained=True)
elif args.model_name == 'resnet152':
self.pre_model = torchvision.models.resnet152(pretrained=True)
elif args.model_name == 'swin':
self.pre_model = torchvision.models.swin_v2_s(pretrained=True)
elif args.model_name == 'vit':
self.pre_model = torchvision.models.vit_b_32(pretrained=True)
elif args.model_name == 'vit_21k':
self.pre_model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
elif args.model_name == 'swin_22k':
self.pre_model = SwinForImageClassification.from_pretrained("microsoft1/swin-base-patch4-window7-224-in22k/")
elif args.model_name == 'swinv2_22k':
self.pre_model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window12-192-22k")
elif args.model_name == 'swinv2_22k_ft_1k':
self.pre_model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft")
elif args.model_name == 'swinv2_large_22k':
self.pre_model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12-192-22k")
elif args.model_name == 'convnextv2_ft_in22k_in1k':
self.pre_model = timm.create_model('convnextv2_large.fcmae_ft_in22k_in1k', pretrained=True)
elif args.model_name == 'convnextv2_base_22k':
self.pre_model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-base-22k-224")
elif args.model_name == 'convnextv2_large_22k':
self.pre_model = ConvNextV2ForImageClassification.from_pretrained("convnext/convnextv2-large-22k-224")
elif args.model_name == 'eva':
self.pre_model = timm.create_model('eva_large_patch14_196.in22k_ft_in22k_in1k', pretrained=True)
self.pre_model.eval()
for pram in self.pre_model.parameters():
pram.requires_grad = False
self.M = torch.ones(channel_out, input_size, input_size, requires_grad=False, device=device)
self.H_start = input_size // 2 - patch_H_size // 2
self.H_end = self.H_start + patch_H_size
self.W_start = input_size // 2 - patch_W_size // 2
self.W_end = self.W_start + patch_W_size
self.M[:,self.H_start:self.H_end,self.W_start:self.W_end] = 0
self.W = Parameter(torch.randn(channel_out, input_size, input_size, requires_grad=True, device=device))
self.new_layers = nn.Sequential(nn.Linear(1000, 10)) ## Change to 200 when training TinyImagenet
def forward(self, image):
X = torch.zeros(image.shape[0], self.channel_out, self.input_size, self.input_size)
X[:,:,self.H_start:self.H_end,self.W_start:self.W_end] = image.repeat(1,1,1,1).data.clone()
X = Parameter(X, requires_grad=True).to(self.device)
P = torch.tanh(self.W * self.M)
X_adv = P + X
Y = self.pre_model(X_adv)
Y = self.new_layers(Y)
return Y
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def membership_inference_attack(model, train_loader, test_loader):
model.eval()
result = []
softmax = torch.nn.Softmax(dim=1)
train_cnt = 0
for x, y in train_loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
_y = softmax( model(x) )
train_cnt += len(y)
for i in range(len(_y)):
result.append( [_y[i][y[i]].item(), 1] )
test_cnt = 0
for x, y in test_loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
_y = softmax( model(x) )
test_cnt += len(y)
for i in range(len(_y)):
result.append( [_y[i][y[i]].item(), 0] )
result = np.array(result)
result = result[result[:,0].argsort()]
one = train_cnt
zero = test_cnt
best_atk_acc = 0.0
for i in range(len(result)):
atk_acc = 0.5 * (one/train_cnt + (test_cnt-zero)/test_cnt)
best_atk_acc = max(best_atk_acc, atk_acc)
if result[i][1] == 1:
one = one-1
else: zero = zero-1
return best_atk_acc
device = 'cuda'
def main():
parser = argparse.ArgumentParser(description='pate train')
parser.add_argument('--seed', type=int, default=8872574)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--dataset', type=str, default='CIFAR10')
parser.add_argument('--size', type=int, default=192)
#parser.add_argument('--target_size', type=int, default=196) # # only EVA use this
parser.add_argument('--model_name', type=str, default='wideresnet',
choices=['wideresnet', 'resnet50', 'resnet152', 'swin', 'vit', 'vit_21k', 'swin_22k', 'swinv2_22k', 'swinv2_22k_ft_1k', 'swinv2_large_22k', 'convnextv2_ft_in22k_in1k', 'convnextv2_base_22k', 'convnextv2_large_22k', 'eva'])
args = parser.parse_args()
set_seed(args.seed)
model = reProgrammingNetwork(args, patch_H_size=args.size, patch_W_size=args.size,device=device).to(device)
checkpoint = torch.load('../AT_wideresnet/epoch19.pt') # trained model checkpoint
model.load_state_dict(checkpoint)
model = model.to(device)
model.eval()
# setup data loader
if args.dataset == 'CIFAR10':
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(args.size), # resize shortest side to 224 pixels
transforms.CenterCrop(args.size),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
test_transform = transforms.Compose([
transforms.Resize(args.size), # resize shortest side to 224 pixels
transforms.CenterCrop(args.size),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_dataset = datasets.CIFAR10('../CIFAR10', train=True, transform=train_transform, download=True, )
test_dataset = datasets.CIFAR10('=../CIFAR10', train=False, transform=test_transform, download=True, )
if args.dataset == 'TinyImagenet':
train_dataset = load_dataset('Maysee/tiny-imagenet', split='train')
test_dataset = load_dataset('Maysee/tiny-imagenet', split='valid')
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(args.size), # resize shortest side to 224 pixels
transforms.CenterCrop(args.size),
transforms.RandomHorizontalFlip(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
test_transform = transforms.Compose([
transforms.Resize(args.size), # resize shortest side to 224 pixels
transforms.CenterCrop(args.size),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
# dataset of TinyImageNet
class TinyImageNetHuggingFace(Dataset):
def __init__(self, dataset, transform=None):
self.dataset = dataset
self.transform = transform
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
sample = self.dataset[idx]
image = sample['image']
label = sample['label']
# RGB image
if image.mode != 'RGB':
image = image.convert('RGB')
if self.transform:
image = self.transform(image)
return image, label
train_dataset = TinyImageNetHuggingFace(train_dataset, transform=train_transform)
test_dataset = TinyImageNetHuggingFace(test_dataset, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
atk_acc = membership_inference_attack(model, train_loader, test_loader)
save_dir = '../AT_wideresnet/epoch19.pt' # output MIA results
log_file_path = os.path.join(save_dir, 'evaluation_miast.log')
with open(log_file_path, 'a') as logfile:
logfile.write(f"atk_acc:\n")
logfile.write(f"{atk_acc}\n")
logfile.write("\n")
if __name__ == "__main__":
main()