-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
351 lines (305 loc) · 13.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from dataclasses import dataclass, field
from typing import Optional, Dict, Sequence
import transformers
import pandas as pd
import os
import json
from pysmilesutils.augment import SMILESAugmenter
import torch
from torch.nn.utils.rnn import pad_sequence
import copy
from datasets import Dataset
from rdkit import RDLogger, Chem
# Suppress RDKit INFO messages
RDLogger.DisableLog('rdApp.*')
@dataclass
class ModelArguments:
tokenizer_path: Optional[str] = field(
default="./tokenizer",
metadata={"help": "The path to the tokenizer."}
)
pretrain_model: Optional[str] = field(
default="feiyang-cai/ChemFM-1b",
metadata={"help": "The model name."}
)
attention_dropout: Optional[float] = field(
default=0.1,
metadata={"help": "The dropout rate for attention."}
)
lora: Optional[bool] = field(
default=True,
metadata={"help": "Use LORA for training."}
)
lora_rank: Optional[int] = field(
default=8,
metadata={"help": "The number of LORA ranks."}
)
lora_alpha_ratio: Optional[float] = field(
default=1,
metadata={"help": "The alpha ratio for LORA."}
)
lora_dropout: Optional[float] = field(
default=0.1,
metadata={"help": "The dropout rate for LORA."}
)
trust_remote_code: Optional[bool] = field(
default=False,
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}
)
model_path: Optional[str] = field(
default=None,
metadata={"help": "The path to the model."}
)
@dataclass
class DataArguments:
dataset: Optional[str] = field(
default="USPTO-MIT",
metadata={"help": "The dataset name."}
)
string_template_path: Optional[str] = field(
default="./string_template.json",
metadata={"help": "The path to the string template."}
)
source_max_len: int = field(
default=512,
metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."},
)
target_max_len: int = field(
default=512,
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
)
task_type: str = field(
default="retrosynthesis",
metadata={"help": "The task type: retrosynthesis or synthesis."}
)
beam_size: int = field(
default=10,
metadata={"help": "The beam size for evaluation."}
)
original_data_augmentations: int = field(
default=20,
metadata={"help": "The number of augmentations for the original data. This is used for evaluation."}
)
max_test_samples: int = field(
default=-1,
metadata={"help": "The maximum number of test samples to use. Set to -1 to use all samples."}
)
@dataclass
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
training_args_file: Optional[str] = field(
default=None,
metadata={"help": "The path to the training arguments file."}
)
output_dir: str = field(
default=None,
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}
)
adapter_name: Optional[str] = field(
default=None,
metadata={"help": "The adapter name."}
)
optim: str = field(default='adamw_torch', metadata={"help": 'The optimizer to be used'})
per_device_train_batch_size: int = field(default=16, metadata={"help": 'The training batch size per GPU. Increase for better speed.'})
per_device_eval_batch_size: int = field(default=32, metadata={"help": 'The evaluation batch size per GPU. Increase for better speed.'})
gradient_accumulation_steps: int = field(default=1, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'})
weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'})
learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'})
min_learning_rate: float = field(default=2e-5, metadata={"help": 'The minimum learning rate'})
remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'})
max_grad_norm: float = field(default=1.0, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'})
gradient_checkpointing: bool = field(default=False, metadata={"help": 'Use gradient checkpointing. You want to use this.'})
lr_scheduler_type: str = field(default='constant', metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'})
warmup_ratio: float = field(default=0.03, metadata={"help": 'Fraction of steps to do a warmup for'})
early_stopping_patience: int = field(default=10, metadata={"help": 'The number of epochs to wait for improvement before stopping training'})
early_stopping_start_epoch: int = field(default=20, metadata={"help": 'The epoch to start early stopping'})
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
non_special_tokens = None,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + tokenizer.add_tokens(non_special_tokens)
num_old_tokens = model.get_input_embeddings().weight.shape[0]
num_new_tokens = len(tokenizer) - num_old_tokens
if num_new_tokens == 0:
return
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings_data = model.get_input_embeddings().weight.data
input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
print(f"Resized tokenizer and embedding from {num_old_tokens} to {len(tokenizer)} tokens.")
@dataclass
class DataCollatorForCausalLM(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
reactant_start_str: str
product_start_str: str
end_str: str
task_type: str
sme: SMILESAugmenter
ignore_index: int
def augment_molecule(self, molecule: str) -> str:
return self.sme.augment([molecule])[0]
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
sources = []
targets = []
target_smiles = []
generation_prompts = []
if self.task_type == 'retrosynthesis':
src_start_str = self.product_start_str
tgt_start_str = self.reactant_start_str
else:
src_start_str = self.reactant_start_str
tgt_start_str = self.product_start_str
for example in instances:
src = example['src']
tgt = example['tgt']
source = f"{src_start_str}{src}{self.end_str}"
target = f"{tgt_start_str}{tgt}{self.end_str}"
generation_prompt = f"{src_start_str}{src}{self.end_str}{tgt_start_str}"
sources.append(source)
targets.append(target)
target_smiles.append(tgt)
generation_prompts.append(generation_prompt)
# Tokenize
tokenized_sources_with_prompt = self.tokenizer(
sources,
max_length=self.source_max_len,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = self.tokenizer(
targets,
max_length=self.target_max_len,
truncation=True,
add_special_tokens=False,
)
# Build the input and labels for causal LM
input_ids = []
labels = []
for tokenized_source, tokenized_target in zip(
tokenized_sources_with_prompt['input_ids'],
tokenized_targets['input_ids']
):
input_ids.append(torch.tensor(tokenized_source + tokenized_target))
labels.append(
torch.tensor([self.ignore_index for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target))
)
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = pad_sequence(labels, batch_first=True, padding_value=self.ignore_index)
data_dict = {
'input_ids': input_ids,
'attention_mask': input_ids.ne(self.tokenizer.pad_token_id),
'labels': labels,
'tgt_smiles': target_smiles,
'generation_prompts': generation_prompts
}
return data_dict
@dataclass
class DataCollatorForCausalLMEval(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
reactant_start_str: str
product_start_str: str
end_str: str
task_type: str
sme: SMILESAugmenter
def augment_molecule(self, molecule: str) -> str:
return self.sme.augment([molecule])[0]
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
srcs = instances[0]['src']
original_tgt = instances[0]['tgt']
tgt = Chem.MolToSmiles(Chem.MolFromSmiles(original_tgt))
if self.task_type == 'retrosynthesis':
src_start_str = self.product_start_str
tgt_start_str = self.reactant_start_str
else:
src_start_str = self.reactant_start_str
tgt_start_str = self.product_start_str
generation_prompts = []
for src in srcs:
generation_prompt = f"{src_start_str}{src}{self.end_str}{tgt_start_str}"
generation_prompts.append(generation_prompt)
data_dict = {
'tgt_smiles': tgt,
'generation_prompts': generation_prompts
}
return data_dict
def make_data_module(tokenizer: transformers.PreTrainedTokenizer, dataset, ignore_index, args, evaluation=False) -> Dict:
data_dir = f"./data_temp/{dataset}"
# we should group the data by the original augmentation
# e.g., if the original data has 20 augmentations, we should group the data every 20 rows
def group_rows(df, n):
grouped_data = {
'src': [],
'tgt': []
}
for i in range(0, len(df), n):
chunk = df.iloc[i:i+n]
grouped_data['src'].append(chunk['src'].tolist())
grouped_data['tgt'].append(chunk['tgt'].iloc[0])
return pd.DataFrame(grouped_data)
if evaluation:
test_dataset = pd.read_csv(os.path.join(data_dir, "test.csv"))
grouped_test_dataset = group_rows(test_dataset, args.original_data_augmentations)
test_dataset = Dataset.from_pandas(grouped_test_dataset)
else:
train_dataset = pd.read_csv(os.path.join(data_dir, "train.csv"))
val_dataset = pd.read_csv(os.path.join(data_dir, "val_single.csv"))
test_dataset = pd.read_csv(os.path.join(data_dir, "test_single.csv"))
train_dataset = Dataset.from_pandas(train_dataset)
val_dataset = Dataset.from_pandas(val_dataset)
test_dataset = Dataset.from_pandas(test_dataset)
if args.max_test_samples > 0:
# randomize the val and test datasets
test_dataset = test_dataset.shuffle(seed=args.seed)
test_dataset = test_dataset.select(range(args.max_test_samples))
if not evaluation:
val_dataset = val_dataset.shuffle(seed=args.seed)
val_dataset = val_dataset.select(range(args.max_test_samples))
# load the string template
## TODO: the start token for the molecule could be not necessary
## TODO: this could be also in the tokenizer, now this is not elegant
string_template = json.load(open(args.string_template_path, 'r'))
reactant_start_str = string_template['REACTANTS_START_STRING']
product_start_str = string_template['PRODUCTS_START_STRING']
end_str = string_template['END_STRING']
if evaluation:
data_collator = DataCollatorForCausalLMEval(
tokenizer=tokenizer,
source_max_len=args.source_max_len,
target_max_len=args.target_max_len,
reactant_start_str=reactant_start_str,
product_start_str=product_start_str,
end_str=end_str,
task_type=args.task_type,
sme=SMILESAugmenter(),
)
return dict(
test_dataset=test_dataset,
data_collator=data_collator
)
else:
data_collator = DataCollatorForCausalLM(
tokenizer=tokenizer,
source_max_len=args.source_max_len,
target_max_len=args.target_max_len,
reactant_start_str=reactant_start_str,
product_start_str=product_start_str,
end_str=end_str,
task_type=args.task_type,
sme=SMILESAugmenter(),
ignore_index=ignore_index
)
return dict(
train_dataset=train_dataset,
val_dataset=val_dataset,
test_dataset=test_dataset,
data_collator=data_collator
)