-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathscore.py
151 lines (128 loc) · 5.82 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from rdkit import Chem
import os
import argparse
from tqdm import tqdm
import multiprocessing
import pandas as pd
from rdkit import RDLogger
import re
import ast
import numpy as np
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
def canonicalize_smiles_clear_map(smiles,return_max_frag=False):
mol = Chem.MolFromSmiles(smiles,sanitize=True)
if mol is not None:
[atom.ClearProp('molAtomMapNumber') for atom in mol.GetAtoms() if atom.HasProp('molAtomMapNumber')]
try:
smi = Chem.MolToSmiles(mol, isomericSmiles=True)
except:
if return_max_frag:
return '',''
else:
return ''
if return_max_frag:
sub_smi = smi.split(".")
sub_mol = [Chem.MolFromSmiles(smiles,sanitize=True) for smiles in sub_smi]
sub_mol_size = [(sub_smi[i], len(m.GetAtoms())) for i, m in enumerate(sub_mol) if m is not None]
if len(sub_mol_size) > 0:
return smi, canonicalize_smiles_clear_map(sorted(sub_mol_size,key=lambda x:x[1],reverse=True)[0][0],return_max_frag=False)
else:
return smi, ''
else:
return smi
else:
if return_max_frag:
return '',''
else:
return ''
def compute_rank(prediction,raw=False,alpha=1.0):
valid_score = [[k for k in range(len(prediction[j]))] for j in range(len(prediction))]
invalid_rates = [0 for k in range(len(prediction[0]))]
rank = {}
highest = {}
for j in range(len(prediction)):
for k in range(len(prediction[j])):
if prediction[j][k] == "":
valid_score[j][k] = opt.beam_size + 1
invalid_rates[k] += 1
de_error = [i[0] for i in sorted(list(zip(prediction[j], valid_score[j])), key=lambda x: x[1]) if i[0] != ""]
prediction[j] = list(set(de_error))
prediction[j].sort(key=de_error.index)
for k, data in enumerate(prediction[j]):
if data in rank:
rank[data] += 1 / (alpha * k + 1)
else:
rank[data] = 1 / (alpha * k + 1)
if data in highest:
highest[data] = min(k,highest[data])
else:
highest[data] = k
return rank,invalid_rates
def main(opt):
print('Reading predictions from file ...')
data = pd.read_csv(opt.data_path)
# get the targets
targets = data['target_smiles'].tolist()
pool = multiprocessing.Pool(processes=opt.process_number)
targets = pool.map(func=canonicalize_smiles_clear_map, iterable=targets)
pool.close()
pool.join()
# get the predictions
predictions = data['predictions'].apply(ast.literal_eval) # data_len x augmentation x beam_size
original_augmentation = len(predictions[0])
assert opt.augmentation <= original_augmentation, f"The set augmentation {opt.augmentation} is larger than the original augmentation {original_augmentation}"
predictions = predictions.apply(lambda x: x[:opt.augmentation])
data_size = len(predictions)
augmentation = len(predictions[0])
beam_size = len(predictions[0][0])
assert data_size == len(targets), "the prediction len does not equal to the data_len"
assert augmentation == opt.augmentation, "the inferenced augmentation does not " + \
"equal to the set augmentation"
assert beam_size == opt.beam_size, "the inferenced beam size does not" + \
"equal to the set beam size"
ground_truth = targets
print("Origin Target Lentgh, ", len(ground_truth))
print("Cutted Length, ",data_size)
accuracy = [0 for j in range(opt.n_best)]
accurate_indices = [[] for j in range(opt.n_best)]
invalid_rates = [0 for j in range(opt.beam_size)]
sorted_invalid_rates = [0 for j in range(opt.beam_size)]
unique_rates = 0
ranked_results = []
for i in tqdm(range(len(predictions))):
accurate_flag = False
rank, invalid_rate = compute_rank(predictions[i], alpha=opt.score_alpha)
for j in range(opt.beam_size):
invalid_rates[j] += invalid_rate[j]
rank = list(zip(rank.keys(),rank.values()))
rank.sort(key=lambda x:x[1],reverse=True)
rank = rank[:opt.n_best]
ranked_results.append([item[0] for item in rank])
for j, item in enumerate(rank):
if item[0] == ground_truth[i]:
if not accurate_flag:
accurate_flag = True
accurate_indices[j].append(i)
for k in range(j, opt.n_best):
accuracy[k] += 1
for i in range(opt.n_best):
if i in [0,1,2,3,4,5,6,7,8,9,19,49]:
print("Top-{} Acc:{:.3f}%, ".format(i+1,accuracy[i] / data_size * 100),
" Invalid SMILES:{:.3f}% Sorted Invalid SMILES:{:.3f}%".format(invalid_rates[i] / data_size / opt.augmentation * 100,sorted_invalid_rates[i] / data_size / opt.augmentation * 100))
print("Unique Rates:{:.3f}%".format(unique_rates / data_size / opt.beam_size * 100))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='score.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-beam_size', type=int, default=10,help='Beam size')
parser.add_argument('-n_best', type=int, default=10,help='n best')
parser.add_argument('-data_path', type=str, required=True,
help="Path to file containing the data")
parser.add_argument('-augmentation', type=int, default=20)
parser.add_argument('-score_alpha', type=float, default=1.0)
parser.add_argument('-length', type=int, default=-1)
parser.add_argument('-process_number', type=int, default=multiprocessing.cpu_count())
opt = parser.parse_args()
print(opt)
main(opt)