|
1 | 1 | """
|
2 |
| -This is a type of divide and conquer algorithm which divides the search space into |
3 |
| -3 parts and finds the target value based on the property of the array or list |
4 |
| -(usually monotonic property). |
| 2 | +Ternary Search Algorithm - Iterative and Recursive Implementations |
| 3 | +
|
| 4 | +Divides the search range into 3 parts instead of 2, and recursively or iteratively |
| 5 | +eliminates 2/3 of the array in each step. |
5 | 6 |
|
6 | 7 | Time Complexity : O(log3 N)
|
7 |
| -Space Complexity : O(1) |
| 8 | +Space Complexity : O(1) for iterative, O(log3 N) for recursive |
8 | 9 | """
|
9 | 10 |
|
10 | 11 | from __future__ import annotations
|
11 | 12 |
|
12 |
| -# This is the precision for this function which can be altered. |
13 |
| -# It is recommended for users to keep this number greater than or equal to 10. |
14 |
| -precision = 10 |
15 |
| - |
16 |
| - |
17 |
| -# This is the linear search that will occur after the search space has become smaller. |
18 |
| - |
19 |
| - |
20 |
| -def lin_search(left: int, right: int, array: list[int], target: int) -> int: |
21 |
| - """Perform linear search in list. Returns -1 if element is not found. |
22 |
| -
|
23 |
| - Parameters |
24 |
| - ---------- |
25 |
| - left : int |
26 |
| - left index bound. |
27 |
| - right : int |
28 |
| - right index bound. |
29 |
| - array : List[int] |
30 |
| - List of elements to be searched on |
31 |
| - target : int |
32 |
| - Element that is searched |
33 | 13 |
|
34 |
| - Returns |
35 |
| - ------- |
36 |
| - int |
37 |
| - index of element that is looked for. |
| 14 | +def linear_search(start: int, end: int, array: list[int | float | str], target) -> int: |
| 15 | + """ |
| 16 | + Fallback linear search when search window is small. |
38 | 17 |
|
39 |
| - Examples |
40 |
| - -------- |
41 |
| - >>> lin_search(0, 4, [4, 5, 6, 7], 7) |
42 |
| - 3 |
43 |
| - >>> lin_search(0, 3, [4, 5, 6, 7], 7) |
44 |
| - -1 |
45 |
| - >>> lin_search(0, 2, [-18, 2], -18) |
46 |
| - 0 |
47 |
| - >>> lin_search(0, 1, [5], 5) |
48 |
| - 0 |
49 |
| - >>> lin_search(0, 3, ['a', 'c', 'd'], 'c') |
50 |
| - 1 |
51 |
| - >>> lin_search(0, 3, [.1, .4 , -.1], .1) |
52 |
| - 0 |
53 |
| - >>> lin_search(0, 3, [.1, .4 , -.1], -.1) |
| 18 | + >>> linear_search(0, 4, [1, 2, 3, 4], 3) |
54 | 19 | 2
|
| 20 | + >>> linear_search(0, 2, ["a", "b", "c"], "b") |
| 21 | + 1 |
| 22 | + >>> linear_search(0, 3, [0.1, 0.2, 0.3], 0.4) |
| 23 | + -1 |
55 | 24 | """
|
56 |
| - for i in range(left, right): |
| 25 | + for i in range(start, end): |
57 | 26 | if array[i] == target:
|
58 | 27 | return i
|
59 | 28 | return -1
|
60 | 29 |
|
61 | 30 |
|
62 |
| -def ite_ternary_search(array: list[int], target: int) -> int: |
63 |
| - """Iterative method of the ternary search algorithm. |
64 |
| - >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] |
65 |
| - >>> ite_ternary_search(test_list, 3) |
66 |
| - -1 |
67 |
| - >>> ite_ternary_search(test_list, 13) |
68 |
| - 4 |
69 |
| - >>> ite_ternary_search([4, 5, 6, 7], 4) |
70 |
| - 0 |
71 |
| - >>> ite_ternary_search([4, 5, 6, 7], -10) |
72 |
| - -1 |
73 |
| - >>> ite_ternary_search([-18, 2], -18) |
74 |
| - 0 |
75 |
| - >>> ite_ternary_search([5], 5) |
76 |
| - 0 |
77 |
| - >>> ite_ternary_search(['a', 'c', 'd'], 'c') |
78 |
| - 1 |
79 |
| - >>> ite_ternary_search(['a', 'c', 'd'], 'f') |
| 31 | +def ternary_search_iterative(array: list[int | float | str], target) -> int: |
| 32 | + """ |
| 33 | + Iterative ternary search algorithm for sorted arrays. |
| 34 | +
|
| 35 | + >>> ternary_search_iterative([1, 3, 5, 7, 9], 7) |
| 36 | + 3 |
| 37 | + >>> ternary_search_iterative([1, 3, 5, 7, 9], 2) |
80 | 38 | -1
|
81 |
| - >>> ite_ternary_search([], 1) |
| 39 | + >>> ternary_search_iterative([], 4) |
82 | 40 | -1
|
83 |
| - >>> ite_ternary_search([.1, .4 , -.1], .1) |
84 |
| - 0 |
85 | 41 | """
|
86 |
| - |
87 | 42 | left = 0
|
88 |
| - right = len(array) |
| 43 | + right = len(array) - 1 |
| 44 | + threshold = 10 |
| 45 | + |
89 | 46 | while left <= right:
|
90 |
| - if right - left < precision: |
91 |
| - return lin_search(left, right, array, target) |
| 47 | + if right - left < threshold: |
| 48 | + return linear_search(left, right + 1, array, target) |
92 | 49 |
|
93 |
| - one_third = (left + right) // 3 + 1 |
94 |
| - two_third = 2 * (left + right) // 3 + 1 |
| 50 | + one_third = left + (right - left) // 3 |
| 51 | + two_third = right - (right - left) // 3 |
95 | 52 |
|
96 | 53 | if array[one_third] == target:
|
97 | 54 | return one_third
|
98 | 55 | elif array[two_third] == target:
|
99 | 56 | return two_third
|
100 |
| - |
101 | 57 | elif target < array[one_third]:
|
102 | 58 | right = one_third - 1
|
103 |
| - elif array[two_third] < target: |
| 59 | + elif target > array[two_third]: |
104 | 60 | left = two_third + 1
|
105 |
| - |
106 | 61 | else:
|
107 | 62 | left = one_third + 1
|
108 | 63 | right = two_third - 1
|
| 64 | + |
109 | 65 | return -1
|
110 | 66 |
|
111 | 67 |
|
112 |
| -def rec_ternary_search(left: int, right: int, array: list[int], target: int) -> int: |
113 |
| - """Recursive method of the ternary search algorithm. |
| 68 | +def ternary_search_recursive( |
| 69 | + array: list[int | float | str], |
| 70 | + target, |
| 71 | + left: int = 0, |
| 72 | + right: int | None = None, |
| 73 | + threshold: int = 10, |
| 74 | +) -> int: |
| 75 | + """ |
| 76 | + Recursive ternary search algorithm. |
114 | 77 |
|
115 |
| - >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] |
116 |
| - >>> rec_ternary_search(0, len(test_list), test_list, 3) |
117 |
| - -1 |
118 |
| - >>> rec_ternary_search(4, len(test_list), test_list, 42) |
119 |
| - 8 |
120 |
| - >>> rec_ternary_search(0, 2, [4, 5, 6, 7], 4) |
121 |
| - 0 |
122 |
| - >>> rec_ternary_search(0, 3, [4, 5, 6, 7], -10) |
123 |
| - -1 |
124 |
| - >>> rec_ternary_search(0, 1, [-18, 2], -18) |
125 |
| - 0 |
126 |
| - >>> rec_ternary_search(0, 1, [5], 5) |
127 |
| - 0 |
128 |
| - >>> rec_ternary_search(0, 2, ['a', 'c', 'd'], 'c') |
129 |
| - 1 |
130 |
| - >>> rec_ternary_search(0, 2, ['a', 'c', 'd'], 'f') |
131 |
| - -1 |
132 |
| - >>> rec_ternary_search(0, 0, [], 1) |
| 78 | + >>> ternary_search_recursive([1, 3, 5, 7, 9], 7) |
| 79 | + 3 |
| 80 | + >>> ternary_search_recursive(["a", "b", "c", "d"], "c") |
| 81 | + 2 |
| 82 | + >>> ternary_search_recursive([], 1) |
133 | 83 | -1
|
134 |
| - >>> rec_ternary_search(0, 3, [.1, .4 , -.1], .1) |
135 |
| - 0 |
136 | 84 | """
|
137 |
| - if left < right: |
138 |
| - if right - left < precision: |
139 |
| - return lin_search(left, right, array, target) |
140 |
| - one_third = (left + right) // 3 + 1 |
141 |
| - two_third = 2 * (left + right) // 3 + 1 |
| 85 | + if right is None: |
| 86 | + right = len(array) - 1 |
142 | 87 |
|
143 |
| - if array[one_third] == target: |
144 |
| - return one_third |
145 |
| - elif array[two_third] == target: |
146 |
| - return two_third |
| 88 | + if left > right: |
| 89 | + return -1 |
147 | 90 |
|
148 |
| - elif target < array[one_third]: |
149 |
| - return rec_ternary_search(left, one_third - 1, array, target) |
150 |
| - elif array[two_third] < target: |
151 |
| - return rec_ternary_search(two_third + 1, right, array, target) |
152 |
| - else: |
153 |
| - return rec_ternary_search(one_third + 1, two_third - 1, array, target) |
| 91 | + if right - left < threshold: |
| 92 | + return linear_search(left, right + 1, array, target) |
| 93 | + |
| 94 | + one_third = left + (right - left) // 3 |
| 95 | + two_third = right - (right - left) // 3 |
| 96 | + |
| 97 | + if array[one_third] == target: |
| 98 | + return one_third |
| 99 | + elif array[two_third] == target: |
| 100 | + return two_third |
| 101 | + elif target < array[one_third]: |
| 102 | + return ternary_search_recursive(array, target, left, one_third - 1, threshold) |
| 103 | + elif target > array[two_third]: |
| 104 | + return ternary_search_recursive(array, target, two_third + 1, right, threshold) |
154 | 105 | else:
|
155 |
| - return -1 |
| 106 | + return ternary_search_recursive(array, target, one_third + 1, two_third - 1, threshold) |
156 | 107 |
|
157 | 108 |
|
158 | 109 | if __name__ == "__main__":
|
159 | 110 | import doctest
|
160 | 111 |
|
161 | 112 | doctest.testmod()
|
162 | 113 |
|
163 |
| - user_input = input("Enter numbers separated by comma:\n").strip() |
164 |
| - collection = [int(item.strip()) for item in user_input.split(",")] |
165 |
| - assert collection == sorted(collection), f"List must be ordered.\n{collection}." |
166 |
| - target = int(input("Enter the number to be found in the list:\n").strip()) |
167 |
| - result1 = ite_ternary_search(collection, target) |
168 |
| - result2 = rec_ternary_search(0, len(collection) - 1, collection, target) |
169 |
| - if result2 != -1: |
170 |
| - print(f"Iterative search: {target} found at positions: {result1}") |
171 |
| - print(f"Recursive search: {target} found at positions: {result2}") |
172 |
| - else: |
173 |
| - print("Not found") |
| 114 | + try: |
| 115 | + raw_input = input("\nEnter sorted numbers separated by commas: ").strip() |
| 116 | + collection = [int(x) for x in raw_input.split(",")] |
| 117 | + assert collection == sorted(collection), "Input must be sorted in ascending order." |
| 118 | + target = int(input("Enter the number to search: ")) |
| 119 | + |
| 120 | + result_iter = ternary_search_iterative(collection, target) |
| 121 | + result_rec = ternary_search_recursive(collection, target) |
| 122 | + |
| 123 | + if result_iter != -1: |
| 124 | + print(f"Iterative Search: Found {target} at index {result_iter}") |
| 125 | + print(f"Recursive Search: Found {target} at index {result_rec}") |
| 126 | + else: |
| 127 | + print(f"{target} not found in the list.") |
| 128 | + except Exception as e: |
| 129 | + print(f"Error: {e}") |
0 commit comments