|
2 | 2 | using Algorithms.MachineLearning; |
3 | 3 | using System; |
4 | 4 |
|
5 | | -namespace Algorithms.Tests.MachineLearning |
| 5 | +namespace Algorithms.Tests.MachineLearning; |
| 6 | + |
| 7 | +[TestFixture] |
| 8 | +public class KNearestNeighborsTests |
6 | 9 | { |
7 | | - [TestFixture] |
8 | | - public class KNearestNeighborsTests |
| 10 | + [Test] |
| 11 | + public void Constructor_InvalidK_ThrowsException() |
9 | 12 | { |
10 | | - [Test] |
11 | | - public void Constructor_InvalidK_ThrowsException() |
12 | | - { |
13 | | - Assert.Throws<ArgumentOutOfRangeException>(() => new KNearestNeighbors<string>(0)); |
14 | | - } |
| 13 | + Assert.Throws<ArgumentOutOfRangeException>(() => new KNearestNeighbors<string>(0)); |
| 14 | + } |
15 | 15 |
|
16 | | - [Test] |
17 | | - public void AddSample_NullFeatures_ThrowsException() |
18 | | - { |
19 | | - var knn = new KNearestNeighbors<string>(3); |
20 | | - double[]? features = null; |
21 | | - Assert.Throws<ArgumentNullException>(() => knn.AddSample(features!, "A")); |
22 | | - } |
| 16 | + [Test] |
| 17 | + public void AddSample_NullFeatures_ThrowsException() |
| 18 | + { |
| 19 | + var knn = new KNearestNeighbors<string>(3); |
| 20 | + double[]? features = null; |
| 21 | + Assert.Throws<ArgumentNullException>(() => knn.AddSample(features!, "A")); |
| 22 | + } |
23 | 23 |
|
24 | | - [Test] |
25 | | - public void Predict_NoTrainingData_ThrowsException() |
26 | | - { |
27 | | - var knn = new KNearestNeighbors<string>(1); |
28 | | - Assert.Throws<InvalidOperationException>(() => knn.Predict(new double[] { 1.0 })); |
29 | | - } |
| 24 | + [Test] |
| 25 | + public void Predict_NoTrainingData_ThrowsException() |
| 26 | + { |
| 27 | + var knn = new KNearestNeighbors<string>(1); |
| 28 | + Assert.Throws<InvalidOperationException>(() => knn.Predict(new double[] { 1.0 })); |
| 29 | + } |
30 | 30 |
|
31 | | - [Test] |
32 | | - public void Predict_NullFeatures_ThrowsException() |
33 | | - { |
34 | | - var knn = new KNearestNeighbors<string>(1); |
35 | | - knn.AddSample(new double[] { 1.0 }, "A"); |
36 | | - double[]? features = null; |
37 | | - Assert.Throws<ArgumentNullException>(() => knn.Predict(features!)); |
38 | | - } |
| 31 | + [Test] |
| 32 | + public void Predict_NullFeatures_ThrowsException() |
| 33 | + { |
| 34 | + var knn = new KNearestNeighbors<string>(1); |
| 35 | + knn.AddSample(new double[] { 1.0 }, "A"); |
| 36 | + double[]? features = null; |
| 37 | + Assert.Throws<ArgumentNullException>(() => knn.Predict(features!)); |
| 38 | + } |
39 | 39 |
|
40 | | - [Test] |
41 | | - public void EuclideanDistance_DifferentLengths_ThrowsException() |
42 | | - { |
43 | | - Assert.Throws<ArgumentException>(() => KNearestNeighbors<string>.EuclideanDistance(new double[] { 1.0 }, new double[] { 1.0, 2.0 })); |
44 | | - } |
| 40 | + [Test] |
| 41 | + public void EuclideanDistance_DifferentLengths_ThrowsException() |
| 42 | + { |
| 43 | + Assert.Throws<ArgumentException>(() => KNearestNeighbors<string>.EuclideanDistance(new double[] { 1.0 }, new double[] { 1.0, 2.0 })); |
| 44 | + } |
45 | 45 |
|
46 | | - [Test] |
47 | | - public void EuclideanDistance_CorrectResult() |
48 | | - { |
49 | | - double[] a = { 1.0, 2.0 }; |
50 | | - double[] b = { 4.0, 6.0 }; |
51 | | - double expected = 5.0; |
52 | | - double actual = KNearestNeighbors<string>.EuclideanDistance(a, b); |
53 | | - Assert.That(actual, Is.EqualTo(expected).Within(1e-9)); |
54 | | - } |
| 46 | + [Test] |
| 47 | + public void EuclideanDistance_CorrectResult() |
| 48 | + { |
| 49 | + double[] a = { 1.0, 2.0 }; |
| 50 | + double[] b = { 4.0, 6.0 }; |
| 51 | + double expected = 5.0; |
| 52 | + double actual = KNearestNeighbors<string>.EuclideanDistance(a, b); |
| 53 | + Assert.That(actual, Is.EqualTo(expected).Within(1e-9)); |
| 54 | + } |
55 | 55 |
|
56 | | - [Test] |
57 | | - public void Predict_SingleNeighbor_CorrectLabel() |
58 | | - { |
59 | | - var knn = new KNearestNeighbors<string>(1); |
60 | | - knn.AddSample(new double[] { 1.0, 2.0 }, "A"); |
61 | | - knn.AddSample(new double[] { 3.0, 4.0 }, "B"); |
62 | | - var label = knn.Predict(new double[] { 1.1, 2.1 }); |
63 | | - Assert.That(label, Is.EqualTo("A")); |
64 | | - } |
| 56 | + [Test] |
| 57 | + public void Predict_SingleNeighbor_CorrectLabel() |
| 58 | + { |
| 59 | + var knn = new KNearestNeighbors<string>(1); |
| 60 | + knn.AddSample(new double[] { 1.0, 2.0 }, "A"); |
| 61 | + knn.AddSample(new double[] { 3.0, 4.0 }, "B"); |
| 62 | + var label = knn.Predict(new double[] { 1.1, 2.1 }); |
| 63 | + Assert.That(label, Is.EqualTo("A")); |
| 64 | + } |
65 | 65 |
|
66 | | - [Test] |
67 | | - public void Predict_MajorityVote_CorrectLabel() |
68 | | - { |
69 | | - var knn = new KNearestNeighbors<string>(3); |
70 | | - knn.AddSample(new double[] { 0.0, 0.0 }, "A"); |
71 | | - knn.AddSample(new double[] { 0.1, 0.1 }, "A"); |
72 | | - knn.AddSample(new double[] { 1.0, 1.0 }, "B"); |
73 | | - var label = knn.Predict(new double[] { 0.05, 0.05 }); |
74 | | - Assert.That(label, Is.EqualTo("A")); |
75 | | - } |
| 66 | + [Test] |
| 67 | + public void Predict_MajorityVote_CorrectLabel() |
| 68 | + { |
| 69 | + var knn = new KNearestNeighbors<string>(3); |
| 70 | + knn.AddSample(new double[] { 0.0, 0.0 }, "A"); |
| 71 | + knn.AddSample(new double[] { 0.1, 0.1 }, "A"); |
| 72 | + knn.AddSample(new double[] { 1.0, 1.0 }, "B"); |
| 73 | + var label = knn.Predict(new double[] { 0.05, 0.05 }); |
| 74 | + Assert.That(label, Is.EqualTo("A")); |
| 75 | + } |
76 | 76 |
|
77 | | - [Test] |
78 | | - public void Predict_TieBreaker_ReturnsConsistentLabel() |
79 | | - { |
80 | | - var knn = new KNearestNeighbors<string>(2); |
81 | | - knn.AddSample(new double[] { 0.0, 0.0 }, "A"); |
82 | | - knn.AddSample(new double[] { 1.0, 1.0 }, "B"); |
83 | | - var label = knn.Predict(new double[] { 0.5, 0.5 }); |
84 | | - Assert.That(label, Is.EqualTo("B")); |
85 | | - } |
| 77 | + [Test] |
| 78 | + public void Predict_TieBreaker_ReturnsConsistentLabel() |
| 79 | + { |
| 80 | + var knn = new KNearestNeighbors<string>(2); |
| 81 | + knn.AddSample(new double[] { 0.0, 0.0 }, "A"); |
| 82 | + knn.AddSample(new double[] { 1.0, 1.0 }, "B"); |
| 83 | + var label = knn.Predict(new double[] { 0.5, 0.5 }); |
| 84 | + Assert.That(label, Is.EqualTo("B")); |
86 | 85 | } |
87 | 86 | } |
0 commit comments