-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReseQ_V2.m
193 lines (157 loc) · 5.4 KB
/
ReseQ_V2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
clear
close all
clc
%% Robot geometric parameters
a = 0.21;
b = 0.3;
l = 0.38;
w = 0.2;
r = 0.12;
modules = 2;
%% Simulation parameters
v1_max = 0.5;
rc_max = 0.4;
w1_max = v1_max/rc_max;
x = [12 64 24];
trajectory = 'Simple case';
%trajectory = 'Simple case smooth_w';
%trajectory = 'S-curve';
%trajectory = 'U-curve';
%trajectory = '<3 shape';
N = 20000;
switch trajectory
case 'Simple case'
v1 = v1_max*ones(1,N);
w1 = w1_max*ones(1,N);
case 'Simple case smooth_w'
v1 = v1_max*ones(1,3*N);
w1 = [zeros(1,N),linspace(0,w1_max,N),w1_max*ones(1,N)];
case 'S-curve'
v1 = v1_max*ones(1,8*N);
w1 = [zeros(1,N), linspace(0,w1_max,N), w1_max*ones(1,N/2), linspace(w1_max,0,N), zeros(1,N), linspace(0,-w1_max,N), -w1_max*ones(1,N/2), linspace(-w1_max,0,N), zeros(1,N)];
case 'U-curve'
v1 = v1_max*ones(1,2*N+N);
w1 = [zeros(1,N), w1_max*ones(1,N), zeros(1,N)];
case '<3 shape'
v1_max = 0.56;
rc_min = 0.1;
w1_max = v1_max/rc_min;
v1 = v1_max*ones(1,37*N);
w1 = [zeros(1,N), linspace(0,w1_max/3,N), linspace(w1_max/3,0,N), zeros(1,5*N), linspace(0,w1_max/4,N), w1_max/4*ones(1,8*N), linspace(w1_max/4,0,N), -w1_max*ones(1,N), linspace(0,w1_max/4,N), w1_max/4*ones(1,8*N), linspace(w1_max/4,0,N), zeros(1,5*N), linspace(0,w1_max/3,N), linspace(w1_max/3,0,N), zeros(1,N)];
otherwise
v1 = v1_max*ones(1,N);
w1 = w1_max*ones(1,N);
end
ts = 10;
t = linspace(0,ts,length(v1));
dt = t(2)-t(1);
V{1} = [v1; zeros(1,length(t)); zeros(1,length(t))];
W{1} = [zeros(1,length(t)); zeros(1,length(t)); w1];
for m = 2:modules
V{m} = zeros(3,length(t));
W{m} = zeros(3,length(t));
end
%% Initial conditions
for m = 1:modules
eta{m} = nan(3,length(t));
etad{m} = nan(3,length(t));
eta{m}(:,1) = [0,(m-1)*(-a-b),0]'; %Initial orientation and position [g0, x0, y0]'
etad{m}(:,1) = [0,0,0]'; %Initial angular and linear velocity [gd0, xd0, yd0]'
end
% plotModuleHead([eta_0{1}(2:3)',0]',eta_0{1}(1),l,w,a);
% for m= 2:modules-1
% plotModuleMiddle([eta_0{m}(2:3)',0]',eta_0{m}(1),l,w,a,b);
% end
% if modules > 1
% plotModuleTail([eta_0{end}(2:3)',0]',eta_0{end}(1),l,w,b);
% end
% axis equal
% grid
%% Simulation
for i = 1:length(t)-1
for m = 2:modules
th{m-1} = eta{m-1}(1,i)-eta{m}(1,i);
V{m}(1,i) = V{m-1}(1,i)*cos(th{m-1}) + a*W{m-1}(3,i)*sin(th{m-1});
W{m}(3,i) = (V{m-1}(1,i)*sin(th{m-1}) - a*W{m-1}(3,i)*cos(th{m-1}))/b;
end
for m = 1:modules
etad{m}(1,i) = W{m}(3,i);
eta{m}(1,i+1) = eta{m}(1,i) + dt*etad{m}(1,i);
vs{m} = Rotz(eta{m}(1,i))*V{m}(:,i);
etad{m}(2:3,i) = vs{m}(1:2);
eta{m}(2:3,i+1) = eta{m}(2:3,i) + dt*etad{m}(2:3,i);
end
end
%% Plot
figure(2)
plot(eta{1}(2,:),eta{1}(3,:),'--k',"LineWidth",0.75)
grid on
axis equal
hold on
for ii = 1:1000:length(t)
cla
plotModuleHead([eta{1}(2:3,ii)',0]',eta{1}(1,ii),l,w,a);
for m= 2:modules-1
plotModuleMiddle([eta{m}(2:3,ii)',0]',eta{m}(1,ii),l,w,a,b);
end
if modules > 1
plotModuleTail([eta{end}(2:3,ii)',0]',eta{end}(1,ii),l,w,b);
end
plot(eta{1}(2,:),eta{1}(3,:),'--k',"LineWidth",0.75)
drawnow;
end
%% Functions
function out = Rotz(th)
out = [cos(th) -sin(th) 0;
sin(th) cos(th) 0;
0 0 1];
end
function [] = plotModuleHead(p, th, l, w, a)
R = Rotz(th);
p1 = p + R*[-l/2,-w/2,0]';
p2 = p + R*[+l/2,-w/2,0]';
p3 = p + R*[+l/2,+w/2,0]';
p4 = p + R*[-l/2,+w/2,0]';
pQ1 = p + R*[-l/2,0,0]';
pQ = p + R*[-a,0,0]';
plot([p1(1) p2(1) p3(1) p4(1) p1(1)],[p1(2) p2(2) p3(2) p4(2) p1(2)], 'k', 'LineWidth',2)
hold on
plot([pQ1(1) pQ(1)], [pQ1(2) pQ(2)], 'k', 'LineWidth',2)
plot(pQ(1),pQ(2),'ok', 'LineWidth',2.5)
quiver(p(1),p(2), 0.15*l*cos(th), 0.15*l*sin(th),"Color",'red','LineWidth',1.0)
quiver(p(1),p(2), -0.15*l*sin(th), 0.15*l*cos(th),"Color",'green','LineWidth',1.0)
end
function [] = plotModuleMiddle(p, th, l, w, a, b)
R = Rotz(th);
p1 = p + R*[-l/2,-w/2,0]';
p2 = p + R*[+l/2,-w/2,0]';
p3 = p + R*[+l/2,+w/2,0]';
p4 = p + R*[-l/2,+w/2,0]';
pQ1 = p + R*[+l/2,0,0]';
pQ = p + R*[+b,0,0]';
pQ2 = p + R*[-l/2,0,0]';
pQ_2 = p + R*[-a,0,0]';
plot([p1(1) p2(1) p3(1) p4(1) p1(1)],[p1(2) p2(2) p3(2) p4(2) p1(2)], 'r', 'LineWidth',2)
hold on
plot([pQ1(1) pQ(1)], [pQ1(2) pQ(2)], 'r', 'LineWidth',2)
plot(pQ(1),pQ(2),'ok', 'LineWidth',2.5)
plot([pQ2(1) pQ_2(1)], [pQ2(2) pQ_2(2)], 'k', 'LineWidth',2)
plot(pQ_2(1),pQ_2(2),'ok', 'LineWidth',2.5)
quiver(p(1),p(2), 0.15*l*cos(th), 0.15*l*sin(th),"Color",'red','LineWidth',1.0)
quiver(p(1),p(2), -0.15*l*sin(th), 0.15*l*cos(th),"Color",'green','LineWidth',1.0)
end
function [] = plotModuleTail(p, th, l, w, b)
R = Rotz(th);
p1 = p + R*[-l/2,-w/2,0]';
p2 = p + R*[+l/2,-w/2,0]';
p3 = p + R*[+l/2,+w/2,0]';
p4 = p + R*[-l/2,+w/2,0]';
pQ1 = p + R*[+l/2,0,0]';
pQ = p + R*[+b,0,0]';
plot([p1(1) p2(1) p3(1) p4(1) p1(1)],[p1(2) p2(2) p3(2) p4(2) p1(2)], 'b', 'LineWidth',2)
hold on
plot([pQ1(1) pQ(1)], [pQ1(2) pQ(2)], 'b', 'LineWidth',2)
plot(pQ(1),pQ(2),'ok', 'LineWidth',2.5)
quiver(p(1),p(2), 0.15*l*cos(th), 0.15*l*sin(th),"Color",'red','LineWidth',1.0)
quiver(p(1),p(2), -0.15*l*sin(th), 0.15*l*cos(th),"Color",'green','LineWidth',1.0)
end