-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprogress_callback.py
59 lines (47 loc) · 2.11 KB
/
progress_callback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from typing import Any, Dict
import os
import gym
import torch
from stable_baselines3.common.callbacks import CheckpointCallback
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.evaluation import evaluate_policy
class ProgressCallback(BaseCallback):
def __init__(self, eval_env: gym.Env, save_freq, render_freq: int, save_path: str, name_prefix: str = '',
deterministic: bool = True, verbose: bool = True):
"""
Records a video of an agent's trajectory traversing ``eval_env`` and logs it to TensorBoard
:param eval_env: A gym environment from which the trajectory is recorded
:param render_freq: Render the agent's trajectory every eval_freq call of the callback.
:param n_eval_episodes: Number of episodes to render
:param deterministic: Whether to use deterministic or stochastic policy
"""
super().__init__(verbose)
self._eval_env = eval_env
self._render_freq = render_freq
self._is_render = render_freq > 0
if self.verbose:
if self._is_render: print("Rendering results ever %d steps" % render_freq)
else: print("Not Rendering results")
self._num_render_episodes = 3 # only show 3 videos of evaluation
self._deterministic = deterministic
self.n_rollout_calls = 0
self._is_save = save_freq > 0
self.save_freq = save_freq
self.save_path = save_path
self.name_prefix = name_prefix
if self.save_path is not None:
os.makedirs(self.save_path, exist_ok=True)
def _init_callback(self):
print("INIT CALLBACK!")
def save_weights(self):
path = os.path.join(self.save_path, f"{self.name_prefix}_{self.num_timesteps}_steps")
self.model.save(path)
if self.verbose > 1:
print(f"Saving model checkpoint to {path}")
def _on_step(self):
pass
def _on_rollout_end(self) -> bool:
self.n_rollout_calls += 1
if self._is_save and (self.n_rollout_calls % self.save_freq == 0):
self.save_weights()
return True