-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine.py
264 lines (224 loc) · 11.4 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
Train and eval functions used in main.py
Modified from DETR (https://github.com/facebookresearch/detr)
"""
import math
import pdb
from models import postprocessors
import os
import sys
from typing import Iterable
import torch
import torch.distributed as dist
import util.misc as utils
from datasets.coco_eval import CocoEvaluator
from datasets.refexp_eval import RefExpEvaluator
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from datasets.a2d_eval import calculate_precision_at_k_and_iou_metrics, calculate_bbox_precision_at_k_and_iou_metrics
scaler = torch.cuda.amp.GradScaler()
import pdb
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0, use_fp16: bool=False):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 40
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
with torch.cuda.amp.autocast() if use_fp16 else torch.cuda.amp.autocast(
enabled=False
):
if use_fp16:
optimizer.zero_grad()
samples = samples.to(device)
captions = [t["caption"] for t in targets]
targets = utils.targets_to(targets, device)
outputs = model(samples, captions, targets)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
if use_fp16:
scaler.scale(losses).backward()
scaler.unscale_(optimizer)
else:
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
else:
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
if use_fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model, criterion, postprocessors, data_loader, evaluator_list, device, args):
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
predictions = []
for samples, targets in metric_logger.log_every(data_loader, 10, header):
dataset_name = targets[0]["dataset_name"]
samples = samples.to(device)
captions = [t["caption"] for t in targets]
targets = utils.targets_to(targets, device)
outputs = model(samples, captions, targets)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled)
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors['bbox'](outputs, orig_target_sizes)
if 'segm' in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
for evaluator in evaluator_list:
evaluator.update(res)
# REC & RES predictions
for p, target in zip(results, targets):
for s, b, m in zip(p['scores'], p['boxes'], p['rle_masks']):
predictions.append({'image_id': target['image_id'].item(),
'category_id': 1, # dummy label, as categories are not predicted in ref-vos
'bbox': b.tolist(),
'segmentation': m,
'score': s.item()})
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
for evaluator in evaluator_list:
evaluator.synchronize_between_processes()
# accumulate predictions from all images
refexp_res = None
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
evaluator.accumulate()
evaluator.summarize()
elif isinstance(evaluator, RefExpEvaluator):
refexp_res = evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
# update stats
for evaluator in evaluator_list:
if isinstance(evaluator, CocoEvaluator):
if "bbox" in postprocessors.keys():
stats["coco_eval_bbox"] = evaluator.coco_eval["bbox"].stats.tolist()
if "segm" in postprocessors.keys():
stats["coco_eval_masks"] = evaluator.coco_eval["segm"].stats.tolist()
if refexp_res is not None:
stats.update(refexp_res)
# evaluate RES
# gather and merge predictions from all gpus
gathered_pred_lists = utils.all_gather(predictions)
predictions = [p for p_list in gathered_pred_lists for p in p_list]
eval_metrics = {}
if utils.is_main_process():
if dataset_name == 'refcoco':
coco_gt = COCO(os.path.join(args.coco_path, 'refcoco/instances_refcoco_val.json'))
elif dataset_name == 'refcoco+':
coco_gt = COCO(os.path.join(args.coco_path, 'refcoco+/instances_refcoco+_val.json'))
elif dataset_name == 'refcocog':
coco_gt = COCO(os.path.join(args.coco_path, 'refcocog/instances_refcocog_val.json'))
else:
raise NotImplementedError
coco_pred = coco_gt.loadRes(predictions)
coco_eval = COCOeval(coco_gt, coco_pred, iouType='segm')
coco_eval.params.useCats = 0 # ignore categories as they are not predicted in ref-vos task
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
# ap_labels = ['mAP 0.5:0.95', 'AP 0.5', 'AP 0.75', 'AP 0.5:0.95 S', 'AP 0.5:0.95 M', 'AP 0.5:0.95 L']
# ap_metrics = coco_eval.stats[:6]
# eval_metrics = {l: m for l, m in zip(ap_labels, ap_metrics)}
# Precision and IOU
# bbox
precision_at_k, overall_iou, mean_iou = calculate_bbox_precision_at_k_and_iou_metrics(coco_gt, coco_pred)
eval_metrics.update({f'bbox P@{k}': m for k, m in zip([0.5, 0.6, 0.7, 0.8, 0.9], precision_at_k)})
eval_metrics.update({'bbox overall_iou': overall_iou, 'bbox mean_iou': mean_iou})
# mask
precision_at_k, overall_iou, mean_iou = calculate_precision_at_k_and_iou_metrics(coco_gt, coco_pred)
eval_metrics.update({f'segm P@{k}': m for k, m in zip([0.5, 0.6, 0.7, 0.8, 0.9], precision_at_k)})
eval_metrics.update({'segm overall_iou': overall_iou, 'segm mean_iou': mean_iou})
print(eval_metrics)
stats.update(eval_metrics)
return stats
@torch.no_grad()
def evaluate_a2d(model, data_loader, postprocessor, device, args):
model.eval()
predictions = []
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
for samples, targets in metric_logger.log_every(data_loader, 10, header):
image_ids = [t['image_id'] for t in targets]
samples = samples.to(device)
captions = [t["caption"] for t in targets]
targets = utils.targets_to(targets, device)
outputs = model(samples, captions, targets)
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
processed_outputs = postprocessor(outputs, orig_target_sizes, target_sizes)
for p, image_id in zip(processed_outputs, image_ids):
for s, m in zip(p['scores'], p['rle_masks']):
predictions.append({'image_id': image_id,
'category_id': 1, # dummy label, as categories are not predicted in ref-vos
'segmentation': m,
'score': s.item()})
# gather and merge predictions from all gpus
gathered_pred_lists = utils.all_gather(predictions)
predictions = [p for p_list in gathered_pred_lists for p in p_list]
# evaluation
eval_metrics = {}
if utils.is_main_process():
if args.dataset_file == 'a2d':
coco_gt = COCO(os.path.join(args.a2d_path, 'a2d_sentences_test_annotations_in_coco_format.json'))
elif args.dataset_file == 'jhmdb':
coco_gt = COCO(os.path.join(args.jhmdb_path, 'jhmdb_sentences_gt_annotations_in_coco_format.json'))
else:
raise NotImplementedError
coco_pred = coco_gt.loadRes(predictions)
coco_eval = COCOeval(coco_gt, coco_pred, iouType='segm')
coco_eval.params.useCats = 0 # ignore categories as they are not predicted in ref-vos task
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
ap_labels = ['mAP 0.5:0.95', 'AP 0.5', 'AP 0.75', 'AP 0.5:0.95 S', 'AP 0.5:0.95 M', 'AP 0.5:0.95 L']
ap_metrics = coco_eval.stats[:6]
eval_metrics = {l: m for l, m in zip(ap_labels, ap_metrics)}
# Precision and IOU
precision_at_k, overall_iou, mean_iou = calculate_precision_at_k_and_iou_metrics(coco_gt, coco_pred)
eval_metrics.update({f'P@{k}': m for k, m in zip([0.5, 0.6, 0.7, 0.8, 0.9], precision_at_k)})
eval_metrics.update({'overall_iou': overall_iou, 'mean_iou': mean_iou})
print(eval_metrics)
# sync all processes before starting a new epoch or exiting
dist.barrier()
return eval_metrics