Skip to content

Commit e06cfec

Browse files
authored
* update integration images * register_callbacks
1 parent d5511d2 commit e06cfec

17 files changed

+59
-4
lines changed

en/guide_cloud/integration/integration-ultralytics.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44

55
[Ultralytics](https://github.com/ultralytics/ultralytics) YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model that builds on the success of previous YOLO versions and introduces new features and improvements to further enhance performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a variety of object detection and tracking, instance segmentation, image classification, and pose estimation tasks.
66

7-
![ultralytics](/assets/ig-ultralytics.png)
7+
![ultralytics](./ultralytics/logo.png)
88

99
You can use Ultralytics to quickly train computer vision models while using SwanLab for experiment tracking and visualization.
1010

708 KB
Loading

en/plugin/notification-dingtalk.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -77,6 +77,10 @@ if accuracy > 0.95:
7777
)
7878
```
7979

80+
## Register plugins externally
81+
82+
<!--@include: ./shared-snippet.md-->
83+
8084
## Limitations
8185

8286
• The training completion/error notifications of the DingTalk notification plugin use the `on_stop` lifecycle callback of `SwanKitCallback`. Therefore, if your process is abruptly `killed` or the training machine shuts down unexpectedly, the `on_stop` callback will not be triggered, resulting in no DingTalk notification being sent.

en/plugin/notification-email.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -75,6 +75,10 @@ if accuracy > 0.95:
7575
)
7676
```
7777

78+
## Register plugins externally
79+
80+
<!--@include: ./shared-snippet.md-->
81+
7882
## Limitations
7983

8084
• The training completion/error notification of the email notification plugin relies on the `on_stop` lifecycle callback of `SwanKitCallback`. Therefore, if your process is abruptly `killed` or the training machine shuts down unexpectedly, the `on_stop` callback will not be triggered, and no email notification will be sent.

en/plugin/notification-lark.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -78,6 +78,10 @@ if accuracy > 0.95:
7878
)
7979
```
8080

81+
## Register plugins externally
82+
83+
<!--@include: ./shared-snippet.md-->
84+
8185
## Limitations
8286

8387
• The training completion/error notification of the Lark notification plugin relies on the `on_stop` lifecycle callback of `SwanKitCallback`. Therefore, if your process is abruptly `killed` or the training machine shuts down unexpectedly, the `on_stop` callback will not be triggered, and no Lark notification will be sent.

en/plugin/notification-wxwork.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -80,6 +80,10 @@ if accuracy > 0.95:
8080
)
8181
```
8282

83+
## Register plugins externally
84+
85+
<!--@include: ./shared-snippet.md-->
86+
8387

8488
## Limitations
8589

en/plugin/shared-snippet.md

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
If you are using the integration of SwanLab with other frameworks and thus find it difficult to locate `swanlab.init`, you can use the `swanlab.register_callbacks` method to pass in plugins externally:
2+
3+
```python
4+
import swanlab
5+
6+
# Equivalent to swanlab.init(callbacks=[...])
7+
swanlab.register_callbacks([...])
8+
```

en/plugin/writer-csv.md

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -72,4 +72,8 @@ for epoch in range(2, epochs):
7272

7373
# [Optional] Finish training, which is necessary in notebook environments
7474
swanlab.finish()
75-
```
75+
```
76+
77+
## Register plugins externally
78+
79+
<!--@include: ./shared-snippet.md-->

zh/guide_cloud/integration/integration-ultralytics.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44

55
[Ultralytics](https://github.com/ultralytics/ultralytics) YOLOv8 是一款尖端、最先进的 (SOTA) 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新功能和改进,以进一步提高性能和灵活性。YOLOv8 设计为快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。
66

7-
![ultralytics](/assets/ig-ultralytics.png)
7+
![ultralytics](./ultralytics/logo.png)
88

99
你可以使用Ultralytics快速进行计算机视觉模型训练,同时使用SwanLab进行实验跟踪与可视化。
1010

184 KB
Loading

0 commit comments

Comments
 (0)