-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinference_pipeline.py
124 lines (96 loc) · 3.68 KB
/
inference_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
@author: louisblankemeier
"""
import inspect
import os
from typing import Dict, List
import nibabel as nib
from comp2comp.inference_class_base import InferenceClass
from comp2comp.io.io import DicomLoader, NiftiSaver
class InferencePipeline(InferenceClass):
"""Inference pipeline."""
def __init__(
self, inference_classes: List = None, config: Dict = None, args: Dict = None
):
self.config = config
self.args = args
# assign values from config to attributes
if self.config is not None:
for key, value in self.config.items():
setattr(self, key, value)
self.inference_classes = inference_classes
def __call__(self, inference_pipeline=None, **kwargs):
# print out the class names for each inference class
print("")
print("Inference pipeline:")
for i, inference_class in enumerate(self.inference_classes):
print(f"({i + 1}) {inference_class.__repr__()}")
print("")
print("Starting inference pipeline for:\n")
if inference_pipeline:
for key, value in kwargs.items():
setattr(inference_pipeline, key, value)
else:
for key, value in kwargs.items():
setattr(self, key, value)
output = {}
for inference_class in self.inference_classes:
function_keys = set(inspect.signature(inference_class).parameters.keys())
function_keys.remove("inference_pipeline")
if "kwargs" in function_keys:
function_keys.remove("kwargs")
assert function_keys == set(
output.keys()
), "Input to inference class, {}, does not have the correct parameters".format(
inference_class.__repr__()
)
print(
"Running {} with input keys {}".format(
inference_class.__repr__(),
inspect.signature(inference_class).parameters.keys(),
)
)
if inference_pipeline:
output = inference_class(
inference_pipeline=inference_pipeline, **output
)
else:
output = inference_class(inference_pipeline=self, **output)
# if not the last inference class, check that the output keys are correct
if inference_class != self.inference_classes[-1]:
print(
"Finished {} with output keys {}\n".format(
inference_class.__repr__(), output.keys()
)
)
print("Inference pipeline finished.\n")
return output
def saveArrToNifti(self, arr, path):
"""
Saves an array to nifti using the CT as reference
Args:
arr (ndarray): input array.
path (str, Path): full save path.
Returns:
None.
"""
img = nib.Nifti1Image(
arr, self.medical_volume.affine, self.medical_volume.header
)
nib.save(img, path)
if __name__ == "__main__":
"""Example usage of InferencePipeline."""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dicom_dir", type=str, required=True)
args = parser.parse_args()
output_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../outputs")
if not os.path.exists(output_dir):
os.mkdir(output_dir)
output_file_path = os.path.join(output_dir, "test.nii.gz")
pipeline = InferencePipeline(
[DicomLoader(args.dicom_dir), NiftiSaver()],
config={"output_dir": output_file_path},
)
pipeline()
print("Done.")