-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
432 lines (382 loc) · 18.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from __future__ import print_function
import argparse
import os
import gurobipy as gp
from tqdm import trange
import numpy as np
from src.algos.pax_flows_solver import PaxFlowsSolver
from src.algos.reb_flows_solver import RebalFlowSolver
import torch
import json
import os
import pickle
import time
import copy
from src.envs.amod_env import Scenario, AMoD
from src.algos.sac import SAC
from src.misc.utils import dictsum
from torch_geometric.data import Data
class GNNParser():
"""
Parser converting raw environment observations to agent input.
"""
def __init__(self, env, T=10, scale_factor=0.01, scale_price=0.1, input_size=20):
super().__init__()
self.env = env
self.T = T
self.scale_factor = scale_factor
self.price_scale_factor = scale_price
self.input_size = input_size
def parse_obs(self, obs):
# nodes
x = torch.cat((
torch.tensor([float(n[1])/self.env.scenario.number_charge_levels for n in self.env.nodes]).view(1, 1, self.env.number_nodes).float(),
torch.tensor([obs[0][n][self.env.time+1] * self.scale_factor for n in self.env.nodes]).view(1, 1, self.env.number_nodes).float(),
torch.tensor([[(obs[0][n][self.env.time+1] + self.env.dacc[n][t])*self.scale_factor for n in self.env.nodes] for t in range(self.env.time+1, self.env.time+self.T+1)]).view(1, self.T, self.env.number_nodes).float(),
torch.tensor([[sum([self.env.price[o[0], j][t]*self.scale_factor*self.price_scale_factor*(self.env.demand[o[0], j][t])*((o[1]-self.env.scenario.energy_distance[o[0], j]) >= int(not self.env.scenario.charging_stations[j]))
for j in self.env.region]) for o in self.env.nodes] for t in range(self.env.time+1, self.env.time+self.T+1)]).view(1, self.T, self.env.number_nodes).float()),
dim=1).squeeze(0).view(2+self.T + self.T, self.env.number_nodes).T
# edges
edges = []
for o in self.env.nodes:
for d in self.env.nodes:
if (o[0] == d[0] and o[1] == d[1]):
edges.append([o, d])
edge_idx = torch.tensor([[], []], dtype=torch.long)
for e in edges:
origin_node_idx = self.env.nodes.index(e[0])
destination_node_idx = self.env.nodes.index(e[1])
new_edge = torch.tensor([[origin_node_idx], [destination_node_idx]], dtype=torch.long)
edge_idx = torch.cat((edge_idx, new_edge), 1)
edge_index = torch.cat((edge_idx, self.env.gcn_edge_idx), 1)
data = Data(x, edge_index)
return data
def create_scenario(json_file_path, energy_file_path, seed=10):
f = open(json_file_path)
energy_dist = np.load(energy_file_path)
data = json.load(f)
tripAttr = data['demand']
reb_time = data['rebTime']
total_acc = data['totalAcc']
spatial_nodes = data['spatialNodes']
tf = data['episodeLength']
number_charge_levels = data['chargelevels']
charge_levels_per_charge_step = data['chargeLevelsPerChargeStep']
chargers = data['chargeLocations']
cars_per_station_capacity = data['carsPerStationCapacity']
p_energy = data["energy_prices"]
time_granularity = data["timeGranularity"]
operational_cost_per_timestep = data['operationalCostPerTimestep']
scenario = Scenario(spatial_nodes=spatial_nodes, charging_stations=chargers, cars_per_station_capacity = cars_per_station_capacity, number_charge_levels=number_charge_levels, charge_levels_per_charge_step=charge_levels_per_charge_step,
energy_distance=energy_dist, tf=tf, sd=seed, tripAttr = tripAttr, demand_ratio=1, reb_time=reb_time, total_acc = total_acc, p_energy=p_energy, time_granularity=time_granularity, operational_cost_per_timestep=operational_cost_per_timestep)
return scenario
parser = argparse.ArgumentParser(description='A2C-GNN')
# Simulator parameters
parser.add_argument('--seed', type=int, default=10, metavar='S',
help='random seed (default: 10)')
parser.add_argument('--demand_ratio', type=float, default=0.5, metavar='S',
help='demand_ratio (default: 0.5)')
parser.add_argument('--spatial_nodes', type=int, default=5, metavar='N',
help='number of spatial nodes (default: 5)')
parser.add_argument('--city', type=str, default='NY', metavar='N',
help='city (default: NY)')
parser.add_argument('--zeroShotCity', type=bool, default=False,
help='whether to try different city')
parser.add_argument('--zeroShotNodes', type=int, default=0,
help='num nodes in model to load')
parser.add_argument('--scratch', type=bool, default=False,
help='whether to start training from scratch')
parser.add_argument('--resume', type=bool, default=False,
help='whether to resume training')
# Model parameters
parser.add_argument('--test', type=bool, default=False,
help='activates test mode for agent evaluation')
parser.add_argument('--equal_distr_baseline', type=bool, default=False,
help='activates the equal distribution baseline.')
parser.add_argument('--toy', type=bool, default=False,
help='activates toy mode for agent evaluation')
parser.add_argument('--directory', type=str, default='saved_files',
help='defines directory where to save files')
parser.add_argument('--max_episodes', type=int, default=9000, metavar='N',
help='number of episodes to train agent (default: 9k)')
parser.add_argument('--T', type=int, default=84, metavar='N',
help='Time horizon for the A2C')
parser.add_argument('--lr_a', type=float, default=1e-3, metavar='N',
help='Learning rate for the actor')
parser.add_argument('--lr_c', type=float, default=1e-3, metavar='N',
help='Learning rate for the critic')
parser.add_argument('--grad_norm_clip_a', type=float, default=0.5, metavar='N',
help='Gradient norm clipping for the actor')
parser.add_argument('--grad_norm_clip_c', type=float, default=0.5, metavar='N',
help='Gradient norm clipping for the critic')
parser.add_argument("--batch_size", type=int, default=256,
help='defines batch size')
parser.add_argument("--alpha", type=float, default=0.3,
help='defines entropy coefficient')
parser.add_argument("--hidden_size", type=int, default=256,
help='defines hidden units in the MLP layers')
parser.add_argument("--rew_scale", type=float, default=0.01,
help='defines reward scale')
parser.add_argument("--critic_version", type=int, default=4,
help='defines the critic version (default: 4)')
# required arg
parser.add_argument("--run_id", type=int, required=True,
help='defined unique ID for run')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
print(device)
lr_a = args.lr_a
lr_c = args.lr_c
grad_norm_clip_a = args.grad_norm_clip_a
grad_norm_clip_c = args.grad_norm_clip_c
use_equal_distr_baseline = args.equal_distr_baseline
seed = args.seed
test = args.test
T = args.T
num_sn = args.spatial_nodes
city = args.city
zeroShotCity = args.zeroShotCity
zeroShotNodes = args.zeroShotNodes
# problem_folder = 'NY/ClusterDataset1'
# file_path = os.path.join('data', problem_folder, 'd1.json')
# problem_folder = 'NY_5'
# file_path = os.path.join('data', problem_folder, 'NY_5.json')
# problem_folder = 'SF_5_clustered'
# file_path = os.path.join('data', problem_folder, 'SF_5_short.json')
if city == 'NY':
problem_folder = 'NY'
file_path = os.path.join('data', problem_folder, str(num_sn), f'NYC_{num_sn}.json')
else:
problem_folder = 'SF'
file_path = os.path.join('data', problem_folder, str(num_sn), f'SF_{num_sn}.json')
experiment = 'training_' + file_path + '_' + str(args.max_episodes) + '_episodes_T_' + str(args.T) + '_new' + str(args.run_id)
energy_dist_path = os.path.join('data', problem_folder, str(num_sn), 'energy_distance.npy')
scenario = create_scenario(file_path, energy_dist_path)
env = AMoD(scenario)
print("Number of edges: " + str(len(env.scenario.edges)))
print("Number of spatial nodes: " + str(len(env.scenario.G_spatial.nodes)))
print("Number of nodes: " + str(len(env.scenario.G.nodes)))
# Initialize A2C-GNN
# NY
if city == 'NY':
scale_factor = 0.01
scale_price = 0.1
# SF
else:
scale_factor = 0.00001
scale_price = 0.1
# NY 5
et = experiment
# if zeroShotCity or zeroShotNodes, temporarily alter experiment name accordingly
if zeroShotCity:
experiment += '_zeroShotCity'
if zeroShotNodes:
experiment += '_zeroShotNodes'
experiment = et
if city == 'NY':
checkpoint_path = f"NYC_{num_sn}_{args.max_episodes}_{args.T}_{args.run_id}"
else:
checkpoint_path = f"SF_{num_sn}_{args.max_episodes}_{args.T}_{args.run_id}"
parser = GNNParser(env, T=T, scale_factor=scale_factor, scale_price=scale_price)
run_id = args.run_id
model = SAC(
env=env,
input_size=(2*T + 2),
hidden_size=args.hidden_size,
alpha=args.alpha,
use_automatic_entropy_tuning=False,
critic_version=args.critic_version,
device=device,
city=city
).to(device);
train_episodes = args.max_episodes # set max number of training episodes
epochs = trange(train_episodes) # epoch iterator
if args.test:
epochs = trange(1)
best_reward = -np.inf # set best reward
best_reward_test = -np.inf # set best reward
if zeroShotCity or (zeroShotNodes > 0):
if zeroShotCity:
if city == 'NY':
checkpoint_path = f'SF_{num_sn}_{train_episodes}_{args.T}_{run_id}'
# scale_factor = 0.00001
# scale_price = 0.1
else:
checkpoint_path = f'NYC_{num_sn}_{train_episodes}_{args.T}_{run_id}'
scale_factor = 0.01
scale_price = 0.1
else:
if city == 'NY':
checkpoint_path = f'NYC_{zeroShotNodes}_{train_episodes}_{args.T}_{run_id}'
else:
checkpoint_path = f'SF_{zeroShotNodes}_{train_episodes}_{args.T}_{run_id}'
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}_test.pth')
epochs = trange(1)
else:
if not test:
model.train() # set model in train mode
if not args.scratch:
if not args.resume:
warm_start_num_sn = num_sn - 5
if city == 'NY':
checkpoint_path = f'NYC_{warm_start_num_sn}_{train_episodes}_{args.T}_{run_id}'
else:
checkpoint_path = f'SF_{warm_start_num_sn}_{train_episodes}_{args.T}_{run_id}'
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}_test.pth');
else:
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}.pth');
else:
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}_test.pth');
total_demand_per_spatial_node = np.zeros(env.number_nodes_spatial)
for region in env.nodes_spatial:
for destination in env.nodes_spatial:
for t in range(env.tf):
total_demand_per_spatial_node[region] += env.demand[region,destination][t]
for i_episode in epochs:
desired_accumulations_spatial_nodes = np.zeros(env.scenario.spatial_nodes)
obs = env.reset(bool_sample_demand=True, seed=i_episode) #initialize environment
episode_reward = 0
episode_served_demand = 0
episode_rebalancing_cost = 0
episode_times = []
actions = []
current_eps = []
done = False
step = 0
time_a_end = 0
time_b_end = 0
time_c_end = 0
time_d_end = 0
time_e_end = 0
while (not done):
time_i_start = time.time()
if step > 0:
obs1 = copy.deepcopy(o)
time_2 = time.time()
# take matching step (Step 1 in paper)
if step == 0 and i_episode == 0:
# initialize optimization problem in the first step
pax_flows_solver = PaxFlowsSolver(env=env, gurobi_env=None)
else:
time_a = time.time()
pax_flows_solver.update_constraints()
time_a_end = time.time() - time_a
time_b = time.time()
pax_flows_solver.update_objective()
time_b_end = time.time() - time_b
time_2_end = time.time() - time_2
time_3 = time.time()
obs, paxreward, done, info_pax = env.pax_step(pax_flows_solver=pax_flows_solver, episode=i_episode)
time_3_end = time.time() - time_3
time_4 = time.time()
o = parser.parse_obs(obs)
time_4_end = time.time() - time_4
episode_reward += paxreward
if step > 0:
rl_reward = (paxreward + rebreward)
time_5 = time.time()
model.replay_buffer.store(obs1, action_rl, args.rew_scale * rl_reward, o)
time_5_end = time.time() - time_5
time_6 = time.time()
# sample from Dirichlet (Step 2 in paper)
if test:
try:
action_rl = model.select_action(o, deterministic=True)
except ValueError:
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}_test.pth')
action_rl = model.select_action(o, deterministic=True)
else:
try:
action_rl = model.select_action(o)
except ValueError:
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}.pth')
action_rl = model.select_action(o)
time_6_end = time.time() - time_6
time_7 = time.time()
# transform sample from Dirichlet into actual vehicle counts (i.e. (x1*x2*..*xn)*num_vehicles)
total_idle_acc = sum(env.acc[n][env.time+1] for n in env.nodes)
desired_acc = {env.nodes[i]: int(action_rl[i] *total_idle_acc) for i in range(env.number_nodes)} # over nodes
total_desiredAcc = sum(desired_acc[n] for n in env.nodes)
missing_cars = total_idle_acc - total_desiredAcc
most_likely_node = np.argmax(action_rl)
if missing_cars != 0:
desired_acc[env.nodes[most_likely_node]] += missing_cars
total_desiredAcc = sum(desired_acc[n] for n in env.nodes)
assert abs(total_desiredAcc - total_idle_acc) < 1e-5
for n in env.nodes:
assert desired_acc[n] >= 0
for n in env.nodes:
desired_accumulations_spatial_nodes[n[0]] += desired_acc[n]
time_7_end = time.time() - time_7
time_8 = time.time()
# solve minimum rebalancing distance problem (Step 3 in paper)
if step == 0 and i_episode == 0:
# initialize optimization problem in the first step
rebal_flow_solver = RebalFlowSolver(env=env, desiredAcc=desired_acc, gurobi_env=None)
else:
time_c = time.time()
rebal_flow_solver.update_constraints(desired_acc, env)
time_c_end = time.time() - time_c
time_d = time.time()
rebal_flow_solver.update_objective(env)
time_d_end = time.time() - time_d
time_e = time.time()
rebAction = rebal_flow_solver.optimize()
time_e_end = time.time() - time_e
time_8_end = time.time() - time_8
time_9 = time.time()
# Take action in environment
new_obs, rebreward, rebreward_internal, done, info_reb = env.reb_step(rebAction)
episode_reward += rebreward
time_9_end = time.time() - time_9
# track performance over episode
episode_served_demand += info_pax['served_demand']
episode_rebalancing_cost += info_reb['rebalancing_cost']
episode_times.append(time.time() - time_i_start)
# stop episode if terminating conditions are met
step += 1
if args.resume and i_episode > 100:
if i_episode > 10:
if (city == "SF") and not args.scratch:
for step in range(100):
batch = model.replay_buffer.sample_batch(
args.batch_size) # sample from replay buffer
model = model.float()
try:
model.update(data=batch) # update model
except ValueError:
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}_test.pth')
else:
for step in range(50):
batch = model.replay_buffer.sample_batch(
args.batch_size) # sample from replay buffer
model = model.float()
try:
model.update(data=batch) # update model
except ValueError:
model.load_checkpoint(path=f'checkpoint/{checkpoint_path}_test.pth')
else:
continue
# Log performance
epochs.set_description(
f"Episode {i_episode+1} | Reward: {episode_reward:.2f} | ServedDemand: {episode_served_demand:.2f} | Reb. Cost: {episode_rebalancing_cost:.2f} | Avg. Time: {np.array(episode_times).mean():.2f}sec")
print(f"Episode {i_episode+1} | Reward: {episode_reward:.2f} | ServedDemand: {episode_served_demand:.2f} | Reb. Cost: {episode_rebalancing_cost:.2f} | Avg. Time: {np.array(episode_times).mean():.2f}sec")
# Checkpoint best performing model
if episode_reward >= best_reward:
path = os.path.join('checkpoint', f'{checkpoint_path}.pth')
if not test:
model.save_checkpoint(path=path)
best_reward = episode_reward
best_rebal_cost = episode_rebalancing_cost
best_served_demand = episode_served_demand
best_model = model
if i_episode % 10 == 0: # test model every 10th episode
test_reward, test_served_demand, test_rebalancing_cost, test_time = model.test_agent(
1, env, pax_flows_solver, rebal_flow_solver, parser=parser)
if test_reward >= best_reward_test:
best_reward_test = test_reward
path = os.path.join('checkpoint', f'{checkpoint_path}_test.pth')
if not test:
model.save_checkpoint(path=path)
print(f"Best test results: reward = {best_reward_test}, best served demand = {test_served_demand}, best rebalancing cost = {test_rebalancing_cost}")