-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathde_torch.py
442 lines (363 loc) · 15.6 KB
/
de_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import os
import argparse
import numpy as np
import pandas as pd
from typing import List, Dict, Optional, Tuple
import urllib.request
import zipfile
import shutil
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.optim import Adam
import torchrec
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
from torchrec.modules.embedding_configs import EmbeddingBagConfig
from torchrec.modules.embedding_modules import EmbeddingBagCollection
from torchrec.distributed.planner import EmbeddingShardingPlanner, Topology
from torchrec.distributed.types import ShardingPlan
from torchrec.distributed.embeddingbag import EmbeddingBagCollectionSharder
from torchrec.distributed.model_parallel import DistributedModelParallel
from torchrec.distributed.types import ModuleSharder, ShardingEnv
from torchrec.optim.keyed import KeyedOptimizerWrapper
from torchrec.optim.optimizers import in_backward_optimizer_filter
torch.manual_seed(42)
np.random.seed(42)
def download_movielens(data_dir="./ml-1m"):
os.makedirs(data_dir, exist_ok=True)
if os.path.exists(os.path.join(data_dir, "ratings.dat")):
print(f"MovieLens in {data_dir}")
return data_dir
url = "https://files.grouplens.org/datasets/movielens/ml-1m.zip"
zip_path = os.path.join(data_dir, "ml-1m.zip")
print(f"download MovieLens-1M...")
urllib.request.urlretrieve(url, zip_path)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(os.path.dirname(data_dir))
extracted_dir = os.path.join(os.path.dirname(data_dir), "ml-1m")
if extracted_dir != data_dir:
for file in os.listdir(extracted_dir):
shutil.move(os.path.join(extracted_dir, file), os.path.join(data_dir, file))
if os.path.exists(extracted_dir):
shutil.rmtree(extracted_dir)
os.remove(zip_path)
return data_dir
def parse_args():
parser = argparse.ArgumentParser(description="TorchRec MovieLens ")
parser.add_argument("--data_path", type=str, default="./ml-1m", help="MovieLens数据集路径,如不存在将自动下载")
parser.add_argument("--epochs", type=int, default=5, help="训练轮数")
parser.add_argument("--batch_size", type=int, default=1024, help="批次大小")
parser.add_argument("--lr", type=float, default=0.01, help="学习率")
parser.add_argument("--embedding_dim", type=int, default=64, help="嵌入维度")
parser.add_argument("--num_embeddings", type=int, default=10000, help="嵌入表大小")
parser.add_argument("--mlp_dims", type=str, default="128,64,32", help="MLP层维度,用逗号分隔")
parser.add_argument("--save_dir", type=str, default="./model_checkpoints", help="模型保存路径")
return parser.parse_args()
class MovieLensDataset(Dataset):
def __init__(self, data_path: str, split: str = "train"):
ratings_file = os.path.join(data_path, "ratings.dat")
if not os.path.exists(ratings_file):
raise FileNotFoundError(f": {ratings_file}")
ratings_data = []
with open(ratings_file, 'r', encoding='ISO-8859-1') as f:
for line in f:
user_id, movie_id, rating, timestamp = line.strip().split('::')
ratings_data.append({
'user_id': int(user_id),
'movie_id': int(movie_id),
'rating': float(rating),
'timestamp': int(timestamp)
})
ratings_df = pd.DataFrame(ratings_data)
users_file = os.path.join(data_path, "users.dat")
movies_file = os.path.join(data_path, "movies.dat")
users_data = []
with open(users_file, 'r', encoding='ISO-8859-1') as f:
for line in f:
parts = line.strip().split('::')
user_id = int(parts[0])
gender = 1 if parts[1] == 'M' else 0
age = int(parts[2])
occupation = int(parts[3])
users_data.append({
'user_id': user_id,
'gender': gender,
'age': age,
'occupation': occupation
})
users_df = pd.DataFrame(users_data)
movies_data = []
with open(movies_file, 'r', encoding='ISO-8859-1') as f:
for line in f:
parts = line.strip().split('::')
movie_id = int(parts[0])
year = 0
if parts[1].endswith(')'):
year_start = parts[1].rfind('(')
if year_start != -1:
year_str = parts[1][year_start+1:parts[1].rfind(')')]
try:
year = int(year_str)
except ValueError:
year = 0
genres = parts[2].split('|')
genre_ids = []
for genre in genres:
genre_map = {
'Action': 1, 'Adventure': 2, 'Animation': 3, 'Children\'s': 4,
'Comedy': 5, 'Crime': 6, 'Documentary': 7, 'Drama': 8,
'Fantasy': 9, 'Film-Noir': 10, 'Horror': 11, 'Musical': 12,
'Mystery': 13, 'Romance': 14, 'Sci-Fi': 15, 'Thriller': 16,
'War': 17, 'Western': 18
}
if genre in genre_map:
genre_ids.append(genre_map[genre])
movies_data.append({
'movie_id': movie_id,
'year': year,
'genres': genre_ids
})
movies_df = pd.DataFrame(movies_data)
data = pd.merge(ratings_df, users_df, on='user_id', how='left')
data = pd.merge(data, movies_df, on='movie_id', how='left')
data = data.sort_values('timestamp')
split_idx = int(len(data) * 0.8)
if split == "train":
self.data = data.iloc[:split_idx]
else:
self.data = data.iloc[split_idx:]
self.max_user_id = data['user_id'].max()
self.max_movie_id = data['movie_id'].max()
self.max_age = data['age'].max()
self.max_occupation = data['occupation'].max()
print(f": {len(self.data)} ")
print(f": {self.max_user_id}, : {self.max_movie_id}")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
row = self.data.iloc[idx]
sparse_features = {
"user_id": torch.tensor([row['user_id']], dtype=torch.long),
"movie_id": torch.tensor([row['movie_id']], dtype=torch.long),
"gender": torch.tensor([row['gender']], dtype=torch.long),
"age": torch.tensor([row['age']], dtype=torch.long),
"occupation": torch.tensor([row['occupation']], dtype=torch.long),
"year": torch.tensor([row['year']], dtype=torch.long),
}
genres = row['genres']
if isinstance(genres, list):
genres_tensor = torch.tensor(genres, dtype=torch.long)
else:
genres_tensor = torch.tensor([], dtype=torch.long)
sparse_features["genres"] = genres_tensor
label = torch.tensor(row['rating'], dtype=torch.float)
return sparse_features, label
def collate_fn(batch):
sparse_features = {
"user_id": [],
"movie_id": [],
"gender": [],
"age": [],
"occupation": [],
"year": [],
"genres": [],
}
labels = []
for features, label in batch:
for key in sparse_features:
if key == "genres":
sparse_features[key].append(features[key])
else:
sparse_features[key].extend(features[key].tolist())
labels.append(label)
lengths = {
"user_id": torch.tensor([1] * len(batch), dtype=torch.long),
"movie_id": torch.tensor([1] * len(batch), dtype=torch.long),
"gender": torch.tensor([1] * len(batch), dtype=torch.long),
"age": torch.tensor([1] * len(batch), dtype=torch.long),
"occupation": torch.tensor([1] * len(batch), dtype=torch.long),
"year": torch.tensor([1] * len(batch), dtype=torch.long),
}
genres_values = []
genres_lengths = []
for genres_tensor in sparse_features["genres"]:
genres_values.extend(genres_tensor.tolist())
genres_lengths.append(len(genres_tensor))
lengths["genres"] = torch.tensor(genres_lengths, dtype=torch.long)
values = {
"user_id": torch.tensor(sparse_features["user_id"], dtype=torch.long),
"movie_id": torch.tensor(sparse_features["movie_id"], dtype=torch.long),
"gender": torch.tensor(sparse_features["gender"], dtype=torch.long),
"age": torch.tensor(sparse_features["age"], dtype=torch.long),
"occupation": torch.tensor(sparse_features["occupation"], dtype=torch.long),
"year": torch.tensor(sparse_features["year"], dtype=torch.long),
"genres": torch.tensor(genres_values, dtype=torch.long),
}
kjt = KeyedJaggedTensor(
keys=list(values.keys()),
values=torch.cat([values[k] for k in values.keys()]),
lengths=torch.cat([lengths[k] for k in lengths.keys()]),
)
return kjt, torch.tensor(labels, dtype=torch.float)
class MovieLensModel(nn.Module):
def __init__(
self,
embedding_bag_collection: EmbeddingBagCollection,
dense_in_features: int,
dense_arch_layer_sizes: List[int],
over_arch_layer_sizes: List[int],
):
super().__init__()
self.embedding_bag_collection = embedding_bag_collection
dense_arch_layers = []
for i in range(len(dense_arch_layer_sizes) - 1):
dense_arch_layers.append(
nn.Linear(dense_arch_layer_sizes[i], dense_arch_layer_sizes[i + 1])
)
dense_arch_layers.append(nn.ReLU())
self.dense_arch = nn.Sequential(*dense_arch_layers)
embedding_dim_sum = 0
for config in embedding_bag_collection.embedding_bag_configs():
embedding_dim_sum += config.embedding_dim
over_arch_layers = []
if dense_in_features == 0:
input_dim = embedding_dim_sum
else:
input_dim = dense_arch_layer_sizes[-1] + embedding_dim_sum
over_arch_layers.append(
nn.Linear(
input_dim,
over_arch_layer_sizes[0],
)
)
over_arch_layers.append(nn.ReLU())
for i in range(len(over_arch_layer_sizes) - 1):
over_arch_layers.append(
nn.Linear(over_arch_layer_sizes[i], over_arch_layer_sizes[i + 1])
)
over_arch_layers.append(nn.ReLU())
over_arch_layers.append(nn.Linear(over_arch_layer_sizes[-1], 1))
self.over_arch = nn.Sequential(*over_arch_layers)
def forward(self, kjt: KeyedJaggedTensor) -> torch.Tensor:
embeddings = self.embedding_bag_collection(kjt)
sparse_features = torch.cat([embeddings[k] for k in embeddings.keys()], dim=1)
dense_features = torch.zeros((sparse_features.shape[0], 0), device=sparse_features.device)
if dense_features.shape[1] > 0:
dense_features = self.dense_arch(dense_features)
combined_features = torch.cat([dense_features, sparse_features], dim=1)
prediction = self.over_arch(combined_features)
return prediction.squeeze()
def create_model(args):
eb_configs = [
EmbeddingBagConfig(
name="user_id",
embedding_dim=args.embedding_dim,
num_embeddings=args.num_embeddings,
feature_names=["user_id"],
),
EmbeddingBagConfig(
name="movie_id",
embedding_dim=args.embedding_dim,
num_embeddings=args.num_embeddings,
feature_names=["movie_id"],
),
EmbeddingBagConfig(
name="gender",
embedding_dim=args.embedding_dim,
num_embeddings=2,
feature_names=["gender"],
),
EmbeddingBagConfig(
name="age",
embedding_dim=args.embedding_dim,
num_embeddings=100,
feature_names=["age"],
),
EmbeddingBagConfig(
name="occupation",
embedding_dim=args.embedding_dim,
num_embeddings=50,
feature_names=["occupation"],
),
EmbeddingBagConfig(
name="year",
embedding_dim=args.embedding_dim,
num_embeddings=2050,
feature_names=["year"],
),
EmbeddingBagConfig(
name="genres",
embedding_dim=args.embedding_dim,
num_embeddings=20,
feature_names=["genres"],
),
]
ebc = EmbeddingBagCollection(
tables=eb_configs,
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
)
mlp_dims = [int(dim) for dim in args.mlp_dims.split(",")]
model = MovieLensModel(
embedding_bag_collection=ebc,
dense_in_features=0,
dense_arch_layer_sizes=[1, 1], # 占位符
over_arch_layer_sizes=mlp_dims,
)
return model
def train(args):
os.makedirs(args.save_dir, exist_ok=True)
data_path = download_movielens(args.data_path)
train_dataset = MovieLensDataset(data_path, split="train")
test_dataset = MovieLensDataset(data_path, split="test")
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=4,
)
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False,
collate_fn=collate_fn,
num_workers=4,
)
model = create_model(args)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
optimizer = Adam(model.parameters(), lr=args.lr)
criterion = nn.MSELoss()
for epoch in range(args.epochs):
model.train()
total_loss = 0
for batch_idx, (features, labels) in enumerate(train_loader):
features = features.to(device)
labels = labels.to(device)
outputs = model(features)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if batch_idx % 100 == 0:
print(f"Epoch {epoch+1}/{args.epochs}, Batch {batch_idx}/{len(train_loader)}, Loss: {loss.item():.4f}")
avg_loss = total_loss / len(train_loader)
print(f"Epoch {epoch+1}/{args.epochs}, Average Loss: {avg_loss:.4f}")
model.eval()
test_loss = 0
with torch.no_grad():
for features, labels in test_loader:
features = features.to(device)
labels = labels.to(device)
outputs = model(features)
loss = criterion(outputs, labels)
test_loss += loss.item()
avg_test_loss = test_loss / len(test_loader)
print(f"Epoch {epoch+1}/{args.epochs}, Test Loss: {avg_test_loss:.4f}")
torch.save(model.state_dict(), os.path.join(args.save_dir, f"model_epoch_{epoch+1}.pt"))
def main():
args = parse_args()
train(args)
if __name__ == "__main__":
main()