-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifiers.py
249 lines (206 loc) · 9.07 KB
/
Classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from Utils import confusion_matrix, classification_accuracy, one_hot, plot_line, performance_measures, ROC_cv, ROC_multiclass
from sklearn.model_selection import cross_val_score
from Models import MLP, MLP_classifier
import numpy as np
def svm_classifier(X, T, multiclass = False):
from sklearn.svm import SVC
X_train, T_train = X[0:int(0.9 * len(X))], T[0:int(0.9 * len(X))]
X_test, T_test = X[int(0.9 * len(X)):], T[int(0.9 * len(X)):]
random_state = np.random.RandomState(0)
classifier = SVC(kernel='linear', probability=True, random_state=random_state)
#classifier= SVC(kernel='rbf', C=1, probability=True, random_state=random_state)
if multiclass:
ROC_multiclass(X, T, classifier)
else:
ROC_cv(X, T, classifier)
#return scores.mean()
return 0
def log_reg(X, T, multiclass = False, nr_classes=21, show_plot=True):
X_train, T_train = X[0:int(0.9 * len(X))], T[0:int(0.9 * len(X))]
X_test, T_test = X[int(0.9 * len(X)):], T[int(0.9 * len(X)):]
from sklearn.linear_model import LogisticRegression
random_state = np.random.RandomState(0)
model = LogisticRegression(penalty='l2', C=1, random_state=random_state)
mean_auc = 0
std_auc = 0
if multiclass:
ROC_multiclass(X, T, model, n_classes=nr_classes)
else:
mean_auc, std_auc = ROC_cv(X, T, model, show_plot=show_plot)
return mean_auc, std_auc
def mlp_classifier(X, T):
nr_output = 2
model = MLP_classifier(n_hidden=500, n_output=nr_output)
ROC_cv(X, T, model)
def MLP_classifier2(X, T, n_items, nr_output=2):
from chainer.optimizers import Adam
from chainer import Variable
import chainer.functions as F
from chainer import optimizers
from chainer import iterators
import random as r
data = list(zip(X, T))
r.shuffle(data)
train = data[0:int(len(data)*0.8)]
test = data[int(len(data)*0.8):]
print(len(train), len(test))
batchsize = 100
max_label = int(max(T))+1
train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False)
model = MLP(n_hidden=int(n_items/2), n_output=nr_output)
gpu_id = -1 # Set to -1 if you use CPU
if gpu_id >= 0:
model.to_gpu(gpu_id)
optimizer = optimizers.Adam(alpha=0.001)
optimizer.setup(model)
import numpy as np
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu
max_epoch = 30
train_accs = []
train_accs_epochs = []
val_acc_epochs = []
while train_iter.epoch < max_epoch:
# ---------- One iteration of the training loop ----------
train_batch = train_iter.next()
image_train, target_train = concat_examples(train_batch, gpu_id)
image_train = Variable(image_train).data.astype(np.float32)
target_train = Variable(target_train).data.astype(np.float32)
OH_T = np.asarray([one_hot(int(x), max_label) for x in target_train])
OH_T = Variable(OH_T).data.astype(np.float32)
# Calculate the prediction of the network
prediction_train = model(image_train)
final_pred = np.zeros(shape=(len(prediction_train),))
for i in range(len(prediction_train)):
dummy = list(prediction_train[i].data)
final_pred[i] = dummy.index(max(dummy))
# Calculate the loss with MSE
loss = F.mean_squared_error(prediction_train, OH_T)
# Calculate the gradients in the network
model.cleargrads()
loss.backward()
# Update all the trainable parameters
optimizer.update()
train_acc = classification_accuracy(final_pred, target_train)
train_accs.append(train_acc)
# --------------------- until here ---------------------
# Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the current epoch
# Display the training loss
print('epoch:{:02d} train_loss:{:.04f}'.format(train_iter.epoch, float(to_cpu(loss.array))), end='')
print(" train acc: {:f} ".format(sum(train_accs)/len(train_accs)), end='')
train_accs_epochs.append(sum(train_accs)/len(train_accs))
train_accs = []
test_losses = []
test_accuracies = []
while True:
test_batch = test_iter.next()
image_test, target_test = concat_examples(test_batch, gpu_id)
image_test = Variable(image_test).data.astype(np.float32)
target_test = Variable(target_test).data.astype(np.float32)
OH_T = np.asarray([one_hot(int(x), max_label) for x in target_test])
OH_T = Variable(OH_T).data.astype(np.float32)
target_test = Variable(target_test).data.astype(np.float32)
# Forward the test data
prediction_test = model(image_test)
final_pred = np.zeros(shape=(len(prediction_test),))
for i in range(len(prediction_test)):
dummy = list(prediction_test[i].data)
final_pred[i] = dummy.index(max(dummy))
# Calculate the loss
loss_test = F.mean_squared_error(prediction_test, OH_T)
#loss_test = F.mean_squared_error(prediction_test, OH_T)
test_losses.append(to_cpu(loss_test.array))
# Calculate the accuracy
#prediction_test = Variable(prediction_test).data.astype(np.int)
target_test = Variable(target_test).data.astype(np.int)
accuracy = classification_accuracy(final_pred, target_test.data)
#print(prediction_test, target_test)
test_accuracies.append(accuracy)
if test_iter.is_new_epoch:
test_iter.epoch = 0
test_iter.current_position = 0
test_iter.is_new_epoch = False
test_iter._pushed_position = None
break
print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(np.mean(test_losses), np.mean(test_accuracies)))
val_acc_epochs.append(np.mean(test_accuracies))
confusion_matrix(final_pred, target_test.data, size=max_label)
#print(train_accs_epochs, val_acc_epochs)
#plot_line(range(max_epoch), train_accs_epochs, show=False)
#plot_line(range(max_epoch), val_acc_epochs, legend=['train accuracy', 'validation accuracy'], xlabel='epoch', ylabel='accuracy')
X_train, T_train = X[0:int(0.9 * len(X))], T[0:int(0.9 * len(X))]
X_test, T_test = X[int(0.9 * len(X)):], T[int(0.9 * len(X)):]
X_test = Variable(X_test).data.astype(np.float32)
plot_ROC = True
if plot_ROC:
import sklearn.metrics as metrics
# calculate the fpr and tpr for all thresholds of the classification
preds = model(X_test)
final_pred = np.zeros(shape=(len(preds),))
for i in range(len(preds)):
dummy = list(preds[i].data)
final_pred[i] = int(dummy.index(max(dummy)))
#print(len(T_test), len(final_pred), len(X_test))
fpr, tpr, threshold = metrics.roc_curve(T_test, final_pred)
roc_auc = metrics.auc(fpr, tpr)
# method I: plt
import matplotlib.pyplot as plt
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
return np.mean(test_accuracies)
def random_forest(X, T):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
ROC_cv(X, T, model)
return 0
def naive_bayes(X, T):
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
ROC_cv(X, T, model)
return 0
def multinomial_bayes(X, T):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB()
ROC_cv(X, T, model)
return 0
def bernoulli_bayes(X, T):
from sklearn.naive_bayes import BernoulliNB
model = BernoulliNB()
for i, row in enumerate(X):
for j, value in enumerate(row):
if value > 0:
X[i,j] = 1
ROC_cv(X, T, model)
return 0
def prior(X, T, multiclass=False, nr_classes=21):
from Models import Prior_classifier
if multiclass:
model = Prior_classifier(nr_classes=nr_classes)
ROC_multiclass(X, T, model, n_classes=nr_classes)
else:
model = Prior_classifier()
ROC_cv(X, T, model)
return 0
def random(X, T):
from Models import Random_classifier
model = Random_classifier()
ROC_cv(X, T, model)
return 0
def dominant(X, T, multiclass=False, nr_classes=21):
from Models import Dominant_Class_Classifier
if multiclass:
model = Dominant_Class_Classifier(nr_classes=nr_classes)
ROC_multiclass(X, T, model, n_classes=nr_classes)
else:
model = Dominant_Class_Classifier()
ROC_cv(X, T, model)
return 0