-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
553 lines (484 loc) Β· 24.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import streamlit as st
import os
import matplotlib.pyplot as plt
import seaborn as sns
from groq import Groq
import numpy as np
st.markdown(
"""
<style>
/* General app styling */
.stApp {
background-image: url("https://wallpapercave.com/wp/wp7335231.jpg");
background-size: cover;
background-position: center;
background-attachment: fixed;
color: white !important;
}
/* Universal text color override */
body, div, p, span, label, h1, h2, h3, h4, h5, h6 {
color: white !important;
}
/* Task option buttons styling */
.stButton > button {
background-color: green !important;
color: white !important;
border: none !important;
border-radius: 5px !important;
font-size: 16px !important;
font-weight: bold !important;
padding: 10px 20px !important;
}
.stButton > button:hover {
background-color: darkgreen !important;
}
/* Sidebar styling */
[data-testid="stSidebar"] {
background-color: black !important;
color: white !important;
}
/* Sidebar title */
[data-testid="stSidebar"] h1, [data-testid="stSidebar"] label {
color: white !important;
}
/* Sidebar option buttons */
[data-testid="stSidebar"] .stRadio > div > label {
color: white !important;
}
/* Input parameter blocks (dropdowns, select boxes) text color */
.stSelectbox, .stDropdown, .stMultiselect {
color: black !important;
}
.stTextInput input, .stTextArea textarea {
color: black !important;
background-color: white !important;
}
/* Slider styling */
.stSlider .st-br {
background-color: black !important;
border-radius: 5px !important;
}
/* Ensure sidebar is visible and black on mobile devices */
@media only screen and (max-width: 768px) {
/* Sidebar background */
[data-testid="stSidebar"] {
background-color: black !important;
display: block !important;
position: fixed !important;
width: 250px !important;
height: 100vh !important;
overflow-y: auto !important;
z-index: 1000 !important;
}
/* Adjust the main content to avoid overlap with the sidebar */
.css-12oz5g7 {
margin-left: 260px !important; /* Make space for the fixed sidebar */
}
/* Ensure input text is black on mobile */
.stSelectbox div, .stDropdown div, .stMultiselect div {
color: black !important;
}
.stTextInput input, .stTextArea textarea {
color: black !important;
background-color: white !important;
}
}
</style>
""", unsafe_allow_html=True
)
# Initialize the Groq client with the API key from Streamlit's secrets
# Initialize the Groq client with the API key from Streamlit's secrets
client = Groq(api_key=st.secrets["GROQ_API_KEY"])
# Function to interact with the Groq API
def get_groq_response(user_input, model="deepseek-r1-distill-llama-70b"):
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": user_input}],
model=model
)
return chat_completion.choices[0].message.content
# Function to recommend panel type, power, and battery
def recommend_panel_and_battery():
st.title("π Solar Panel and Battery Recommendation")
st.markdown("""
Enter your home or office power requirements to get recommendations for the most suitable solar panel type, required power, and battery capacity.
""")
# Input Parameters
st.header("π Power Requirements")
rooms = st.number_input("Number of Rooms", value=2, step=1)
fans = st.number_input("Number of Fans", value=4, step=1)
lights = st.number_input("Number of Lights", value=8, step=1)
appliances_power = st.number_input("Other Appliances Power Consumption (Watts)", value=500, step=50)
# Calculate Total Power Requirement
fan_power = fans * 70 # Average power consumption per fan: 70W
light_power = lights * 10 # Average power consumption per light: 10W
total_power = rooms * (fan_power + light_power) + appliances_power # Total power in watts
total_power_kw = total_power / 1000 # Convert to kilowatts
st.write(f"**Total Power Requirement**: {total_power_kw:.2f} kW")
# Recommend Solar Panel Type and Power
st.header("π§ Recommended Solar Panel")
if total_power_kw <= 1:
panel_type = "Monocrystalline"
panel_area = 10 # Assume 10 mΒ² for small systems
elif total_power_kw <= 3:
panel_type = "Polycrystalline"
panel_area = 30 # Assume 30 mΒ² for medium systems
else:
panel_type = "Thin-Film"
panel_area = 50 # Assume 50 mΒ² for larger systems
st.write(f"**Recommended Solar Panel Type**: {panel_type}")
st.write(f"**Estimated Panel Area**: {panel_area} mΒ²")
# Recommend Battery Capacity
st.header("π Recommended Battery Capacity")
battery_hours = 6 # Assume 6 hours of backup required
battery_capacity = total_power_kw * battery_hours
st.write(f"**Recommended Battery Capacity**: {battery_capacity:.2f} kWh")
# Function to calculate solar energy
def calculate_solar_energy():
st.title("π Solar Energy System Design and Analysis")
st.markdown("""
This application helps in designing and analyzing solar energy systems.
Provide system specifications and site details to calculate potential power generation and energy storage.
""")
# Input Parameters
st.header("π§ Design Parameters")
panel_type = st.selectbox("Select Solar Panel Type", ["Monocrystalline", "Polycrystalline", "Thin-Film"])
panel_efficiency = st.number_input("Panel Efficiency (%)", value=18.0, step=0.1)
st.markdown("""
**Formula**: Panel Efficiency (%) = (Panel Power (kW) / Panel Area (mΒ²)) x 100
Panel efficiency refers to the percentage of sunlight converted into usable electricity by the panel.
""")
battery_capacity = st.number_input("Battery Storage Capacity (kWh)", value=10.0, step=0.5)
st.markdown("""
**Formula**: Battery Storage Capacity (kWh) = Energy Stored (kWh)
This is the total energy a battery can store for later use.
""")
battery_efficiency = st.number_input("Battery Efficiency (%)", value=90.0, step=0.5)
st.markdown("""
**Formula**: Battery Efficiency (%) = (Energy Discharged / Energy Charged) x 100
This refers to how efficiently energy can be discharged from the battery compared to how much energy was charged.
""")
tilt_angle = st.slider("Optimal Tilt Angle (Degrees)", min_value=0, max_value=45, value=30)
st.markdown("""
**Tilt Angle** refers to the angle at which solar panels are installed to maximize energy absorption.
""")
solar_insolation = st.number_input("Solar Insolation (kWh/mΒ²/day)", value=5.5, step=0.1)
st.markdown("""
**Solar Insolation** is the amount of solar energy received per unit area per day. This varies depending on geographic location.
""")
area = st.number_input("Total Panel Area (mΒ²)", value=50.0, step=1.0)
st.markdown("""
**Panel Area** refers to the total surface area of the solar panels installed.
""")
degradation_rate = st.number_input("Panel Degradation Rate (% per year)", value=0.5, step=0.1)
st.markdown("""
**Degradation Rate** refers to the percentage by which the panel's efficiency decreases over time.
""")
dust_loss = st.slider("Dust Loss Factor (%)", min_value=0, max_value=10, value=5)
st.markdown("""
**Dust Loss** is the percentage reduction in panel efficiency due to dust accumulation.
""")
shading_loss = st.slider("Shading Loss Factor (%)", min_value=0, max_value=10, value=3)
st.markdown("""
**Shading Loss** is the percentage reduction in energy generation due to partial shading of the panels.
""")
if st.button("Calculate Solar Energy"):
# Calculations
effective_area = area * (1 - (dust_loss + shading_loss) / 100)
daily_energy = solar_insolation * effective_area * (panel_efficiency / 100)
annual_energy = daily_energy * 365 * (1 - degradation_rate / 100)
battery_energy = battery_capacity * (battery_efficiency / 100)
st.header("β¨ Calculated Results")
st.write(f"Daily Energy Generation: {daily_energy:.2f} kWh")
st.write(f"Annual Energy Generation (First Year): {annual_energy:.2f} kWh")
st.write(f"Battery Storage Capacity: {battery_energy:.2f} kWh")
# Explanation for results using Groq
explanation_input = f"Explain the solar energy system results based on the following values: Daily Energy Generation = {daily_energy:.2f} kWh, Annual Energy Generation = {annual_energy:.2f} kWh, Battery Storage = {battery_energy:.2f} kWh."
explanation = get_groq_response(explanation_input)
st.markdown(f"### Detailed Explanation: {explanation}")
# Visualization: Seasonal Power Generation
months = np.arange(1, 13)
seasonal_insolation = np.array([
solar_insolation * (1 + 0.1 * np.sin((month - 1) * np.pi / 6)) for month in months
])
monthly_energy = seasonal_insolation * effective_area * (panel_efficiency / 100) * 30
fig, ax = plt.subplots()
ax.plot(months, monthly_energy, label='Monthly Energy Generation (kWh)', color='orange')
ax.set_xlabel('Month')
ax.set_ylabel('Energy (kWh)')
ax.set_title('Seasonal Power Generation')
ax.legend()
st.pyplot(fig)
# Visualization: Battery Storage Performance
time = np.linspace(0, 24, 100)
usage_pattern = battery_energy * (1 - 0.05 * np.sin(time * np.pi / 12))
fig2, ax2 = plt.subplots()
ax2.plot(time, usage_pattern, label='Battery Performance (kWh)', color='blue')
ax2.set_xlabel('Time (Hours)')
ax2.set_ylabel('Energy Stored (kWh)')
ax2.set_title('Battery Storage Over a Day')
ax2.legend()
st.pyplot(fig2)
# Function to generate system design for deep-sea tidal energy systems
def generate_system_design():
st.title("βοΈ Deep-Sea Tidal Energy System Design")
st.markdown("""
This application helps design deep-sea tidal energy systems using cutting-edge materials and advanced design techniques.
You will input various parameters related to materials, depth, and tidal velocity, and we will generate optimized system designs.
""")
# Inputs for system design
st.header("π Input Parameters")
material = st.selectbox("π οΈ Select Material for System Components",
["Titanium Alloys (e.g., Ti-6Al-4V)",
"Fiber-Reinforced Polymers (FRP)",
"Cermets",
"Advanced Coatings"])
depth = st.number_input("π Enter Depth (meters)", min_value=100, max_value=5000, step=100)
tidal_velocity = st.number_input("π¨ Enter Tidal Velocity (m/s)", min_value=0.1, max_value=10.0, step=0.1)
biofouling_control = st.selectbox("π± Select Biofouling Control Strategy",
["Fluoropolymers",
"Ultrasonic Cleaning Systems",
"Biocidal Coatings",
"Self-Cleaning Coatings",
"Electrochemical Anti-Fouling",
"Mechanical Cleaning Systems"])
location = st.selectbox("π Select Location for Tidal System", ["Tropical Ocean", "Temperate Ocean", "Polar Ocean"])
if location == "Tropical Ocean":
water_temperature = st.slider("π‘οΈ Water Temperature (Β°C)", min_value=25, max_value=30, value=28)
salinity = st.slider("π Salinity (ppt)", min_value=30, max_value=40, value=35)
tidal_pattern = st.selectbox("π Tidal Pattern", ["Semi-diurnal", "Diurnal"])
elif location == "Temperate Ocean":
water_temperature = st.slider("π‘οΈ Water Temperature (Β°C)", min_value=10, max_value=20, value=15)
salinity = st.slider("π Salinity (ppt)", min_value=20, max_value=30, value=25)
tidal_pattern = st.selectbox("π Tidal Pattern", ["Mixed", "Semi-diurnal"])
else:
water_temperature = st.slider("π‘οΈ Water Temperature (Β°C)", min_value=-2, max_value=10, value=5)
salinity = st.slider("π Salinity (ppt)", min_value=30, max_value=40, value=35)
tidal_pattern = st.selectbox("π Tidal Pattern", ["Diurnal", "Mixed"])
environmental_sensitivity = st.selectbox("π Select Environmental Sensitivity",
["Protected Ecosystem", "Unprotected Ecosystem"])
if st.button("π Generate System Design"):
user_input = f"Design a deep-sea tidal energy system for the following parameters: Material: {material}, Depth: {depth}m, Tidal Velocity: {tidal_velocity}m/s, Biofouling Control: {biofouling_control}, Location: {location}, Water Temperature: {water_temperature}Β°C, Salinity: {salinity}ppt, Tidal Pattern: {tidal_pattern}, Environmental Sensitivity: {environmental_sensitivity}."
system_design = get_groq_response(user_input)
st.header("β¨ Generated System Design")
st.write(system_design)
# Adding Visualization: A simple line chart to visualize input parameters
input_params = ['Depth', 'Tidal Velocity', 'Water Temp', 'Salinity']
input_values = [depth, tidal_velocity, water_temperature, salinity]
# Plotting a line chart for input parameters
fig2, ax2 = plt.subplots()
ax2.plot(input_params, input_values, marker='o', color='purple')
ax2.set_title('Tidal Energy System Design Inputs')
ax2.set_ylabel('Value')
st.pyplot(fig2)
# Function to calculate power generation for tidal plants
def calculate_power_generation():
st.title("β‘ Power Generation Calculation for Tidal Plant")
st.markdown("""
This application calculates the potential power generation of a tidal plant.
Formula used:
P = 1/2 * Ο * A * v^3 * Cβ
Where:
- P: Power (Watts)
- Ο: Water density (kg/mΒ³), typically 1025 kg/mΒ³ for seawater
- A: Area swept by turbine blades (mΒ²)
- v: Tidal current velocity (m/s)
- Cβ: Efficiency coefficient (dimensionless)
""")
# Input parameters
water_density = st.number_input("π§ Enter Water Density (kg/mΒ³)", value=1025, step=1)
swept_area = st.number_input("βοΈ Enter Swept Area of Turbine Blades (mΒ²)", value=1000, step=10)
velocity = st.number_input("π¨ Enter Tidal Current Velocity (m/s)", value=2.0, step=0.1)
efficiency = st.number_input("β‘ Enter Efficiency Coefficient (0 to 1)", value=0.4, step=0.01)
if st.button("π’ Calculate Power"):
power = 0.5 * water_density * swept_area * (velocity ** 3) * efficiency
st.header("β¨ Calculated Power Output")
st.write(f"The potential power generation is {power:.2f} Watts.")
# Adding Visualization: Displaying power as a curve chart
velocities = np.linspace(0, velocity, 100)
powers = 0.5 * water_density * swept_area * (velocities ** 3) * efficiency
fig3, ax3 = plt.subplots()
ax3.plot(velocities, powers, color='green')
ax3.set_title('Power Generation Curve')
ax3.set_xlabel('Tidal Current Velocity (m/s)')
ax3.set_ylabel('Power (Watts)')
st.pyplot(fig3)
# Function to generate corrosion-resistant coating suggestions
def generate_coating_suggestions():
st.title("π‘οΈ Corrosion-Resistant Coating Suggestions for Deep-Sea Tidal Energy Systems")
st.markdown("""
This application helps suggest the most suitable corrosion-resistant coatings for deep-sea tidal energy systems.
Input various environmental conditions and system material, and we will recommend the best coating to ensure system longevity.
""")
# Inputs for Environmental Conditions and Material Type
st.header("π Input Environmental Conditions and Material Type")
salinity = st.slider("π Salinity (ppt)", min_value=20, max_value=40, value=35, step=1)
temperature = st.slider("π‘οΈ Temperature (Β°C)", min_value=-10, max_value=40, value=20, step=1)
wave_force = st.slider("π¨ Wave and Current Forces (0: Low, 10: High)", min_value=0, max_value=10, value=5)
uv_exposure = st.slider("βοΈ UV Exposure (0: Low, 10: High)", min_value=0, max_value=10, value=5)
material_type = st.selectbox("π οΈ Select Material Type",
["Titanium Alloys (e.g., Ti-6Al-4V)",
"Stainless Steel",
"Aluminum Alloys",
"Fiber-Reinforced Polymers (FRP)",
"Other"])
if st.button("π Suggest Coating"):
user_input = f"Suggest a corrosion-resistant coating for a deep-sea tidal energy system with the following parameters: Salinity: {salinity}ppt, Temperature: {temperature}Β°C, Wave and Current Forces: {wave_force}/10, UV Exposure: {uv_exposure}/10, Material Type: {material_type}."
coating_suggestion = get_groq_response(user_input)
st.header("β¨ Recommended Corrosion-Resistant Coating")
st.write(coating_suggestion)
# Adding Visualization: A simple bar chart of the factors for better understanding
factors = ["Salinity", "Temperature", "Wave and Current Forces", "UV Exposure"]
values = [salinity, temperature, wave_force, uv_exposure]
# Plotting a bar chart for input factors
fig, ax = plt.subplots()
ax.bar(factors, values, color='skyblue')
ax.set_xlabel('Factors')
ax.set_ylabel('Value')
ax.set_title('Corrosion-Resistant Coating Factors')
ax.set_xticklabels(factors, rotation=45, ha='right') # Avoid overlap by rotating the labels
st.pyplot(fig)
# Wind power calculation function
def calculate_power(wind_speed, blade_length, efficiency):
air_density = 1.225 # kg/m^3
swept_area = np.pi * (blade_length ** 2)
power = 0.5 * air_density * swept_area * (wind_speed ** 3) * (efficiency / 100)
return power / 1000 # Convert to kW
# Function to plot wind profile
def plot_wind_profile(heights, wind_speeds):
df = pd.DataFrame({'Height': heights, 'Wind Speed': wind_speeds})
fig = px.line(
df,
x='Wind Speed',
y='Height',
markers=True,
line_shape='linear',
title="Wind Profile Analysis"
)
fig.update_traces(
line=dict(color='#0000FF', dash='solid'),
marker=dict(size=10, symbol='circle')
)
fig.update_layout(
xaxis_title="Wind Speed (m/s)",
yaxis_title="Height (m)"
)
st.plotly_chart(fig)
# Wind power calculator UI
def wind_power_calculator():
st.subheader("Wind Power Calculator")
st.markdown("""
Calculate wind power output based on key inputs:
- **Wind Speed** (m/s)
- **Blade Length** (m)
- **Efficiency** (%)
""")
# Inputs for calculation
wind_speed = st.number_input("Wind Speed (m/s)", min_value=0, max_value=30, value=12)
blade_length = st.number_input("Blade Length (m)", min_value=1, max_value=100, value=50)
efficiency = st.number_input("Efficiency (%)", min_value=1, max_value=100, value=85)
# Calculate and display power output
power_output = calculate_power(wind_speed, blade_length, efficiency)
st.write(f"**Calculated Power Output:** {power_output:.2f} kW")
# Plot power vs wind speed
wind_speeds = np.linspace(0, 30, 100)
powers = [calculate_power(ws, blade_length, efficiency) for ws in wind_speeds]
# Using seaborn for better aesthetics
sns.set(style="whitegrid")
fig, ax = plt.subplots(figsize=(10, 6))
sns.lineplot(x=wind_speeds, y=powers, ax=ax, label=f"Blade: {blade_length}m, Eff: {efficiency}%")
ax.set_title("Power Output vs Wind Speed", fontsize=16)
ax.set_xlabel("Wind Speed (m/s)", fontsize=12)
ax.set_ylabel("Power Output (kW)", fontsize=12)
ax.legend(fontsize=10)
st.pyplot(fig)
def turbine_recommendation_system():
"""
Single function to manage the Hydro-River Turbine Recommendation System, including API setup, querying,
and Streamlit UI interaction.
"""
# Example Preloaded Text (Simulating PDF Content)
PRELOADED_TEXT = """
Hydropower turbines are categorized based on head and flow rate. For a head range of 10β20 meters, Kaplan turbines are suitable,
whereas Pelton turbines work best for heads above 50 meters. Flow rates also play a significant role; high-flow, low-head applications
favor Francis turbines. Additional factors to consider when choosing a turbine include the specific design and efficiency, as well as
site-specific conditions such as environmental impact, cost, and operational requirements.
"""
# Step 2: Query System
def query_system(user_input):
# Use Groq API for response
response = client.chat.completions.create(
messages=[{"role": "user", "content": user_input}],
model="llama-3.3-70b-versatile",
)
return response.choices[0].message.content
# Step 3: Turbine Suggestion Logic
def turbine_suggestion(head, flow_rate, turbine_design, efficiency, site_conditions):
query = f"I have a head of {head} meters and a flow rate of {flow_rate} L/s. What turbine should I use?"
response = query_system(query)
# Add additional turbine specifications to the response
additional_info = (
f"\n\nπ To make a more informed decision, consider additional factors such as the specific design and efficiency of the turbines."
f"\nβοΈ Selected Design: {turbine_design}"
f"\nβοΈ Efficiency: {efficiency}"
f"\nβοΈ Site Conditions: {site_conditions}"
"\nπ Site-specific conditions like environmental impact, cost, and operational requirements also play a significant role."
)
return response + additional_info
# Step 4: Streamlit UI
st.title("βοΈ Hydro-River Turbine Recommendation System")
st.write(
"π Welcome to the Turbine Recommendation System! π\n\n"
"π‘ Select the **head**, **flow rate**, and other factors like **turbine design**, **efficiency**, and **site conditions** "
"to receive expert turbine recommendations tailored to your parameters.\n"
"π οΈ Powered by AI."
)
# Dropdown inputs for the user
head_options = [10, 20, 30, 40, 50, 100]
flow_rate_options = [100, 200, 300, 400, 500, 1000]
turbine_design_options = ["Kaplan", "Pelton", "Francis", "Mixed Design"]
efficiency_options = ["High", "Medium", "Low"]
site_conditions_options = ["Environmental Impact", "Cost", "Operational Requirements", "All of the Above"]
head = st.selectbox("π§ Select Head (meters)", head_options)
flow_rate = st.selectbox("π Select Flow Rate (L/s)", flow_rate_options)
turbine_design = st.selectbox("π§ Select Turbine Design", turbine_design_options)
efficiency = st.selectbox("β‘ Select Efficiency Level", efficiency_options)
site_conditions = st.selectbox("π Select Site Conditions", site_conditions_options)
if st.button('Get Turbine Suggestion'):
result = turbine_suggestion(head, flow_rate, turbine_design, efficiency, site_conditions)
st.subheader("Recommended Turbine:")
st.write(result)
import streamlit as st
import streamlit as st
# Main function
def main():
st.sidebar.title("πππ BluePlanet Energy")
# Add a detailed description to the main screen
st.title("π BluePlanet Energy Application")
st.write("""
This **Renewable Energy System Application** is designed to assist engineers, researchers, and enthusiasts
in evaluating and designing renewable energy systems. Whether you're working with solar, tidal, wind, or hydro energy,
this tool can provide insights and recommendations to optimize energy production and system performance.""")
# Add options to the sidebar for selecting tasks
option = st.sidebar.radio(
"Choose Task",
["Solar Energy Calculation", "Recommend Solar Panel and Battery", "Tidal System Design",
"Tidal Power Calculation", "Coating Suggestions for Tidal System", "Wind Power Calculator",
"Hydro-River Turbine Recommendation"]
)
# Perform task based on the selected option
if option == "Solar Energy Calculation":
calculate_solar_energy()
elif option == "Recommend Solar Panel and Battery":
recommend_panel_and_battery()
elif option == "Tidal System Design":
generate_system_design()
elif option == "Tidal Power Calculation":
calculate_power_generation()
elif option == "Coating Suggestions for Tidal System":
generate_coating_suggestions()
elif option == "Wind Power Calculator":
wind_power_calculator()
elif option == "Hydro-River Turbine Recommendation":
turbine_recommendation_system()
if __name__ == "__main__":
main()