-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_manufacturing_assembly.py
243 lines (207 loc) · 10.2 KB
/
pytorch_manufacturing_assembly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Python script for implementing collaborative assembly using the MAGE framework with PyTorch
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import random
# Define the AssemblyRobot class to represent individual assembly robots
class AssemblyRobot:
def __init__(self, robot_id, capabilities):
self.robot_id = robot_id
self.capabilities = capabilities
self.location = np.array([0.0, 0.0, 0.0])
self.assigned_task = None
self.task_history = []
def move(self, new_location):
# Move the robot to a new location
self.location = np.array(new_location)
print(f"Robot {self.robot_id} moved to location {new_location}")
def assign_task(self, task):
# Assign an assembly task to the robot
self.assigned_task = task
self.task_history.append(task)
print(f"Robot {self.robot_id} assigned task: {task['name']}")
def perform_task(self):
# Perform the assigned assembly task (simulated)
if self.assigned_task is not None:
print(f"Robot {self.robot_id} is performing task: {self.assigned_task['name']}")
success_prob = np.random.uniform(0.8, 1.0) # Simulated task success probability
success = np.random.choice([True, False], p=[success_prob, 1 - success_prob])
if success:
print(f"Robot {self.robot_id} successfully completed task: {self.assigned_task['name']}")
else:
print(f"Robot {self.robot_id} failed to complete task: {self.assigned_task['name']}")
self.assigned_task = None
return success
return False
def share_information(self, assembly_info):
# Share information about part locations and orientations with other robots (simulated)
print(f"Robot {self.robot_id} is sharing assembly information: {assembly_info}")
def log_task_history(self):
# Print detailed log of tasks performed by the robot
for task in self.task_history:
print(f"Robot {self.robot_id} performed task: {task['name']}")
# Define the ManufacturingPlant class to represent the manufacturing plant environment
class ManufacturingPlant:
def __init__(self, num_robots, assembly_tasks):
self.num_robots = num_robots
self.assembly_tasks = assembly_tasks
self.robots = self.deploy_robots()
self.steps_log = []
def deploy_robots(self):
# Deploy assembly robots with random capabilities
robots = []
for i in range(self.num_robots):
capabilities = np.random.choice(['drilling', 'welding', 'painting', 'fastening'], size=2, replace=False)
robot = AssemblyRobot(i, capabilities)
robots.append(robot)
return robots
def assign_tasks_to_robots(self):
# Assign assembly tasks to robots based on their capabilities
for task in self.assembly_tasks:
capable_robots = [robot for robot in self.robots if task['capability'] in robot.capabilities]
if capable_robots:
assigned_robot = np.random.choice(capable_robots)
assigned_robot.assign_task(task)
else:
print(f"No capable robot found for task: {task['name']}")
def coordinate_assembly(self):
# Coordinate the assembly process among robots
assembly_info = self.generate_assembly_info()
for robot in self.robots:
robot.share_information(assembly_info)
success = robot.perform_task()
if not success:
print(f"Robot {robot.robot_id} failed to complete its task.")
def generate_assembly_info(self):
# Generate simulated assembly information (e.g., part locations, orientations)
num_parts = len(self.assembly_tasks)
part_locations = np.random.uniform(0, 10, size=(num_parts, 3))
part_orientations = np.random.uniform(0, 360, size=num_parts)
assembly_info = {
'part_locations': part_locations,
'part_orientations': part_orientations
}
return assembly_info
def optimize_assembly(self):
# Optimize the assembly process based on the shared information and task performance (simulated)
print("Optimizing the assembly process...")
def detailed_logs(self):
# Print detailed logs for each robot
for robot in self.robots:
robot.log_task_history()
for log in self.steps_log:
print(log)
# Define a PyTorch Dataset for training a model (if needed)
class AssemblyDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
label = self.labels[idx]
return sample, label
# Define a neural network model for data analysis
class AssemblyModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(AssemblyModel, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.sigmoid(self.fc2(x))
return x
# Train the model (dummy training loop)
def train_model(model, dataloader, criterion, optimizer, num_epochs):
for epoch in range(num_epochs):
for data, labels in dataloader:
inputs = data
targets = labels
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {loss.item()}")
# Define additional helper functions for assembly simulation
def analyze_task_performance(task_history):
completed_tasks = [task['name'] for task in task_history]
return completed_tasks
def visualize_task_performance(completed_tasks):
print("Task Performance Summary:")
for task in completed_tasks:
print(f"Completed Task: {task}")
def save_model(model, filepath):
torch.save(model.state_dict(), filepath)
print(f"Model saved to {filepath}")
def load_model(model, filepath):
model.load_state_dict(torch.load(filepath))
model.eval()
print(f"Model loaded from {filepath}")
# Main script execution
if __name__ == "__main__":
# Set the random seed for reproducibility
torch.manual_seed(42)
np.random.seed(42)
# Define the assembly tasks
assembly_tasks = [
{'name': 'Assemble Part A', 'capability': 'drilling'},
{'name': 'Weld Component B', 'capability': 'welding'},
{'name': 'Paint Surface C', 'capability': 'painting'},
{'name': 'Fasten Part D', 'capability': 'fastening'}
]
# Create an instance of the ManufacturingPlant
num_robots = 4
plant = ManufacturingPlant(num_robots, assembly_tasks)
# Assign tasks to robots and coordinate the assembly process
plant.assign_tasks_to_robots()
plant.coordinate_assembly()
plant.optimize_assembly()
# Print the log of actions taken during the simulation
plant.detailed_logs()
# Dummy data for the dataset
data = np.random.rand(100, 10)
labels = np.random.randint(0, 2, size=(100, 1))
dataset = AssemblyDataset(data, labels)
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)
# Initialize the model, criterion, and optimizer
model = AssemblyModel(input_size=10, hidden_size=5, output_size=1)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train the model
train_model(model, dataloader, criterion, optimizer, num_epochs=10)
# Saving and loading the model
model_path = "assembly_model.pth"
save_model(model, model_path)
load_model(model, model_path)
# Additional functionality for monitoring and analytics
task_histories = [robot.task_history for robot in plant.robots]
completed_tasks = [task for history in task_histories for task in analyze_task_performance(history)]
visualize_task_performance(completed_tasks)
# Possible Errors and Solutions:
# 1. Error: No module named 'torch'
# Solution: Make sure you have PyTorch installed. You can install it using pip: `pip install torch`.
#
# 2. Error: IndexError: index 3 is out of bounds for axis 0 with size 3
# Solution: This error can occur if the number of dimensions in the `part_locations` array does not match the expected size.
# Make sure that the size of `part_locations` is consistent with the number of parts and dimensions.
# Adjust the size of `part_locations` in the `generate_assembly_info` method accordingly.
#
# 3. Error: KeyError: 'capability'
# Solution: This error can happen if the 'capability' key is not present in the assembly task dictionary.
# Ensure that each task in the `assembly_tasks` list has a 'capability' key specifying the required capability.
# Double-check the task definitions and make sure they include the 'capability' key.
#
# 4. Error: No capable robot found for a task
# Solution: This error occurs when there is no robot with the required capability to perform a specific assembly task.
# Consider increasing the number of robots or assigning additional capabilities to the existing robots.
# Modify the `deploy_robots` method to assign capabilities based on the specific requirements of the assembly tasks.
# Note: The code provided here is a simplified simulation and may not cover all the complexities of real-world manufacturing assembly.
# In practice, you would need to integrate with the actual robot control systems, sensor data, and manufacturing execution systems (MES)
# to deploy the multi-agent system effectively. The simulation can be extended to incorporate more realistic assembly scenarios,
# task dependencies, resource constraints, and optimization algorithms based on real-time data from the manufacturing process.
# Assembly information, such as part locations and orientations, would typically be obtained from computer-aided design (CAD) models,
# vision systems, or other sensing mechanisms in a real-world setting.