-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_environmental_monitoring.py
242 lines (202 loc) · 9.57 KB
/
pytorch_environmental_monitoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Python script for implementing environmental monitoring using the MAGE framework with PyTorch,
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import random
# Define the EnvironmentalRobot class to represent individual environmental monitoring robots
class EnvironmentalRobot:
def __init__(self, robot_id, sensors):
self.robot_id = robot_id
self.sensors = sensors
self.location = None
self.observations = []
self.log = []
def move(self, new_location):
# Move the robot to a new location
self.location = new_location
self.log.append(f"Robot {self.robot_id} moved to {new_location}")
def gather_data(self, data):
# Gather environmental data using the robot's sensors
self.observations.append(data)
self.log.append(f"Robot {self.robot_id} gathered data: {data}")
def track_wildlife(self, wildlife_location):
# Track wildlife movement based on the detected location (simulated)
print(f"Robot {self.robot_id} is tracking wildlife at location: {wildlife_location}")
self.log.append(f"Robot {self.robot_id} tracked wildlife at location {wildlife_location}")
def detect_threat(self, observation):
# Detect potential environmental threats based on the observation (simulated)
if np.random.random() < 0.1:
print(f"Robot {self.robot_id} detected a potential environmental threat!")
self.log.append(f"Robot {self.robot_id} detected a potential environmental threat!")
# Define the Forest class to represent the forest environment
class Forest:
def __init__(self, num_robots, grid_size, wildlife_locations):
self.num_robots = num_robots
self.grid_size = grid_size
self.wildlife_locations = wildlife_locations
self.robots = self.deploy_robots()
self.steps_log = []
def deploy_robots(self):
# Deploy environmental monitoring robots with random sensors
robots = []
for i in range(self.num_robots):
sensors = np.random.choice(['camera', 'temperature', 'humidity', 'air_quality'], size=2, replace=False)
robot = EnvironmentalRobot(i, sensors)
robots.append(robot)
return robots
def simulate_monitoring(self, num_steps):
# Simulate the environmental monitoring process
for step in range(num_steps):
step_log = f"Step {step + 1}:\n"
for robot in self.robots:
# Move the robot to a random location in the forest
x = np.random.randint(0, self.grid_size[0])
y = np.random.randint(0, self.grid_size[1])
robot.move((x, y))
# Gather environmental data at the current location
data = self.get_environmental_data(robot.location)
robot.gather_data(data)
# Track wildlife if detected
if robot.location in self.wildlife_locations:
robot.track_wildlife(robot.location)
# Detect potential environmental threats
robot.detect_threat(data)
# Share data and insights among robots (simulated)
self.share_data_and_insights()
self.steps_log.append(step_log)
def get_environmental_data(self, location):
# Generate simulated environmental data at the given location
temperature = np.random.randint(20, 31)
humidity = np.random.randint(40, 81)
air_quality = np.random.randint(0, 101)
data = {'temperature': temperature, 'humidity': humidity, 'air_quality': air_quality}
return data
def share_data_and_insights(self):
# Simulate sharing of data and insights among robots
print("Robots are sharing environmental data and insights...")
def detailed_logs(self):
# Print detailed logs for each robot
for robot in self.robots:
for log_entry in robot.log:
print(log_entry)
# Define a PyTorch Dataset for training a model (if needed)
class EnvironmentalDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
label = self.labels[idx]
return sample, label
# Define a neural network model for data analysis
class EnvironmentalModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(EnvironmentalModel, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.sigmoid(self.fc2(x))
return x
# Train the model (dummy training loop)
def train_model(model, dataloader, criterion, optimizer, num_epochs):
for epoch in range(num_epochs):
for data, labels in dataloader:
inputs = data
targets = labels
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {loss.item()}")
# Define additional helper functions for environmental monitoring
def analyze_data_distribution(data):
data_stats = {}
for key in data[0].keys():
values = [entry[key] for entry in data]
data_stats[key] = (np.mean(values), np.std(values))
return data_stats
def visualize_data_distribution(data_stats):
print("Data Distribution:")
for key, stats in data_stats.items():
mean, std = stats
print(f"{key}: Mean = {mean}, Std Dev = {std}")
def save_model(model, filepath):
torch.save(model.state_dict(), filepath)
print(f"Model saved to {filepath}")
def load_model(model, filepath):
model.load_state_dict(torch.load(filepath))
model.eval()
print(f"Model loaded from {filepath}")
# Main script execution
if __name__ == "__main__":
# Set the random seed for reproducibility
torch.manual_seed(42)
np.random.seed(42)
# Define the simulation parameters
num_robots = 5
grid_size = (10, 10)
wildlife_locations = [(2, 3), (5, 7), (8, 1)]
num_steps = 20
# Create an instance of the Forest environment
forest = Forest(num_robots, grid_size, wildlife_locations)
# Simulate the environmental monitoring process
forest.simulate_monitoring(num_steps)
# Print the log of actions taken during the simulation
for log in forest.steps_log:
print(log)
# Dummy data for the dataset
data = np.random.rand(100, 10)
labels = np.random.randint(0, 2, size=(100, 1))
dataset = EnvironmentalDataset(data, labels)
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)
# Initialize the model, criterion, and optimizer
model = EnvironmentalModel(input_size=10, hidden_size=5, output_size=1)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train the model
train_model(model, dataloader, criterion, optimizer, num_epochs=10)
# Saving and loading the model
model_path = "environmental_model.pth"
save_model(model, model_path)
load_model(model, model_path)
# More detailed logging
print("Detailed Logs:")
forest.detailed_logs()
# Summary of data collection by each robot
print("Summary of Environmental Monitoring Operations:")
for robot in forest.robots:
print(f"Robot {robot.robot_id} collected the following observations:")
for observation in robot.observations:
print(f" - {observation}")
# Additional functionality for monitoring and analytics
collected_data = [obs for robot in forest.robots for obs in robot.observations]
data_stats = analyze_data_distribution(collected_data)
visualize_data_distribution(data_stats)
# Possible Errors and Solutions:
# 1. Error: No module named 'torch'
# Solution: Make sure you have PyTorch installed. You can install it using pip: `pip install torch`.
#
# 2. Error: IndexError: index out of bounds
# Solution: This error can occur if the robot's location is outside the grid boundaries.
# Ensure that the robot's movement is restricted within the grid size.
# Modify the `move` method in the `EnvironmentalRobot` class to handle boundary conditions.
#
# 3. Error: KeyError: 'temperature'
# Solution: This error can happen if the environmental data dictionary is missing the 'temperature' key.
# Make sure that the `get_environmental_data` method returns a dictionary with the expected keys.
# Double-check the data generation code and ensure it matches the expected format.
#
# 4. Error: Inefficient wildlife tracking
# Solution: If the wildlife tracking is not efficient or accurate, consider implementing more advanced algorithms.
# This could involve using computer vision techniques, machine learning models, or specialized sensors.
# Integrate real-time data processing and analysis to improve wildlife tracking capabilities.
# Note: The code provided here is a simplified simulation and may not cover all the complexities of real-world environmental
# monitoring. In practice, you would need to integrate with the actual robot control systems, sensor data, and
# environmental models to deploy the multi-agent system effectively. The simulation can be extended to incorporate
# more realistic environmental conditions, wildlife behavior, and data analysis techniques.