-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjax_a3c_reinforcement_learning.py
151 lines (119 loc) · 5.59 KB
/
jax_a3c_reinforcement_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# jax_a3c_reinforcement_learning.py
# Libraries: JAX, Gym, Flax, Optax
# Use case: Reinforcement Learning - Actor-Critic Method for CartPole Environment
import jax
import jax.numpy as jnp
import numpy as np
import gym
from flax import linen as nn
from flax.training import train_state
import optax
from functools import partial
# Define the actor-critic network
class ActorCriticNetwork(nn.Module):
action_dim: int
@nn.compact
def __call__(self, x):
# Actor network
actor = nn.Dense(64)(x)
actor = nn.relu(actor)
actor = nn.Dense(self.action_dim)(actor)
actor = nn.log_softmax(actor)
# Critic network
critic = nn.Dense(64)(x)
critic = nn.relu(critic)
critic = nn.Dense(1)(critic)
return actor, critic
# Define the loss functions
def actor_loss(params, state, action, advantage):
log_probs = ActorCriticNetwork(env.action_space.n)(params, state)[0]
log_prob = log_probs[action]
loss = -log_prob * advantage
return loss
def critic_loss(params, state, reward, next_state, done):
_, value = ActorCriticNetwork(env.action_space.n)(params, state)
_, next_value = ActorCriticNetwork(env.action_space.n)(params, next_state)
target = reward + (1 - done) * gamma * next_value
loss = jnp.square(value - target)
return loss
# Define the update step
@jax.jit
def update_step(state, env_state, action, reward, next_env_state, done):
advantage = reward + (1 - done) * gamma * ActorCriticNetwork(env.action_space.n)(state.params, next_env_state)[1] - ActorCriticNetwork(env.action_space.n)(state.params, env_state)[1]
actor_loss_value, actor_grads = jax.value_and_grad(actor_loss)(state.params, env_state, action, advantage)
critic_loss_value, critic_grads = jax.value_and_grad(critic_loss)(state.params, env_state, reward, next_env_state, done)
grads = jax.tree_multimap(lambda a, c: a + c, actor_grads, critic_grads)
state = state.apply_gradients(grads=grads)
return state, (actor_loss_value, critic_loss_value)
# Define the agent function
@partial(jax.jit, static_argnums=(0,))
def agent_fn(env_fn, state, num_steps):
env_state = env_fn.reset()
for _ in range(num_steps):
probs = jnp.exp(ActorCriticNetwork(env.action_space.n)(state.params, env_state)[0])
action = jax.random.categorical(jax.random.PRNGKey(0), probs)
next_env_state, reward, done, _ = env_fn.step(action)
state, _ = update_step(state, env_state, action, reward, next_env_state, done)
if done:
env_state = env_fn.reset()
else:
env_state = next_env_state
return state
# Define the parallel training function
@partial(jax.pmap, static_broadcasted_argnums=(0, 2))
def train_parallel(env_fns, state, num_steps):
return jax.lax.pmean(jax.vmap(agent_fn, in_axes=(0, None, None))(env_fns, state, num_steps), axis_name='batch')
# Set hyperparameters
num_agents = 4
num_steps = 1000
gamma = 0.99
learning_rate = 0.001
# Create the environments
env_fns = [jax.jit(lambda: gym.make('CartPole-v1')) for _ in range(num_agents)]
# Create the actor-critic network and optimizer
network = ActorCriticNetwork(env.action_space.n)
params = network.init(jax.random.PRNGKey(0), jnp.zeros((1, env.observation_space.shape[0])))
tx = optax.adam(learning_rate)
state = train_state.TrainState.create(apply_fn=network.apply, params=params, tx=tx)
# Replicate the state across devices
state = jax_utils.replicate(state)
# Training loop
for _ in range(100):
state = train_parallel(env_fns, state, num_steps)
# Evaluation
@jax.jit
def evaluate(params, env_fn, num_episodes):
rewards = []
for _ in range(num_episodes):
env_state = env_fn.reset()
done = False
episode_reward = 0
while not done:
probs = jnp.exp(ActorCriticNetwork(env.action_space.n)(params, env_state)[0])
action = jnp.argmax(probs)
env_state, reward, done, _ = env_fn.step(action)
episode_reward += reward
rewards.append(episode_reward)
return jnp.mean(jnp.array(rewards))
# Unreplicate the state
state = jax_utils.unreplicate(state)
# Evaluate the trained agent
num_eval_episodes = 10
mean_reward = evaluate(state.params, jax.jit(lambda: gym.make('CartPole-v1')), num_eval_episodes)
print(f"Mean reward over {num_eval_episodes} episodes: {mean_reward}")
# Possible Errors and Solutions:
# 1. AttributeError: module 'jax' has no attribute 'jit'.
# Solution: Ensure that you have installed the latest version of JAX. Use `pip install --upgrade jax jaxlib`.
# 2. AttributeError: module 'jax.numpy' has no attribute 'exp'.
# Solution: Verify your JAX installation. Reinstall if necessary. Use `pip install --upgrade jax jaxlib`.
# 3. TypeError: 'Flax' object is not callable.
# Solution: Ensure that you have correctly defined and used the Flax module. Refer to the Flax documentation for proper usage.
# 4. RuntimeError: Resource exhausted: Out of memory.
# Solution: Reduce the batch size or the number of agents to fit your available GPU/CPU memory.
# 5. ValueError: Cannot set a Tensor with more than one dimension as an axis for slicing.
# Solution: Check your tensor operations and shapes to ensure compatibility.
# Additional Details:
# - Actor-Critic Method: This method uses separate networks to estimate the policy (actor) and value function (critic).
# - JAX: JAX is used for high-performance numerical computing and automatic differentiation.
# - Flax: Flax is a neural network library for JAX.
# - Optax: Optax provides gradient processing and optimization algorithms for JAX.