-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvoice_call_noise_cancellation.rs
149 lines (129 loc) · 5.37 KB
/
voice_call_noise_cancellation.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// File: audio_semantic_analyzer.rs
use std::io;
use std::path::Path;
use std::fs::File;
use std::io::Read;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug)]
struct AudioFeatures {
duration: f32,
sample_rate: u32,
bit_depth: u16,
channels: u16,
rms: f32,
zero_crossing_rate: f32,
spectral_centroid: f32,
// Add more features as needed
}
struct LanguageModel {
model_path: String,
// Add other necessary fields for the language model if required
}
impl LanguageModel {
// Constructor to initialize the language model
fn new(model_path: &str) -> Self {
println!("Initializing LLM with model path: {}", model_path);
// Load and initialize the language model
// ...
LanguageModel {
model_path: model_path.to_string(),
// Initialize other fields if necessary
}
}
// Method to analyze audio features and generate semantic tags
fn analyze_audio(&self, audio_features: &AudioFeatures) -> Vec<String> {
println!("Analyzing audio features using LLM...");
// Perform audio analysis using the language model
// ...
// Return the generated semantic tags
vec![
"Emotional".to_string(),
"Uplifting".to_string(),
"Instrumental".to_string(),
"Classical".to_string(),
]
}
}
// Function to load an audio file and return its contents as a byte vector
fn load_audio_file(audio_file: &str) -> Result<Vec<u8>, std::io::Error> {
let path = Path::new(audio_file); // Create a Path object from the file path
let mut file = File::open(path)?; // Open the file
let mut buffer = Vec::new(); // Create a buffer to hold the file contents
file.read_to_end(&mut buffer)?; // Read the file contents into the buffer
Ok(buffer) // Return the buffer
}
// Function to extract audio features from the audio data
fn extract_audio_features(audio_data: &[u8]) -> AudioFeatures {
println!("Extracting audio features...");
// Use audio processing libraries or algorithms to extract features from the audio data
// Placeholder implementation
AudioFeatures {
duration: 180.0,
sample_rate: 44100,
bit_depth: 16,
channels: 2,
rms: 0.05,
zero_crossing_rate: 0.1,
spectral_centroid: 3000.0,
// Set the actual values based on the extracted features
}
}
// Function to save the analysis results to a file or database
fn save_analysis_results(audio_features: &AudioFeatures, tags: &[String]) {
// Convert the audio features and tags to JSON format
let features_json = serde_json::to_string_pretty(&audio_features).unwrap(); // Possible error: Serialization error
let tags_json = serde_json::to_string_pretty(&tags).unwrap(); // Possible error: Serialization error
// Save the analysis results to a file or database
// Placeholder implementation
println!("Features JSON: {}", features_json); // Print the features JSON for demonstration purposes
println!("Tags JSON: {}", tags_json); // Print the tags JSON for demonstration purposes
println!("Analysis results saved successfully.");
}
fn main() {
println!("Welcome to the Audio Semantic Analyzer!");
// Prompt the user to enter the path to the LLM model
println!("Please enter the path to the LLM model:");
let mut model_path = String::new();
io::stdin()
.read_line(&mut model_path)
.expect("Failed to read input"); // Possible error: Input read error
let model_path = model_path.trim(); // Trim whitespace from the input
// Initialize the language model
let llm = LanguageModel::new(model_path);
// Prompt the user to enter the path to the audio file
println!("Please enter the path to the audio file:");
let mut audio_file = String::new();
io::stdin()
.read_line(&mut audio_file)
.expect("Failed to read input"); // Possible error: Input read error
let audio_file = audio_file.trim(); // Trim whitespace from the input
// Load the audio file
let audio_data = match load_audio_file(audio_file) {
Ok(data) => data,
Err(e) => {
eprintln!("Error loading audio file: {}", e); // Log the error
return; // Exit if there's an error loading the file
}
};
// Extract audio features from the loaded data
let audio_features = extract_audio_features(&audio_data);
println!("Extracted Audio Features: {:?}", audio_features);
// Analyze the extracted features using the language model
let tags = llm.analyze_audio(&audio_features);
println!("Generated Semantic Tags: {:?}", tags);
// Save the analysis results
save_analysis_results(&audio_features, &tags);
// Prompt the user for additional analysis or actions
println!("Would you like to perform any additional analysis or actions? (y/n)");
let mut choice = String::new();
io::stdin()
.read_line(&mut choice)
.expect("Failed to read input"); // Possible error: Input read error
let choice = choice.trim().to_lowercase(); // Trim whitespace and convert to lowercase
if choice == "y" {
// Implement additional analysis or actions based on user input
// Placeholder implementation
println!("Additional analysis or actions not yet implemented.");
}
println!("Thank you for using the Audio Semantic Analyzer!");
}