-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtensor_interop.rs
93 lines (77 loc) · 3.76 KB
/
tensor_interop.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
use numpy::{IntoPyArray, PyArray1}; // Importing NumPy for array operations
use pyo3::prelude::*; // Importing PyO3 for Python interoperability
use pyo3::{PyResult, Python}; // Importing necessary PyO3 components
use tch::{Kind, Tensor}; // Importing Torch for tensor operations
// Function to convert a PyTorch tensor to a NumPy array
fn torch_to_numpy<T: Clone>(py: Python, tensor: &Tensor) -> PyResult<PyArray1<T>> {
// Extract data from the tensor as a slice
let data = tensor.data();
let slice = unsafe { std::slice::from_raw_parts(data.as_ptr() as *const T, data.len()) };
// Create a NumPy array from the slice
let numpy_array = PyArray1::from_slice(py, slice);
Ok(numpy_array)
// Possible error: Unsafe pointer dereferencing
// Solution: Ensure the tensor data is valid and correctly handled to prevent undefined behavior.
}
// Function to convert a NumPy array to a PyTorch tensor
fn numpy_to_torch<T: Clone + 'static>(array: &PyArray1<T>) -> Tensor {
// Convert the NumPy array to a slice
let data = array.as_slice().unwrap();
// Create a PyTorch tensor from the slice
let tensor = Tensor::of_slice(data).view([-1]);
tensor
// Possible error: Array conversion failure
// Solution: Validate the NumPy array and handle unwrap safely to avoid panics.
}
// Function to generate audio samples using a PyTorch tensor
fn generate_audio(tensor: &Tensor, sample_rate: i64) -> Vec<f32> {
// Assuming the tensor represents audio samples
let num_samples = tensor.size()[0];
let mut audio_samples = vec![0.0; num_samples as usize];
// Iterate over the tensor elements and populate the audio samples
for (i, &sample) in tensor.data().as_slice::<f32>().unwrap().iter().enumerate() {
audio_samples[i] = sample;
}
audio_samples
// Possible error: Tensor to slice conversion failure
// Solution: Ensure the tensor contains valid audio data and handle unwrap safely to avoid panics.
}
// Python module to expose tensor interoperability functions
#[pymodule]
fn tensor_interop(_py: Python, m: &PyModule) -> PyResult<()> {
// Function to convert a PyTorch tensor to a NumPy array
#[pyfn(m)]
#[pyo3(name = "torch_to_numpy")]
fn torch_to_numpy_py<'py>(py: Python<'py>, tensor: &PyAny) -> PyResult<&'py PyArray1<f32>> {
// Extract the PyTorch tensor from the PyAny object
let tensor = tensor.extract::<Tensor>()?;
// Convert the PyTorch tensor to a NumPy array
let numpy_array = torch_to_numpy(py, &tensor)?;
Ok(numpy_array)
// Possible error: Tensor extraction failure
// Solution: Ensure the PyAny object contains a valid PyTorch tensor and handle extraction safely.
}
// Function to convert a NumPy array to a PyTorch tensor
#[pyfn(m)]
#[pyo3(name = "numpy_to_torch")]
fn numpy_to_torch_py(array: &PyArray1<f32>) -> PyResult<Tensor> {
// Convert the NumPy array to a PyTorch tensor
let tensor = numpy_to_torch(array);
Ok(tensor)
// Possible error: Array conversion failure
// Solution: Ensure the NumPy array contains valid data and handle conversion safely.
}
// Function to generate audio samples from a PyTorch tensor
#[pyfn(m)]
#[pyo3(name = "generate_audio")]
fn generate_audio_py(tensor: &PyAny, sample_rate: i64) -> PyResult<Vec<f32>> {
// Extract the PyTorch tensor from the PyAny object
let tensor = tensor.extract::<Tensor>()?;
// Generate audio samples using the PyTorch tensor
let audio_samples = generate_audio(&tensor, sample_rate);
Ok(audio_samples)
// Possible error: Tensor extraction failure
// Solution: Ensure the PyAny object contains a valid PyTorch tensor and handle extraction safely.
}
Ok(())
}