-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproduction_ready_pipeline.rs
159 lines (133 loc) · 5.44 KB
/
production_ready_pipeline.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use anyhow::{Error, Result}; // Import error handling libraries
use pyo3::prelude::*; // Import PyO3 for Python interoperability
use pyo3::types::IntoPyDict; // Import PyO3 utility
use std::fs::File; // Import File handling
use std::io::prelude::*; // Import prelude for I/O operations
use std::path::Path; // Import Path for handling file paths
use tch::{nn, Device, Kind, Tensor}; // Import Torch library for tensor operations
// Define the audio generation model
struct AudioGenerationModel {
model: nn::Sequential, // Model field to hold the neural network
}
impl AudioGenerationModel {
// Constructor to create a new model instance
fn new(model_path: &str) -> Result<Self> {
// Load the pre-trained model
let model = tch::CModule::load(model_path)
.map_err(|e| Error::msg(format!("Failed to load model: {}", e)))?;
Ok(AudioGenerationModel {
model: model.sequential(),
})
}
// Forward pass to generate audio
fn forward(&self, input: &Tensor) -> Tensor {
self.model.forward(input)
}
}
// Function to preprocess the input data
fn preprocess_data(data: Vec<f32>, sequence_length: i64) -> Tensor {
// Convert the input data to a tensor
let input_tensor = Tensor::of_slice(&data)
.view([1, sequence_length])
.to_kind(Kind::Float);
// Normalize the input data
let mean = input_tensor.mean(Kind::Float);
let std = input_tensor.std(Kind::Float);
let normalized_tensor = (&input_tensor - mean) / std;
normalized_tensor
}
// Function to postprocess the generated audio
fn postprocess_audio(audio_tensor: Tensor, sample_rate: i64) -> Vec<f32> {
// Convert the audio tensor to a vector
let audio_vec: Vec<f32> = audio_tensor.squeeze().into();
// Possible error: Division by zero if max_val == min_val
let max_val = audio_vec.iter().cloned().fold(f32::MIN, f32::max);
let min_val = audio_vec.iter().cloned().fold(f32::MAX, f32::min);
if max_val == min_val {
panic!("Max and min values of the audio vector are the same, causing division by zero.");
}
let scale_factor = 2.0 / (max_val - min_val);
let scaled_audio: Vec<f32> = audio_vec
.iter()
.map(|&x| (x - min_val) * scale_factor - 1.0)
.collect();
scaled_audio
}
// Function to generate audio using the model
fn generate_audio(model: &AudioGenerationModel, input_data: Vec<f32>, sequence_length: i64, sample_rate: i64) -> Vec<f32> {
// Preprocess the input data
let preprocessed_data = preprocess_data(input_data, sequence_length);
// Perform inference using the model
let output_tensor = model.forward(&preprocessed_data);
// Postprocess the generated audio
let audio_data = postprocess_audio(output_tensor, sample_rate);
audio_data
}
// Function to save the generated audio to a file
fn save_audio_to_file(audio_data: &[f32], file_path: &str, sample_rate: i64) -> Result<()> {
// Create the output file
let mut file = File::create(file_path)
.map_err(|e| Error::msg(format!("Failed to create file: {}", e)))?;
// Write the WAV header
let num_samples = audio_data.len() as u32;
let bytes_per_sample = 2;
let byte_rate = sample_rate as u32 * bytes_per_sample;
let block_align = bytes_per_sample;
let bits_per_sample = 16;
let subchunk2_size = num_samples * bytes_per_sample;
let chunk_size = 36 + subchunk2_size;
// Possible error: Failure to write to file
file.write_all(b"RIFF")?;
file.write_all(&chunk_size.to_le_bytes())?;
file.write_all(b"WAVE")?;
file.write_all(b"fmt ")?;
file.write_all(&[16, 0, 0, 0])?;
file.write_all(&[1, 0])?;
file.write_all(&[1, 0])?;
file.write_all(&sample_rate.to_le_bytes())?;
file.write_all(&byte_rate.to_le_bytes())?;
file.write_all(&block_align.to_le_bytes())?;
file.write_all(&bits_per_sample.to_le_bytes())?;
file.write_all(b"data")?;
file.write_all(&subchunk2_size.to_le_bytes())?;
// Write the audio samples
for sample in audio_data {
let sample_i16 = (sample * i16::MAX as f32) as i16;
file.write_all(&sample_i16.to_le_bytes())?;
}
Ok(())
}
// Function to load the model and generate audio
fn load_and_generate(model_path: &str, input_data: Vec<f32>, sequence_length: i64, sample_rate: i64, output_path: &str) -> Result<()> {
// Load the pre-trained model
let model = AudioGenerationModel::new(model_path)?;
// Generate audio using the model
let audio_data = generate_audio(&model, input_data, sequence_length, sample_rate);
// Save the generated audio to a file
save_audio_to_file(&audio_data, output_path, sample_rate)?;
Ok(())
}
// Define the Python module
#[pymodule]
fn production_ready_pipeline(_py: Python, m: &PyModule) -> PyResult<()> {
// Define the Python function for audio generation
#[pyfn(m)]
#[pyo3(name = "generate_audio")]
fn generate_audio_py(
model_path: &str,
input_data: Vec<f32>,
sequence_length: i64,
sample_rate: i64,
output_path: &str,
) -> PyResult<String> {
// Call the Rust function to load the model and generate audio
match load_and_generate(model_path, input_data, sequence_length, sample_rate, output_path) {
Ok(_) => Ok(output_path.to_string()),
Err(e) => Err(pyo3::exceptions::PyRuntimeError::new_err(format!(
"Failed to generate audio: {}",
e
))),
}
}
Ok(())
}