-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharchitecture_specific_optimizations.rs
75 lines (68 loc) · 2.71 KB
/
architecture_specific_optimizations.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
use pyo3::prelude::*;
use pyo3::wrap_pyfunction;
use std::arch::x86_64::*;
use tch::{nn, Device, Tensor};
/// Generates audio samples using architecture-specific optimizations.
///
/// # Arguments
///
/// * `model_path` - The path to the pre-trained PyTorch model.
/// * `num_samples` - The number of audio samples to generate.
///
/// # Returns
///
/// * `Vec<f32>` - The generated audio samples.
#[pyfunction]
fn generate_audio_samples_optimized(model_path: &str, num_samples: usize) -> PyResult<Vec<f32>> {
// Load the pre-trained PyTorch model
let device = Device::cuda_if_available();
let model = match tch::CModule::load(model_path) {
Ok(model) => model,
Err(e) => return Err(PyErr::new::<pyo3::exceptions::PyIOError, _>(format!("Failed to load model: {}", e))),
};
let model = model.to(device);
// Generate random noise as input to the model
let noise = Tensor::rand(&[1, 100], kind::FLOAT_CPU).to(device);
// Use the loaded model to generate audio samples
let output = match model.forward_ts(&[noise]) {
Ok(output) => output,
Err(e) => return Err(PyErr::new::<pyo3::exceptions::PyRuntimeError, _>(format!("Failed to generate audio: {}", e))),
};
let output = output.squeeze().to(Device::Cpu);
let output = match output.data().as_slice::<f32>() {
Ok(output) => output,
Err(e) => return Err(PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("Failed to convert tensor to slice: {}", e))),
};
// Apply architecture-specific optimizations
let mut samples = Vec::with_capacity(num_samples);
unsafe {
// Use AVX2 instructions for vectorized operations
let avx2_enabled = is_x86_feature_detected!("avx2");
if avx2_enabled {
let num_chunks = num_samples / 8;
for i in 0..num_chunks {
let mut chunk = _mm256_loadu_ps(&output[i * 8]);
// Apply optimized operations using AVX2 intrinsics
chunk = _mm256_mul_ps(chunk, _mm256_set1_ps(0.5));
_mm256_storeu_ps(samples.as_mut_ptr().add(i * 8), chunk);
}
samples.set_len(num_chunks * 8);
// Process remaining samples
for i in num_chunks * 8..num_samples {
samples.push(output[i] * 0.5);
}
} else {
// Fallback to non-optimized implementation
for i in 0..num_samples {
samples.push(output[i] * 0.5);
}
}
}
Ok(samples)
}
/// A Python module implemented in Rust.
#[pymodule]
fn architecture_specific_optimizations(_py: Python, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(generate_audio_samples_optimized, m)?)?;
Ok(())
}