-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathicaart.m
232 lines (225 loc) · 6.4 KB
/
icaart.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
clc;clear;
close all;
%% Data reading
bodyc=imread('bodyc.jpg');
bodyd=imread('bodyd.jpg');
facec=imread('facec.jpg');
faced=imread('faced.jpg');
% Human detection
peopleDetector = vision.PeopleDetector;
[bboxes,scores] = peopleDetector(bodyc);
I1 = insertObjectAnnotation(bodyc,'rectangle',bboxes,scores,'LineWidth',7,'FontSize',45,'Color',{'cyan'});
figure, imshow(I1);title('detection scores');
% Hint
disp(['Check if subject is in 2.5 meter distance from sensor']);
disp(['Yes = Stop , No = Please got to the specific distance']);
% Face detection
faceDetector = vision.CascadeObjectDetector;
bboxes = faceDetector(facec);
IFaces = insertObjectAnnotation(facec,'rectangle',bboxes(3,:),'Face','LineWidth',4,'FontSize',30,'Color',{'magenta'});
figure;imshow(IFaces);title('Detected faces');
% Extracting SURF features
imset = imageSet('tst','recursive');
% Create a bag-of-features from the image database
bag = bagOfFeatures(imset,'VocabularySize',10,'PointSelection','Detector');
% Encode the images as new features
surf = encode(bag,imset);
% Labels
sizefinal=size(surf);
sizefinal=sizefinal(1,2);
surf(1:40,sizefinal+1)=1;
surf(41:80,sizefinal+1)=2;
dataknn=surf(:,1:10);
lblknn=surf(:,end);
% KNN classification
Mdl = fitcknn(dataknn,lblknn,'NumNeighbors',5,'Standardize',1)
rng(1); % For reproducibility
knndat = crossval(Mdl);
classError = kfoldLoss(knndat)
disp(['K-NN Classification Accuracy : ' num2str(100-classError) ]);
% Hint
disp(['Generating Next artwork based on last feedback ...']);
%% ICA Evolutionary Algorithm Problem Definition
CostFunction=@(x) Sphere(x); % Cost Function
nVar=5; % Number of Decision Variables
VarSize=[1 nVar]; % Decision Variables Matrix Size
VarMin=-10; % Lower Bound of Variables
VarMax= 10; % Upper Bound of Variables
% ICA Parameters
MaxIt=100; % Maximum Number of Iterations
nPop=50; % Population Size
nEmp=10; % Number of Empires/Imperialists
alpha=1; % Selection Pressure
beta=2; % Assimilation Coefficient
pRevolution=0.1; % Revolution Probability
mu=0.05; % Revolution Rate
zeta=0.1; % Colonies Mean Cost Coefficient
ShareSettings;
% Initialization
% Initialize Empires
emp=CreateInitialEmpires();
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,1);
% ICA Main Loop
for it=1:MaxIt
% Assimilation
emp=AssimilateColonies(emp);
% Revolution
emp=DoRevolution(emp);
% Intra-Empire Competition
emp=IntraEmpireCompetition(emp);
% Update Total Cost of Empires
emp=UpdateTotalCost(emp);
% Inter-Empire Competition
emp=InterEmpireCompetition(emp);
% Update Best Solution Ever Found
imp=[emp.Imp];
[~, BestImpIndex]=min([imp.Cost]);
BestSol=imp(BestImpIndex);
% Update Best Cost
BestCost(it)=BestSol.Cost;
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
end
% Results
figure;
semilogy(BestCost,'LineWidth',2);
xlabel('ICA Iteration');
ylabel('ICA Best Cost');
%% Generating artwork based on ICA step
% Reading
im=imread('t1.png');im=rgb2gray(im);
im2=imread('t4.png');im2=rgb2gray(im2);
im3=imread('t5.png');im3=rgb2gray(im3);
im4=imread('t2.png');im4=rgb2gray(im4);
% Fourier transform
FreqColor=fft2(im4);
FreqColor = fftshift(FreqColor);
% Customizing variables
finsiz=256;
loopend=round(BestCost(1,1));
findiv=1+(BestImpIndex/10)+0.6;
y=num2str(BestSol.Cost);
finfuse=str2num(y(1));
stdmed=alpha;
% Median and std filter
if stdmed == 1
im=medfilt2(imadjust(cast(stdfilt(im),'uint8')));imor=im;
im2=medfilt2(imadjust(cast(stdfilt(im2),'uint8')));im2or=im2;
im3=medfilt2(imadjust(cast(stdfilt(im3),'uint8')));im3or=im3;
im4=medfilt2(imadjust(cast(stdfilt(im4),'uint8')));im4or=im4;
end;
% Same sizing
im=imresize(im, [finsiz finsiz]);
im2=imresize(im2, [finsiz finsiz]);
im3=imresize(im3, [finsiz finsiz]);
im4=imresize(im4, [finsiz finsiz]);
% Main process
tempang=0;
for i = 1 : loopend
imr = imrotate(im,tempang+20);
imr2 = imrotate(im2,tempang-40);
imr3 = imrotate(im3,tempang+40);
imr4 = imrotate(im4,tempang-20);
tform = affine2d([1 0 0; .5 1 0; 1 0 1]);
imr = imwarp(imr,tform);
imr2 = imwarp(imr2,tform);
%
imrsize=size(imr);imrsize=imrsize(1,1);
imr=imresize(imr, [finsiz finsiz]);
imr2=imresize(imr2, [finsiz finsiz]);
imr3=imresize(imr3, [finsiz finsiz]);
imr4=imresize(imr4, [finsiz finsiz]);
%
tmpimr=imresize(imr, [finsiz finsiz]);
tmpimr2=imresize(imr2, [finsiz finsiz]);
tmpimr3=imresize(imr3, [finsiz finsiz]);
tmpimr4=imresize(imr4, [finsiz finsiz]);
%
im=imresize(im, [finsiz finsiz]);
im2=imresize(im2, [finsiz finsiz]);
im3=imresize(im3, [finsiz finsiz]);
im4=imresize(im4, [finsiz finsiz]);
% Blending images
im = imfuse(im,imr);
im2 = imfuse(im2,imr2);
im3 = imfuse(im3,imr3);
im4 = imfuse(im4,imr4);
% Next image with reduction
im=im-tmpimr/findiv;
im2=im2-tmpimr2/findiv;
im3=im3-tmpimr3/findiv;
im4=im4-tmpimr4/findiv;
%
imreg{i}=im;
imreg2{i}=im2;
imreg3{i}=im3;
imreg4{i}=im4;
end;
% Plots
f1=figure;
movegui(f1,'northeast');
for i=1:loopend
imshow(imreg{i});end;
%
f2=figure;
movegui(f2,'northwest');
for i=1:loopend
imshow(imreg2{i});end;
%
f3=figure;
movegui(f3,'southeast');
for i=1:loopend
imshow(imreg3{i});end;
%
f4=figure;
movegui(f4,'southwest');
for i=1:loopend
imshow(imreg4{i});end;
%
figure;
fr=(log(1+abs(FreqColor)));
fr=imresize(fr, [finsiz finsiz]);
C1 = imfuse(imreg{finfuse},imreg2{finfuse},'blend','Scaling','joint');
C2 = imfuse(C1,imreg3{finfuse},'blend','Scaling','joint');
C3 = imfuse(C2,imreg4{finfuse},'blend','Scaling','joint');
J = imcomplement(C3);
J2=imcomplement(fr);
imshowpair(J,J2);
subplot(1,3,1)
imshowpair(C3,fr);
subplot(1,3,2)
imshowpair(C3,J);
subplot(1,3,3)
imshowpair(J,J2);
%
figure;
subplot(2,5,1)
subimage(imor);
subplot(2,5,2)
subimage(im2or);
subplot(2,5,3)
subimage(im3or);
subplot(2,5,4)
subimage(im4or);
subplot(2,5,5)
subimage(imreg{end});
subplot(2,5,6)
subimage(imreg2{end});
subplot(2,5,7)
subimage(imreg3{end});
subplot(2,5,8)
subimage(imreg4{end});
subplot(2,5,9)
subimage(C3);
subplot(2,5,10)
imshow(log(1+abs(fr)),[]);
disp(['Rehabilitation Estimation ...']);
% figure;
% montage(imreg);
% figure;
% montage(imreg2);
% figure;
% montage(imreg3);
% figure;
% montage(imreg4);