forked from siloekse/PythonESN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameterhelper.py
223 lines (175 loc) · 8.47 KB
/
parameterhelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import copy
import json
import logging
from math import ceil
import os, sys
# Check python version (for str/basestring)
if sys.version_info[0] == 3:
str_type = str,
else:
str_type = basestring,
# Initialize logger
logger = logging.getLogger(__name__)
# Set paths
CONFIG_PATH = './configs/opt'
USER_PATH = './configs/user'
DEFAULT_CONFIG = 'default'
PARAMETER_FORMAT_CONFIG_PERCENT_DIM = 'parameter_format_percent_dim'
PARAMETER_FORMAT_CONFIG_N_DIM = 'parameter_format_n_dim'
class ParameterHelper(object):
def __init__(self, filename, percent_dim = False):
# Choose correct format file
if percent_dim:
logger.info('Loading config for dimensionality as a percentage of the reservoir size.')
parformat_config = PARAMETER_FORMAT_CONFIG_PERCENT_DIM
else:
logger.info('Loading config for dimensionality as an integer.')
parformat_config = PARAMETER_FORMAT_CONFIG_N_DIM
# Read config files
default_config = json.load(open(CONFIG_PATH + '/' + DEFAULT_CONFIG + '.json', 'r'))
# Check if it is a config in the config dir
use_default_config = False
# Support both with and without file extension
if '.json' in filename:
extension = ''
else:
extension = '.json'
if os.path.exists(USER_PATH + '/' + filename + extension):
# Package provided config file exists!
logger.info("Config: %s (overload)"% filename)
configfile = USER_PATH + '/' + filename + extension
elif os.path.exists(filename + extension):
# Custom config file exists!
logger.info("Config: %s (overload)"% filename)
configfile = filename + extension
else:
# None exist. Use default.
logger.warning("Could not find the provided config. Using default.")
use_default_config = True
# Overload default config file if appropriate
if not use_default_config:
user_config = json.load(open(configfile, 'r'))
# Overload the default config with the one provided by the user.
self._optconfig = self._overload_config(default_config, user_config)
else:
self._optconfig = default_config
# Read the parameter format
self._parameter_format = json.load(open(CONFIG_PATH + '/' + parformat_config + '.json', 'r'))
# Define operators
self._operators = {"multiply_intreturn": self._multiply_intreturn}
self._parse()
def _parse(self):
# Return {optimization, parameter_format, parameters, sigma}
self._optimization = self._optconfig['optimization']
self._fixed_values = dict()
self._prototype = dict()
self._sigma = dict()
## Embedding
self._fixed_values['embedding'] = self._optconfig['embedding']
self._parameter_format['embedding_parameters'] = \
self._parameter_format['embedding_parameters'][self._optconfig['embedding']]
# n_dim
self._parameter_format['n_dim'] = \
self._parameter_format['n_dim'][self._optconfig['embedding']]
## Regression method
self._fixed_values['regression_method'] = self._optconfig['regression_method']
self._parameter_format['regression_parameters'] = \
self._parameter_format['regression_parameters'][self._optconfig['regression_method']]
## Get the parameter values/bounds/types from the config
# to generate prototype.
for key in self._optconfig:
if key == 'optimization' or key == 'embedding' or key == 'regression_method':
continue
# Check if parameter is necessary
if not self._need_parameter(self._parameter_format, key):
continue
# Constant. Store in fixed values.
if self._optconfig[key]['type'] == 'c':
self._fixed_values[key] = self._optconfig[key]['val']
# Not constant. Add to prototype individual.
else:
self._prototype[key] = (self._optconfig[key]['type'],
self._optconfig[key]['min'],
self._optconfig[key]['max'])
self._sigma[key] = self._optconfig[key]['sigma']
return
def get_parameters(self, individual):
# Copy the parameter format structure and replace with the proper values (from individual and fixed values)
parameters = copy.deepcopy(self._parameter_format)
for key in parameters:
# String => replace with values
if isinstance(parameters[key], str_type):
if parameters[key] in self._fixed_values:
parameters[key] = self._fixed_values[parameters[key]]
elif parameters[key] in individual:
parameters[key] = individual[parameters[key]]
# list => replace each string in the list with values
elif type(parameters[key]) == type([]):
for i in range(len(parameters[key])):
if parameters[key][i] in self._fixed_values:
parameters[key][i] = self._fixed_values[parameters[key][i]]
elif parameters[key][i] in individual:
parameters[key][i] = individual[parameters[key][i]]
# Dict => This is an operator that needs to be called
elif type(parameters[key]) == type({}):
# Should have "operator", "val1" and "val2"
if parameters[key]["operator"] in self._operators:
# Value fixed
if parameters[key]["val1"] in self._fixed_values:
val1 = self._fixed_values[parameters[key]["val1"]]
# Value in individual
elif parameters[key]["val1"] in individual:
val1 = individual[parameters[key]["val1"]]
# Value2 fixed
if parameters[key]["val2"] in self._fixed_values:
val2 = self._fixed_values[parameters[key]["val2"]]
# Value2 in individual
elif parameters[key]["val2"] in individual:
val2 = individual[parameters[key]["val2"]]
parameters[key] = self._operators[parameters[key]["operator"]](val1, val2)
else:
raise ValueError("Invalid operator " + parameters[key]["operator"] + " defined for "+ key)
return parameters
def get_prototype(self):
return self._prototype, self._sigma
def _overload_config(self, default, overload):
"""
Overload the default config with the user provided config.
"""
# Check the provided parameters in overload. Replace the ones in the default config
# with these parameters.
config = copy.deepcopy(default)
for key in overload:
# dicts need to be iterated over
if type(overload[key]) == type({}):
for inner_key in overload[key]:
config[key][inner_key] = overload[key][inner_key]
else:
config[key] = overload[key]
return config
def _need_parameter(self, parameter_format, parameter_name):
# Check if the current parameter is needed for the current setup
found_it = False
for key in parameter_format:
if parameter_format[key] is None:
pass
# List parameters
elif type(parameter_format[key]) == type([]):
for i in range(len(parameter_format[key])):
if isinstance(parameter_format[key][i], str_type):
if parameter_format[key][i] == parameter_name:
found_it = True
# Pure parameters
elif isinstance(parameter_format[key], str_type):
if parameter_format[key] == parameter_name:
found_it = True
# For operators (represented as dict)
elif type(parameter_format[key]) == type({}):
if parameter_format[key]['val1'] == parameter_name or parameter_format[key]['val2'] == parameter_name:
found_it = True
return found_it
def _multiply_intreturn(self, val1, val2):
return int(ceil(val1*val2))
if __name__ == "__main__":
parhelp = ParameterHelper('nusvr_kpca')
prototype, sigma = parhelp.get_prototype()