@@ -105,7 +105,7 @@ optprob.cons_h(H3, x0)
105
105
μ = randn (1 )
106
106
σ = rand ()
107
107
optprob. lag_h (H4, x0, σ, μ)
108
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
108
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
109
109
110
110
G2 = Array {Float64} (undef, 2 )
111
111
H2 = Array {Float64} (undef, 2 , 2 )
@@ -142,7 +142,7 @@ optprob.cons_h(H3, x0)
142
142
μ = randn (1 )
143
143
σ = rand ()
144
144
optprob. lag_h (H4, x0, σ, μ)
145
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
145
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
146
146
147
147
G2 = Array {Float64} (undef, 2 )
148
148
H2 = Array {Float64} (undef, 2 , 2 )
@@ -179,7 +179,7 @@ optprob.cons_h(H3, x0)
179
179
μ = randn (1 )
180
180
σ = rand ()
181
181
optprob. lag_h (H4, x0, σ, μ)
182
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
182
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
183
183
184
184
G2 = Array {Float64} (undef, 2 )
185
185
H2 = Array {Float64} (undef, 2 , 2 )
@@ -217,14 +217,15 @@ optprob.cons_h(H3, x0)
217
217
μ = randn (1 )
218
218
σ = rand ()
219
219
optprob. lag_h (H4, x0, σ, μ)
220
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
220
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
221
221
222
222
G2 = Array {Float64} (undef, 2 )
223
223
H2 = Array {Float64} (undef, 2 , 2 )
224
224
225
- optf = OptimizationFunction (rosenbrock, OptimizationBase. AutoZygote (), cons = cons)
225
+ optf = OptimizationFunction (
226
+ rosenbrock, SecondOrder (AutoForwardDiff (), AutoZygote ()), cons = cons)
226
227
optprob = OptimizationBase. instantiate_function (
227
- optf, x0, OptimizationBase . AutoZygote (),
228
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
228
229
nothing , 1 , g = true , h = true , hv = true ,
229
230
cons_j = true , cons_h = true , cons_vjp = true ,
230
231
cons_jvp = true , lag_h = true )
@@ -254,14 +255,14 @@ optprob.cons_h(H3, x0)
254
255
μ = randn (1 )
255
256
σ = rand ()
256
257
optprob. lag_h (H4, x0, σ, μ)
257
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
258
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
258
259
259
260
G2 = Array {Float64} (undef, 2 )
260
261
H2 = Array {Float64} (undef, 2 , 2 )
261
262
262
- optf = OptimizationFunction (rosenbrock, OptimizationBase . AutoFiniteDiff (), cons = cons)
263
+ optf = OptimizationFunction (rosenbrock, DifferentiationInterface . SecondOrder (ADTypes . AutoFiniteDiff (), ADTypes . AutoReverseDiff () ), cons = cons)
263
264
optprob = OptimizationBase. instantiate_function (
264
- optf, x0, OptimizationBase . AutoFiniteDiff (),
265
+ optf, x0, DifferentiationInterface . SecondOrder (ADTypes . AutoFiniteDiff (), ADTypes . AutoReverseDiff () ),
265
266
nothing , 1 , g = true , h = true , hv = true ,
266
267
cons_j = true , cons_h = true , cons_vjp = true ,
267
268
cons_jvp = true , lag_h = true )
@@ -287,11 +288,12 @@ optprob.cons_h(H3, x0)
287
288
H3 = [Array {Float64} (undef, 2 , 2 )]
288
289
optprob. cons_h (H3, x0)
289
290
@test H3≈ [[2.0 0.0 ; 0.0 2.0 ]] rtol= 1e-5
291
+ Random. seed! (123 )
290
292
H4 = Array {Float64} (undef, 2 , 2 )
291
293
μ = randn (1 )
292
294
σ = rand ()
293
295
optprob. lag_h (H4, x0, σ, μ)
294
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
296
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
295
297
end
296
298
297
299
@testset " two constraints tests" begin
448
450
G2 = Array {Float64} (undef, 2 )
449
451
H2 = Array {Float64} (undef, 2 , 2 )
450
452
451
- optf = OptimizationFunction (rosenbrock, OptimizationBase. AutoZygote (), cons = con2_c)
453
+ optf = OptimizationFunction (
454
+ rosenbrock, SecondOrder (AutoForwardDiff (), AutoZygote ()), cons = con2_c)
452
455
optprob = OptimizationBase. instantiate_function (
453
- optf, x0, OptimizationBase . AutoZygote (),
456
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
454
457
nothing , 2 , g = true , h = true , hv = true ,
455
458
cons_j = true , cons_h = true , cons_vjp = true ,
456
459
cons_jvp = true , lag_h = true )
486
489
H2 = Array {Float64} (undef, 2 , 2 )
487
490
488
491
optf = OptimizationFunction (
489
- rosenbrock, OptimizationBase . AutoFiniteDiff (), cons = con2_c)
492
+ rosenbrock, DifferentiationInterface . SecondOrder (ADTypes . AutoFiniteDiff (), ADTypes . AutoReverseDiff () ), cons = con2_c)
490
493
optprob = OptimizationBase. instantiate_function (
491
- optf, x0, OptimizationBase . AutoFiniteDiff (),
494
+ optf, x0, DifferentiationInterface . SecondOrder (ADTypes . AutoFiniteDiff (), ADTypes . AutoReverseDiff () ),
492
495
nothing , 2 , g = true , h = true , hv = true ,
493
496
cons_j = true , cons_h = true , cons_vjp = true ,
494
497
cons_jvp = true , lag_h = true )
@@ -734,12 +737,12 @@ end
734
737
@test lag_H ≈ lag_H_expected
735
738
@test nnz (lag_H) == 5
736
739
737
- optf = OptimizationFunction (sparse_objective, OptimizationBase . AutoSparseZygote (),
740
+ optf = OptimizationFunction (sparse_objective, AutoSparse (DifferentiationInterface . SecondOrder (ADTypes . AutoForwardDiff (), ADTypes . AutoZygote ())),
738
741
cons = sparse_constraints)
739
742
740
743
# Instantiate the optimization problem
741
744
optprob = OptimizationBase. instantiate_function (optf, x0,
742
- OptimizationBase . AutoSparseZygote ( ),
745
+ AutoSparse (DifferentiationInterface . SecondOrder (ADTypes . AutoForwardDiff (), ADTypes . AutoZygote ()) ),
743
746
nothing , 2 , g = true , h = true , cons_j = true , cons_h = true , lag_h = true )
744
747
# Test gradient
745
748
G = zeros (3 )
@@ -1065,10 +1068,10 @@ end
1065
1068
1066
1069
cons = (x, p) -> [x[1 ]^ 2 + x[2 ]^ 2 ]
1067
1070
optf = OptimizationFunction {false} (rosenbrock,
1068
- OptimizationBase . AutoZygote (),
1071
+ SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1069
1072
cons = cons)
1070
1073
optprob = OptimizationBase. instantiate_function (
1071
- optf, x0, OptimizationBase . AutoZygote (),
1074
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1072
1075
nothing , 1 , g = true , h = true , cons_j = true , cons_h = true )
1073
1076
1074
1077
@test optprob. grad (x0) == G1
@@ -1081,10 +1084,10 @@ end
1081
1084
1082
1085
cons = (x, p) -> [x[1 ]^ 2 + x[2 ]^ 2 , x[2 ] * sin (x[1 ]) - x[1 ]]
1083
1086
optf = OptimizationFunction {false} (rosenbrock,
1084
- OptimizationBase . AutoZygote (),
1087
+ SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1085
1088
cons = cons)
1086
1089
optprob = OptimizationBase. instantiate_function (
1087
- optf, x0, OptimizationBase . AutoZygote (),
1090
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1088
1091
nothing , 2 , g = true , h = true , cons_j = true , cons_h = true )
1089
1092
1090
1093
@test optprob. grad (x0) == G1
0 commit comments