From 1a87b8a70f473c1ac3bbf552a541541d672827c7 Mon Sep 17 00:00:00 2001 From: liukeskywalker98 <57304384+liukeskywalker98@users.noreply.github.com> Date: Tue, 3 May 2022 21:16:09 -0400 Subject: [PATCH] Preliminary mapping and undistort code --- Mapping.py | 16 ++++++-- RawROAMSystem.py | 60 +++++++++++++++++++++------ Tracker.py | 6 ++- motionDistortion.py | 95 ++++++++++++++++++++++++++++++------------- trajectoryPlotting.py | 11 +++++ 5 files changed, 141 insertions(+), 47 deletions(-) diff --git a/Mapping.py b/Mapping.py index 9dcbbff..63066c2 100644 --- a/Mapping.py +++ b/Mapping.py @@ -7,6 +7,7 @@ # import m2dp from getPointCloud import getPointCloudPolarInd from utils import getRotationMatrix +from motionDistortion import MotionDistortionSolver # Thresholds ROT_THRESHOLD = 0.2 # radians @@ -20,7 +21,7 @@ class Keyframe(): def __init__(self, globalPose: np.ndarray, featurePointsLocal: np.ndarray, - radarPolarImg: np.ndarray) -> None: + radarPolarImg: np.ndarray, velocity: np.ndarray) -> None: ''' @brief Keyframe class. Contains pose, feature points and point cloud information @param[in] globalPose (3 x 1) Pose information [x, y, th] in global coordinates, @@ -31,11 +32,12 @@ def __init__(self, globalPose: np.ndarray, featurePointsLocal: np.ndarray, @see updateInfo() ''' - self.updateInfo(globalPose, featurePointsLocal, radarPolarImg) + self.updateInfo(globalPose, featurePointsLocal, radarPolarImg, velocity) def updateInfo(self, globalPose: np.ndarray, featurePointsLocal: np.ndarray, - radarPolarImg: np.ndarray) -> None: + radarPolarImg: np.ndarray, + velocity: np.ndarray) -> None: ''' @brief Update internal information: pose, feature points and point cloud information @param[in] globalPose (3 x 1) Pose information [x, y, th] in global coordinates, @@ -59,6 +61,10 @@ def updateInfo(self, globalPose: np.ndarray, # TODO: Not sure if needed/useful self.pointCloud = getPointCloudPolarInd(radarPolarImg) + self.velocity = velocity + self.featurePointsLocalUndistorted = MotionDistortionSolver.undistort(velocity, featurePointsLocal) + self.prunedUndistortedLocals = self.featurePointsLocalUndistorted + def copyFromOtherKeyframe(self, keyframe) -> None: self.updateInfo(keyframe.pose, keyframe.featurePointsLocal, keyframe.radarPolarImg) @@ -87,6 +93,9 @@ def convertFeaturesLocalToGlobal( featurePointsGlobal = (R @ (featurePointsGlobal.T + t)).T return featurePointsGlobal + + def getPrunedFeaturesGlobalPosition(self): + return self.convertFeaturesLocalToGlobal(self.prunedUndistortedLocals) def pruneFeaturePoints(self, corrStatus: np.ndarray) -> None: ''' @@ -95,6 +104,7 @@ def pruneFeaturePoints(self, corrStatus: np.ndarray) -> None: @note In place changing of `self.prunedFeaturePoints` function, which aims to track and prune away the feature points that are part of this keyframe ''' self.prunedFeaturePoints = self.prunedFeaturePoints[corrStatus] + self.prunedUndistortedLocals = self.prunedUndistortedLocals[corrStatus] # def isVisible(self, keyframe): # ''' diff --git a/RawROAMSystem.py b/RawROAMSystem.py index 1a5a066..0e5a02d 100644 --- a/RawROAMSystem.py +++ b/RawROAMSystem.py @@ -9,7 +9,8 @@ from trajectoryPlotting import Trajectory, getGroundTruthTrajectory, plotGtAndEstTrajectory from utils import convertRandHtoDeltas, f_arr, getRotationMatrix, plt_savefig_by_axis, radarImgPathToTimestamp from Tracker import Tracker - +from motionDistortion import MotionDistortionSolver +from utils import * class RawROAMSystem(): @@ -124,6 +125,15 @@ def run(self, startSeqInd: int = 0, endSeqInd: int = -1) -> None: self.gtTraj = gtTraj self.estTraj = estTraj + # Initialialize Motion Distortion Solver + # Covariance matrix, point errors + cov_p = np.diag([4, 4]) # sigma = 2 pixels + # Covariance matrix, velocity errors + cov_v = np.diag([1, 1, (5 * np.pi / 180) ** 2]) # 1 pixel/s, 1 pixel/s, 5 degrees/s + MDS = MotionDistortionSolver(cov_p, cov_v) + # Prior frame's pose + prev_pose = convertPoseToTransform(initPose) + # Actually run the algorithm # Get initial polar and Cartesian image prevImgPolar = getPolarImageFromImgPaths(imgPathArr, startSeqInd) @@ -134,7 +144,8 @@ def run(self, startSeqInd: int = 0, endSeqInd: int = -1) -> None: blobCoord, _ = appendNewFeatures(prevImgCart, blobCoord) # Initialize first keyframe - old_kf = Keyframe(initPose, blobCoord, prevImgPolar) + zero_velocity = np.zeros((3,)) + old_kf = Keyframe(initPose, blobCoord, prevImgPolar, ) # pointer to previous kf self.map.addKeyframe(old_kf) possible_kf = Keyframe(initPose, blobCoord, prevImgPolar) @@ -149,21 +160,31 @@ def run(self, startSeqInd: int = 0, endSeqInd: int = -1) -> None: good_old, good_new, rotAngleRad, corrStatus = tracker.track( prevImgCart, currImgCart, prevImgPolar, currImgPolar, blobCoord, seqInd) - + + # Keyframe updating + old_kf.pruneFeaturePoints(corrStatus) + print("Detected", np.rad2deg(rotAngleRad), "[deg] rotation") estR = getRotationMatrix(-rotAngleRad) - - R, h = tracker.getTransform(good_old, good_new) - + + R, h = tracker.getTransform(good_old, good_new, pixel = False) # R = estR + + # Solve for Motion Compensated Transform + p_w = old_kf.getPrunedFeaturesGlobalPosition() + # Initial Transform guess + T_wj = np.block([[R, h], + [np.zeros((2,)), 1]]) - # Update trajectory - self.updateTrajectory(R, h, seqInd) + MDS.update_problem(prev_pose, p_w, good_new, T_wj) + undistort_solution = MDS.optimize_library() + pose_vector = undistort_solution[3:] - # Keyframe updating - old_kf.pruneFeaturePoints(corrStatus) + # Update trajectory + #self.updateTrajectory(R, h, seqInd) + self.updateTrajectoryAbsolute(pose_vector, seqInd) - latestPose = self.estTraj.poses[-1] + latestPose = pose_vector #self.estTraj.poses[-1] possible_kf.updateInfo(latestPose, good_new, currImgPolar) # Add a keyframe if it fulfills criteria @@ -179,9 +200,15 @@ def run(self, startSeqInd: int = 0, endSeqInd: int = -1) -> None: print("\nAdding keyframe...\n") - old_kf.copyFromOtherKeyframe(possible_kf) - self.map.addKeyframe(old_kf) + #old_kf.copyFromOtherKeyframe(possible_kf) + self.map.addKeyframe(possible_kf) + # TODO: Aliasing above? old_kf is never assigned the object possible_kf, + # map ends up with a list of N pointers to the same keyframe + # Proposed fix: old_kf = possible_kf # switch ptr to new object + # Initialize new poss_kf for new ptr + old_kf = possible_kf + possible_kf = Keyframe(latestPose, good_new, currImgPolar) # TODO: do bundle adjustment here self.map.bundleAdjustment() @@ -192,6 +219,7 @@ def run(self, startSeqInd: int = 0, endSeqInd: int = -1) -> None: # Update incremental variables blobCoord = good_new.copy() prevImgCart = currImgCart + prev_pose = convertPoseToTransform(latestPose) # TODO: Move into trajectory class? def updateTrajectory(self, R, h, seqInd): @@ -202,6 +230,12 @@ def updateTrajectory(self, R, h, seqInd): self.estTraj.appendRelativeDeltas(timestamp, est_deltas) # self.estTraj.appendRelativeTransform(timestamp, R, h) + def updateTrajectoryAbsolute(self, pose_vector, seqInd): + imgPathArr = self.imgPathArr + + timestamp = radarImgPathToTimestamp(imgPathArr[seqInd]) + self.estTraj.appendAbsoluteTransform(timestamp, pose_vector) + def plot(self, prevImg, currImg, diff --git a/Tracker.py b/Tracker.py index 52cb7f6..73450b0 100644 --- a/Tracker.py +++ b/Tracker.py @@ -95,7 +95,8 @@ def track( return good_old, good_new, angleRotRad, corrStatus def getTransform(self, srcCoord: np.ndarray, - targetCoord: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: + targetCoord: np.ndarray, + pixel: bool) -> Tuple[np.ndarray, np.ndarray]: ''' @brief Obtain transform from coordinate correspondnces @@ -109,7 +110,8 @@ def getTransform(self, srcCoord: np.ndarray, # Obtain transforms # R, h = calculateTransformDxDth(srcCoord, targetCoord) R, h = calculateTransformSVD(srcCoord, targetCoord) - h *= RANGE_RESOLUTION_CART_M + if not pixel: + h *= RANGE_RESOLUTION_CART_M return R, h diff --git a/motionDistortion.py b/motionDistortion.py index 47e0b07..0515c84 100644 --- a/motionDistortion.py +++ b/motionDistortion.py @@ -30,41 +30,76 @@ Debug ''' - +RADAR_SCAN_FREQUENCY = 4 # 4 hz data class MotionDistortionSolver(): - def __init__(self, T_wj0, p_w, p_jt, v_j0, T_wj, sigma_p, sigma_v): + def __init__(self, T_wj0, p_w, p_jt, T_wj, sigma_p, sigma_v, + frequency = RADAR_SCAN_FREQUENCY): # e_p Parameters self.T_wj0 = T_wj0 # Prior transform, T_w,j0 self.T_wj0_inv = np.linalg.inv(T_wj0) self.p_w = homogenize(p_w) # Estimated point world positions, N x 3 self.p_jt = homogenize(p_jt) # Observed points at time t, N x 3 - + self.T_wj_initial = T_wj + + # Radar Data Params + self.total_scan_time = 1 / frequency + # e_v Parameters - self.v_j_initial = v_j0 # Initial velocity guess (prior velocity/ velocity from SVD solution) - self.T_wj_initial = T_wj # Initial Transform guess (T from SVD solution) + self.v_j_initial = self.infer_velocity(T_wj) + # Initial velocity guess (prior velocity/ velocity from SVD solution) # Optimization parameters self.sigma_p = sigma_p # Info matrix, point error, lamdba_p self.sigma_v = sigma_v # Info matrix, velocity, sigma_v - n_v = self.sigma_v.shape[0] - n_p = self.sigma_p.shape[0] - self.sigma_total = np.block([[sigma_v, np.zeros((n_v, n_p))], - [np.zeros((n_p, n_v)), sigma_p]]) - self.info_sqrt = sp.linalg.sqrtm(np.linalg.inv(self.sigma_total)) # 5 x 5 + # n_v = self.sigma_v.shape[0] + # n_p = self.sigma_p.shape[0] + # self.sigma_total = np.block([[sigma_v, np.zeros((n_v, n_p))], + # [np.zeros((n_p, n_v)), sigma_p]]) + # self.info_sqrt = sp.linalg.sqrtm(np.linalg.inv(self.sigma_total)) sigma_p_vector = np.tile(np.diag(sigma_p), p_jt.shape[0]) sigma_v_vector = np.diag(sigma_v) sigma_vector = np.concatenate((sigma_p_vector, sigma_v_vector)) self.info_vector = 1 / sigma_vector - self.dT = None - self.T_wj_best = T_wj - self.v_j_best = v_j0 # might not be good enough a guess, too far from optimal + self.dT = MotionDistortionSolver.compute_time_deltas(self.total_scan_time, p_jt) + pass + def __init__(self, sigma_p, sigma_v, + frequency = RADAR_SCAN_FREQUENCY): # Radar Data Params - self.total_scan_time = 1 / 4 # assuming 4 Hz + self.total_scan_time = 1 / frequency + + # Optimization parameters + self.sigma_p = np.diag(sigma_p) # Info matrix, point error, lamdba_p + self.sigma_v = np.diag(sigma_v) # Info matrix, velocity, sigma_v pass + + def update_problem(self, T_wj0, p_w, p_jt, T_wj): + # e_p Parameters + self.T_wj0 = T_wj0 # Prior transform, T_w,j0 + self.T_wj0_inv = np.linalg.inv(T_wj0) + self.p_w = homogenize(p_w) # Estimated point world positions, N x 3 + self.p_jt = homogenize(p_jt) # Observed points at time t, N x 3 + + # e_v Parameters + self.v_j_initial = self.infer_velocity(T_wj) + # Initial velocity guess (prior velocity/ velocity from SVD solution) + self.dT = MotionDistortionSolver.compute_time_deltas(self.total_scan_time, p_jt) + + # Info matrix scales to number of points in the optimization problem + sigma_p_vector = np.tile(self.sigma_p, p_jt.shape[0]) + sigma_v_vector = self.sigma_v + sigma_vector = np.concatenate((sigma_p_vector, sigma_v_vector)) + self.info_vector = 1 / sigma_vector + + def infer_velocity(self, transform): + dx = transform[0, 2] + dy = transform[1, 2] + dtheta = np.arctan2(transform[1, 0], transform[0, 0]) + return np.array([dx, dy, dtheta]) / self.total_scan_time - def compute_time_deltas(self, points): + @staticmethod + def compute_time_deltas(period, points): ''' Get the time deltas for each point. This depends solely on where the points are in scan angle. The further away from center, the greater the @@ -74,21 +109,26 @@ def compute_time_deltas(self, points): idea to re-run this function once an undistorted frame is obtained for better estimates. ''' - #points = self.undistort()#self.p_jt # provide in N x 3 x = points[:, 0] y = points[:, 1] - angles = np.arctan2(y, -x) # scanline starts at positive x axis and moves clockwise, we take midpoint pi/2 as 0 - dT = self.total_scan_time * angles / (2 * np.pi) - #dT -= self.total_scan_time / 2 # offset range, as defined in [-scan_time /2 , scan_time/2] - self.dT = dT - - def undistort(self, v_j): + # scanline starts at positive x axis and moves clockwise + # We take midpoint pi/2 as 0 + angles = np.arctan2(y, -x) + dT = period * angles / (2 * np.pi) + return dT + + @staticmethod + def undistort(v_j, points, period = 1 / RADAR_SCAN_FREQUENCY, times = None): ''' Computes a new set of undistorted observed points, based on the current best estimate of v_T, T_wj, dT ''' + if times is None: + assert(period > 0) + times = MotionDistortionSolver.compute_time_deltas(period, points) + v_j_column = np.expand_dims(v_j, axis = 1) - displacement = v_j_column * self.dT # 3 x N + displacement = v_j_column * times # 3 x N theta = displacement[2, :] # (N,) dx = displacement[0, :] # (N,) @@ -98,11 +138,10 @@ def undistort(self, v_j): T_j_jt = np.array([[np.cos(theta), -np.sin(theta), dx], [np.sin(theta), np.cos(theta), dy], [np.zeros(shape), np.zeros(shape), np.ones(shape)]]) - p_jt_col = np.expand_dims(self.p_jt, axis = 2) # N x 3 x 1 + p_jt_col = np.expand_dims(points, axis = 2) # N x 3 x 1 undistorted = T_j_jt.transpose((2, 0, 1)) @ p_jt_col # N x 3 x 1 return undistorted - # TODO: Check if this really should be inverted def expected_observed_pts(self, T_wj): ''' Returns the estimated positions of points based on their world location @@ -131,8 +170,7 @@ def error(self, v_j, T_wj): estimated observed positions and the velocity error. ''' # Compute point error - undistorted = self.undistort(v_j) - #self.compute_time_deltas(undistorted) + undistorted = MotionDistortionSolver.undistort(v_j, self.p_jt, times=self.dT) expected = self.expected_observed_pts(T_wj) naive_e_p = expected - np.squeeze(undistorted).T # 3 x N # Actual loss is the Cauchy robust loss, defined here: @@ -176,7 +214,7 @@ def jacobian(self, v_j, T_wj): J_v - gradient of point error and velocity error wrt velocity terms vx, vy, vtheta ''' - undistorted = self.undistort(v_j) + undistorted = MotionDistortionSolver.undistort(v_j, self.p_jt, times=self.dT) expected = self.expected_observed_pts(T_wj) input = expected - np.squeeze(undistorted).T # 3 x N naive_e_p = input[:2] @@ -248,7 +286,6 @@ def optimize_library(self): ''' Optimize using the LM implementation in the scipy library. ''' - self.compute_time_deltas(self.p_jt) # Initialize v, T T0 = self.T_wj_initial T_params = np.array([T0[0, 2], T0[1, 2], np.arctan2(T0[1, 0], T0[0, 0])]) diff --git a/trajectoryPlotting.py b/trajectoryPlotting.py index c8ced0b..3706c7e 100644 --- a/trajectoryPlotting.py +++ b/trajectoryPlotting.py @@ -58,6 +58,17 @@ def appendRelativeTransform(self, time, R, h): # new_pose = [*xy[0], *xy[1], self.poses[-1,2] + dth] self.poses = np.vstack((self.poses, new_pose)) + def appendAbsoluteTransform(self, time, pose): + ''' + @brief Append a relative transform to the trajectory + h should already be scaled by radar resolution + @param[in] time timestamp of the transform + @param[in] pose pose vector (3, ) + ''' + # Add to timestamps + self.timestamps = np.append(self.timestamps, time) + self.poses = np.vstack((self.poses, pose)) + def getPoseAtTimes(self, times): ''' @brief Given timestamps, return the pose at that time using cubic interpolation