-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgetPointCloud.py
93 lines (68 loc) · 3.22 KB
/
getPointCloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import cv2
import os, sys
from scipy.signal import find_peaks
from Coord import CartCoord, PolarCoord
from parseData import getRadarStreamPolar, convertPolarImageToCartesian
def getPointCloudPolarInd(polarImage: np.ndarray,
peakDistance: float = None,
peakProminence: float = None) -> np.ndarray:
'''
@brief Given a radar image, generate a list of polar indices
based on peak detection with pruning
@param[in] peakDistance Minimum distance to be counted as a peak
@param[in] peakProminence Minimum prominence to be counted as a peak
@return (K x 2) Np array of polar coordinates with each row [thetaInd, rInd] being indices in the polar image
'''
M, N = polarImage.shape
pointCloudPolarIndices = np.empty((0, 2))
# For each azimuth value
for azim_ind in range(M):
# Obtain range readings
azimuthReading = polarImage[azim_ind, :]
# Obtain peak information
peakInd, peakInfoDict = find_peaks(azimuthReading,
distance=peakDistance,
prominence=peakProminence)
peakHeights = azimuthReading[peakInd]
# Peak pruning algorithm
# - first obtain mean and std dev information
mean = np.mean(peakHeights)
stddev = np.std(peakHeights)
# - then obtain the threshold as a part of mean + stddev
thresh = mean + stddev
# - get valid peaks that are geq thresh according to algorithm
validPeakInd = peakInd[peakHeights >= thresh]
# validPeakHeights = azimuthReading[validPeakInd]
azimuthIndices = np.full_like(validPeakInd, azim_ind)
toAppend = np.vstack((azimuthIndices, validPeakInd)).T
pointCloudPolarIndices = np.vstack((pointCloudPolarIndices, toAppend))
return pointCloudPolarIndices.astype(int)
if __name__ == "__main__":
datasetName = sys.argv[1] if len(sys.argv) > 1 else "tiny"
dataPath = os.path.join("data", datasetName, "radar")
timestampPath = os.path.join("data", datasetName, "radar.timestamps")
streamArr = getRadarStreamPolar(dataPath, timestampPath)
nImgs = streamArr.shape[2]
for i in range(nImgs):
imgPolar = streamArr[:, :, i]
# TODO: What are the values for peak prominence and distance
featurePolarIndices = getPointCloudPolarInd(imgPolar)
# TODO: need to convert from polar to Cartesian form?
# TODO: for now display via weird way
featurePolarImage = np.zeros_like(imgPolar)
featureAzim, featureRange = featurePolarIndices[:, 0], featurePolarIndices[:, 1]
featurePolarImage[featureAzim, featureRange] = 255
# Display
imgCart = convertPolarImageToCartesian(imgPolar)
imgCartRGB = cv2.cvtColor(imgCart, cv2.COLOR_GRAY2BGR)
featureImgCart = convertPolarImageToCartesian(featurePolarImage)
imgCartRGB[:,:,2] = np.clip(featureImgCart + imgCartRGB[:,:,2], 0, 255)
try:
cv2.imshow("Cartesian Stream with Features", imgCartRGB)
c = cv2.waitKey(100)
except KeyboardInterrupt:
break
if c == ord('q'):
break
# cv2.destroyAllWindows()